Spectral finite element method: wave propagation, diagnostics and control in anisotropic and inhomogeneous structures
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Springer
2008
|
Schriftenreihe: | Computational fluid and solid mechanics
|
Schlagworte: | |
Online-Zugang: | http://deposit.dnb.de/cgi-bin/dokserv?id=2769271&prov=M&dok_var=1&dok_ext=htm lizenzfrei lizenzfrei Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (p. [423] - 438) and index |
Beschreibung: | XIV, 440 S. Ill., graph. Darst. |
ISBN: | 9781846283550 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024623505 | ||
003 | DE-604 | ||
005 | 20110526 | ||
007 | t | ||
008 | 090924s2008 ad|| |||| 00||| eng d | ||
015 | |a 06N090753 |2 dnb | ||
020 | |a 9781846283550 |9 978-1-8462-8355-0 | ||
035 | |a (OCoLC)255008162 | ||
035 | |a (DE-599)GBV507541421 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-29T | ||
082 | 0 | |a 531.1133 | |
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
100 | 1 | |a Gopalakrishnan, Srinivasan |e Verfasser |0 (DE-588)104379672X |4 aut | |
245 | 1 | 0 | |a Spectral finite element method |b wave propagation, diagnostics and control in anisotropic and inhomogeneous structures |c S. Gopalakrishnan ; A. Chakraborty ; D. Roy Mahapatra |
264 | 1 | |a London |b Springer |c 2008 | |
300 | |a XIV, 440 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Computational fluid and solid mechanics | |
500 | |a Includes bibliographical references (p. [423] - 438) and index | ||
650 | 0 | 7 | |a Wellenausbreitung |0 (DE-588)4121912-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anisotroper Stoff |0 (DE-588)4280461-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Anisotroper Stoff |0 (DE-588)4280461-9 |D s |
689 | 0 | 1 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 0 | 2 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Chakraborty, Abir |e Verfasser |4 aut | |
700 | 1 | |a Roy Mahapatra, Debiprosad |e Verfasser |4 aut | |
856 | 4 | |u http://deposit.dnb.de/cgi-bin/dokserv?id=2769271&prov=M&dok_var=1&dok_ext=htm | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0824/2007938275-b.html |y Contributor biographical information |z lizenzfrei | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0824/2007938275-d.html |y Publisher description |z lizenzfrei | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0824/2007938275-t.html |z lizenzfrei |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595388&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018595388 |
Datensatz im Suchindex
_version_ | 1804140644834213888 |
---|---|
adam_text | Contents
1 Introduction............................................... 1
1.1 Solution Methods for Wave Propagation Problems........... 1
1.2 Fourier Analysis......................................... 6
1.2.1 Continuous Fourier Transforms...................... 6
1.2.2 Fourier Series..................................... 9
1.2.3 Discrete Fourier Transform......................... 11
1.3 Spectral Analysis........................................ 15
1.4 What is the Spectral Element Method?..................... 19
1.5 Outline and Scope of Book ............................... 21
2 Introduction to the Theory of Anisotropic and
Inhomogeneous Materials.................................. 23
2.1 Introduction to Composite Materials....................... 23
2.2 Theory of Laminated Composites.......................... 24
2.2.1 Micromechanical Analysis of a Lamina............... 25
2.2.2 Strength of Materials Approach to Determination of
Elastic Moduli.................................... 25
2.2.3 Stress-Strain Relations for a Lamina................. 29
2.2.4 Stress-Strain Relation for a Lamina with Arbitrary
Orientation of Fibers .............................. 31
2.3 Introduction to Smart Composites......................... 34
2.4 Modeling Inhomogeneous Materials........................ 38
3 Idealization of Wave Propagation and Solution Techniques. 41
3.1 General Form of the Wave Equations ...................... 41
3.2 Characteristics of Waves in Anisotropic Media .............. 42
3.3 General Form of Inhomogeneous Wave Equations............ 43
3.4 Basic Properties and Solution Techniques................... 43
3.5 Spectral Finite Element Discretization..................... 44
3.6 Efficient Computation of the Wavenumber and Wave Amplitude 48
Contents
3.6.1 Method 1: The Companion Matrix and the SVD
Technique........................................ 49
3.6.2 Method 2: Linearization of PEP..................... 50
3.7 Spectral Element Formulation for Isotropic Material......... 51
3.7.1 Spectral Element for Rods.......................... 51
3.7.2 Spectral Element for Beams ........................ 53
Wave Propagation in One-dimensional Anisotropic
Structures................................................. 55
4.1 Wave Propagation in Laminated Composite Thin Rods and
Beams................................................. 55
4.1.1 Governing Equations and PEP...................... 56
4.1.2 Spectrum and Dispersion Relations.................. 58
4.2 Spectral Element Formulation............................. 59
4.2.1 Finite Length Element............................. 59
4.2.2 Throw-off Element ................................ 61
4.3 Numerical Results and Discussions......................... 61
4.3.1 Impact on a Cantilever Beam....................... 61
4.3.2 Effect of the Axial-Flexural Coupling................ 63
4.3.3 Wave Transmission and Scattering Through an
Angle-joint....................................... 66
4.4 Wave Propagation in Laminated Composite Thick Beams:
Poisson s Contraction and Shear Deformation Models........ 69
4.4.1 Wave Motion in a Thick Composite Beam............ 70
4.4.2 Coupled Axial-Flexural Shear and Thickness
Contractional Modes............................... 72
4.4.3 Correction Factors at High Frequency Limit .......... 74
4.4.4 Coupled Axial-Flexural Shear Without the Thickness
Contractional Modes............................... 76
4.4.5 Modeling Spatially Distributed Dynamic Loads ....... 79
4.5 Modeling Damping Using Spectral Element................. 81
4.5.1 Proportional Damping Through a Discretized Finite
Element Model.................................... 81
4.5.2 Proportional Damping Through the Wave Equation ... 83
4.6 Numerical Results and Discussions......................... 88
4.6.1 Comparison of Response with Standard FEM......... 91
4.6.2 Presence of Axial-Flexural Shear Coupling........... 93
4.6.3 Parametric Studies on a Cantilever Beam............. 96
4.6.4 Response of a Beam with Ply-drops.................. 96
4.7 Layered Composite Thin-walled Tubes..................... 99
4.7.1 Linear Wave Motion in Composite Tube.............. 102
4.8 Spectral Finite Element Model............................ 107
4.8.1 Short and Long Wavelength Limits for Thin Shell and
Limitations of the Proposed Model.................. 107
4.8.2 Comparison with Analytical Solution ................ 114
Contents xi
4.9 Numerical Simulations...................................116
4.9.1 Time Response Under Short Impulse Load and the
Effect of Fiber Orientations.........................116
Wave Propagation in One-dimensional Inhomogeneous
Structures ................................................123
5.1 Length-wise Functionally Graded Rod......................124
5.1.1 Development of Spectral Finite Elements.............126
5.1.2 Smoothing of Reflected Pulse.......................132
5.2 Depth-wise Functionally Graded Beam.....................135
5.2.1 Spectral Finite Element Formulation.................137
5.2.2 The Spectrum and Dispersion Relation...............137
5.2.3 Effect of Gradation on the Cut-off Frequencies .......139
5.2.4 Computation of the Temperature Field...............142
5.3 Wave Propagation Analysis: Depth-wise Graded Beam (HMT) 142
5.3.1 Validation of the Formulated SFE...................143
5.3.2 Lamb Wave Propagation in FSDT and HMT Beams . . 148
5.3.3 Effect of Gradation on Stress Waves.................151
5.3.4 Coupled Thermoelastic Wave Propagation............153
5.4 Length-wise Graded Beam: FSDT.........................157
5.4.1 Spectral Finite Element Formulation.................158
5.4.2 Effect of Gradation on the Spectrum and Dispersion
Relation..........................................159
5.4.3 Effect of Gradation on the Cut-off Frequencies........160
5.5 Numerical Examples.....................................162
5.5.1 Effect of the Inhomogeneity.........................162
5.5.2 Elimination of the Reflection from Material Boundary. . 165
Wave Propagation in Two-dimensional Anisotropic
Structures.................................................171
6.1 Two-dimensional Initial Boundary Value Problem ...........172
6.2 Spectral Element for Doubly Bounded Media ...............176
6.2.1 Finite Layer Element (FLE)........................177
6.2.2 Infinite Layer Element (ILE)........................178
6.2.3 Expressions for Stresses and Strains .................178
6.2.4 Prescription of Boundary Conditions.................179
6.2.5 Determination of Lamb Wave Modes.................179
6.3 Numerical Examples.....................................181
6.3.1 Propagation of Surface and Interface Waves...........181
6.3.2 Propagation of Lamb Wave.........................185
Wave Propagation in Two-dimensional Inhomogeneous
Structures.................................................195
7.1 SLE Formulation: Inhomogeneous Media...................195
7.1.1 Exact Formulation.................................196
Contents
7.2 Numerical Examples.....................................201
7.2.1 Propagation of Stress Waves........................201
7.2.2 Propagation of Lamb Waves........................204
7.3 SLE Formulation: Thermoelastic Analysis..................208
7.3.1 Inhomogeneous Anisotropic Material.................209
7.3.2 Discussion on the Properties of Wavenumbers.........212
7.3.3 Finite Layer Element (FLE)........................215
7.3.4 Infinite Layer Element (ILE)........................216
7.3.5 Homogeneous Anisotropic Material..................217
7.4 Numerical Examples.....................................217
7.4.1 Effect of the Relaxation Parameters - Symmetric
Ply-layup ........................................217
7.4.2 Interfacial Waves: Thermal and Mechanical Loading . . . 220
7.4.3 Propagation of Stress Waves........................221
7.4.4 Propagation of Thermal Waves......................226
7.4.5 Effect of Inhomogeneity............................227
7.5 Wave Motion in Anisotropic and Inhomogeneous Plate.......229
7.5.1 SPE Formulation: CLPT...........................230
7.5.2 Computation of Wavenumber: Anisotropic Plate.......234
7.5.3 Computation of Wavenumber: Inhomogeneous Plate . . . 237
7.5.4 The Finite Plate Element ..........................241
7.5.5 Semi-infinite or Throw-off Plate Element.............242
7.6 Numerical Examples.....................................243
7.6.1 Wave Propagation in Plate with Ply-drop ............243
7.6.2 Propagation of Lamb waves.........................246
Solution of Inverse Problems: Source and System
Identification..............................................249
8.1 Force Identification......................................249
8.1.1 Force Reconstruction from Truncated Response.......250
8.2 Material Property Identification...........................253
8.2.1 Estimation of Material Properties: Inhomogeneous Layer254
Application of SFEM to SHM: Simplified Damage Models . 259
9.1 Various Damage Identification Techniques..................259
9.1.1 Techniques for Modeling Delamination...............260
9.1.2 Modeling Issues in Structural Health Monitoring......261
9.2 Modeling Wave Scattering due to Multiple Delaminations
and Inclusions ..........................................262
9.3 Spectral Element with Embedded Delamination.............265
9.3.1 Modeling Distributed Contact Between Delaminated
Surfaces..........................................269
9.4 Numerical Studies on Wave Scattering due to Single
Delamination...........................................271
9.4.1 Comparison with 2-D FEM.........................271
Contents xiii
9.4.2 Identification of Delamination Location from Scattered
Wave............................................273
9.4.3 Effect of Delamination at Ply-drops..................274
9.4.4 Sensitivity of the Delaminated Configuration..........276
9.5 A Sublaminate-wise Constant Shear Kinematics Model.......279
9.6 Spectral Elements with Embedded Transverse Crack.........284
9.6.1 Element-internal Discretization and Kinematic
Assumptions......................................284
9.6.2 Modeling Dynamic Contact Between Crack Surfaces . . . 288
9.6.3 Modeling Surface-breaking Cracks...................290
9.6.4 Distributed Constraints at the Interfaces Between
Sublaminates and Hanging Laminates................291
9.7 Numerical Simulations...................................293
9.7.1 Comparison with 2-D FEM.........................293
9.7.2 Identification of Crack Location from Scattered Wave . . 294
9.7.3 Sensitivity of the Crack Configuration................296
9.8 Spectral Finite Element Model for Damage Estimation.......297
9.8.1 Spectral Element with Embedded Degraded Zone......300
9.9 Numerical Simulations...................................301
10 Application of SFEM to SHM: Efficient Damage
Detection Techniques......................................307
10.1 Strategies for Identification of Damage in Composites........307
10.2 Spectral Power Flow.....................................311
10.2.1 Properties of Spectral Power........................312
10.2.2 Measurement of Wave Scattering due to Delaminations
and Inclusions Using Spectral Power.................314
10.3 Power Flow Studies on Wave Scattering....................314
10.3.1 Wave Scattering due to Single Delamination..........314
10.3.2 Wave Scattering due to Length-wise Multiple
Delaminations ....................................316
10.3.3 Wave Scattering due to Depth-wise Multiple
Delaminations ....................................317
10.4 Wave Scattering due to Strip Inclusion.....................319
10.4.1 Power Flow in a Semi-infinite Strip Inclusion with
Bounded Media: Effect of Change in the Material
Properties........................................319
10.4.2 Effect of Change in the Material Properties of a Strip
Inclusion.........................................321
10.5 Damage Force Indicator for SFEM.........................323
10.6 Numerical Simulation of Global Identification Process........327
10.6.1 Effect of Single Delamination.......................327
10.6.2 Effect of Multiple Delaminations....................329
10.6.3 Sensitivity of Damage Force Indicator due to Variation
in Delamination Size...............................330
xiv Contents
10.6.4 Sensitivity of Damage Force Indicator due to Variation
in Delamination Depth.............................331
10.7 Genetic Algorithm (GA) for Delamination Identification......337
10.7.1 Objective Functions in GA for Delamination
Identification .....................................338
10.7.2 Displacement-based Objective Functions .............338
10.7.3 Power-based Objective Functions....................343
10.8 Case Studies with a Cantilever Beam ......................346
10.8.1 Identification of Delamination Location ..............346
10.8.2 Identification of Delamination Size...................348
10.8.3 Identification of Delamination Location and Size......349
10.8.4 Identification of Delamination Location, Size and Depth 349
10.8.5 Effect of Delamination Near the Boundary............350
10.9 Neural Network Integrated with SFEM.....................352
lO.lONumerical Results and Discussion.........................357
11 Spectral Finite Element Method for Active Wave Control . 365
11.1 Challenges in Designing Active Broadband Control Systems . . 365
11.1.1 Strategies for Vibration and Wave Control............366
11.1.2 Active LAC of Structural Waves ....................371
11.2 Externally Mounted Passive/Active Devices.................372
11.3 Modeling Distributed Transducer Devices...................377
11.3.1 Plane Stress Constitutive Model of Stacked and
Layered Piezoelectric Composite ....................378
11.3.2 Constitutive Model for Piezoelectric Fiber Composite
(PFC) ...........................................381
11.3.3 Design Steps for Broadband Control.................391
11.4 Active Spectral Finite Element Model......................394
11.4.1 Spectral Element for Finite Beams...................394
11.4.2 Sensor Element ...................................395
11.4.3 Actuator Element.................................395
11.4.4 Numerical Implementation..........................397
11.5 Effect of Broadband Distributed Actuator Dynamics.........398
11.6 Active Control of Multiple Waves in Helicopter Gearbox
Support Struts..........................................402
11.6.1 Active Strut System...............................404
11.6.2 Numerical Simulations.............................405
11.7 Optimal Control Based on ASFEM and Power Flow.........415
11.7.1 Linear Quadratic Optimal Control Using Spectral Power416
11.7.2 Broadband Control of a Three-member Composite
Beam Network....................................417
References.....................................................423
Index..........................................................439
|
any_adam_object | 1 |
author | Gopalakrishnan, Srinivasan Chakraborty, Abir Roy Mahapatra, Debiprosad |
author_GND | (DE-588)104379672X |
author_facet | Gopalakrishnan, Srinivasan Chakraborty, Abir Roy Mahapatra, Debiprosad |
author_role | aut aut aut |
author_sort | Gopalakrishnan, Srinivasan |
author_variant | s g sg a c ac m d r md mdr |
building | Verbundindex |
bvnumber | BV024623505 |
classification_rvk | SK 910 UF 4000 |
ctrlnum | (OCoLC)255008162 (DE-599)GBV507541421 |
dewey-full | 531.1133 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531.1133 |
dewey-search | 531.1133 |
dewey-sort | 3531.1133 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02362nam a2200493 c 4500</leader><controlfield tag="001">BV024623505</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110526 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06N090753</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781846283550</subfield><subfield code="9">978-1-8462-8355-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255008162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV507541421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531.1133</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gopalakrishnan, Srinivasan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)104379672X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral finite element method</subfield><subfield code="b">wave propagation, diagnostics and control in anisotropic and inhomogeneous structures</subfield><subfield code="c">S. Gopalakrishnan ; A. Chakraborty ; D. Roy Mahapatra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 440 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational fluid and solid mechanics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [423] - 438) and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anisotroper Stoff</subfield><subfield code="0">(DE-588)4280461-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Anisotroper Stoff</subfield><subfield code="0">(DE-588)4280461-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, Abir</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy Mahapatra, Debiprosad</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2769271&prov=M&dok_var=1&dok_ext=htm</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0824/2007938275-b.html</subfield><subfield code="y">Contributor biographical information</subfield><subfield code="z">lizenzfrei</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0824/2007938275-d.html</subfield><subfield code="y">Publisher description</subfield><subfield code="z">lizenzfrei</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0824/2007938275-t.html</subfield><subfield code="z">lizenzfrei</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595388&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018595388</subfield></datafield></record></collection> |
id | DE-604.BV024623505 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:03:16Z |
institution | BVB |
isbn | 9781846283550 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018595388 |
oclc_num | 255008162 |
open_access_boolean | |
owner | DE-83 DE-29T |
owner_facet | DE-83 DE-29T |
physical | XIV, 440 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Computational fluid and solid mechanics |
spelling | Gopalakrishnan, Srinivasan Verfasser (DE-588)104379672X aut Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures S. Gopalakrishnan ; A. Chakraborty ; D. Roy Mahapatra London Springer 2008 XIV, 440 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Computational fluid and solid mechanics Includes bibliographical references (p. [423] - 438) and index Wellenausbreitung (DE-588)4121912-0 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Anisotroper Stoff (DE-588)4280461-9 gnd rswk-swf Anisotroper Stoff (DE-588)4280461-9 s Wellenausbreitung (DE-588)4121912-0 s Finite-Elemente-Methode (DE-588)4017233-8 s DE-604 Chakraborty, Abir Verfasser aut Roy Mahapatra, Debiprosad Verfasser aut http://deposit.dnb.de/cgi-bin/dokserv?id=2769271&prov=M&dok_var=1&dok_ext=htm http://www.loc.gov/catdir/enhancements/fy0824/2007938275-b.html Contributor biographical information lizenzfrei http://www.loc.gov/catdir/enhancements/fy0824/2007938275-d.html Publisher description lizenzfrei http://www.loc.gov/catdir/enhancements/fy0824/2007938275-t.html lizenzfrei Inhaltsverzeichnis HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595388&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gopalakrishnan, Srinivasan Chakraborty, Abir Roy Mahapatra, Debiprosad Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures Wellenausbreitung (DE-588)4121912-0 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd Anisotroper Stoff (DE-588)4280461-9 gnd |
subject_GND | (DE-588)4121912-0 (DE-588)4017233-8 (DE-588)4280461-9 |
title | Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures |
title_auth | Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures |
title_exact_search | Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures |
title_full | Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures S. Gopalakrishnan ; A. Chakraborty ; D. Roy Mahapatra |
title_fullStr | Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures S. Gopalakrishnan ; A. Chakraborty ; D. Roy Mahapatra |
title_full_unstemmed | Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures S. Gopalakrishnan ; A. Chakraborty ; D. Roy Mahapatra |
title_short | Spectral finite element method |
title_sort | spectral finite element method wave propagation diagnostics and control in anisotropic and inhomogeneous structures |
title_sub | wave propagation, diagnostics and control in anisotropic and inhomogeneous structures |
topic | Wellenausbreitung (DE-588)4121912-0 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd Anisotroper Stoff (DE-588)4280461-9 gnd |
topic_facet | Wellenausbreitung Finite-Elemente-Methode Anisotroper Stoff |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2769271&prov=M&dok_var=1&dok_ext=htm http://www.loc.gov/catdir/enhancements/fy0824/2007938275-b.html http://www.loc.gov/catdir/enhancements/fy0824/2007938275-d.html http://www.loc.gov/catdir/enhancements/fy0824/2007938275-t.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595388&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gopalakrishnansrinivasan spectralfiniteelementmethodwavepropagationdiagnosticsandcontrolinanisotropicandinhomogeneousstructures AT chakrabortyabir spectralfiniteelementmethodwavepropagationdiagnosticsandcontrolinanisotropicandinhomogeneousstructures AT roymahapatradebiprosad spectralfiniteelementmethodwavepropagationdiagnosticsandcontrolinanisotropicandinhomogeneousstructures |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis