Chemical reactor design, optimization, and scaleup:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2008
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXII, 608 S. graph. Darst. |
ISBN: | 9780470105252 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024623238 | ||
003 | DE-604 | ||
005 | 20120719 | ||
007 | t | ||
008 | 090924s2008 d||| |||| 00||| eng d | ||
020 | |a 9780470105252 |9 978-0-470-10525-2 | ||
035 | |a (OCoLC)637290770 | ||
035 | |a (DE-599)HBZHT015712037 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-526 |a DE-11 |a DE-91G | ||
082 | 0 | |a 660.2832 | |
084 | |a VN 7320 |0 (DE-625)147617:253 |2 rvk | ||
084 | |a CIT 350f |2 stub | ||
100 | 1 | |a Nauman, Edward Bruce |e Verfasser |4 aut | |
245 | 1 | 0 | |a Chemical reactor design, optimization, and scaleup |c E. Bruce Nauman |
250 | |a 2. ed. | ||
264 | 1 | |a Hoboken, NJ |b Wiley |c 2008 | |
300 | |a XXXII, 608 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Chemischer Reaktor |0 (DE-588)4121085-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chemischer Reaktor |0 (DE-588)4121085-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595127&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018595127 |
Datensatz im Suchindex
_version_ | 1804140644537466880 |
---|---|
adam_text | Titel: Chemical reactor design, optimization, and scaleup
Autor: Nauman, E. B
Jahr: 2008
Contents
Preface to the Second Edition xiii
Symbols xv
1 Elementary Reactions in Ideal Reactors 1
1.1 Material Balances 1
1.1.1 Measures of Composition 4
1.1.2 Measures of Reaction Rate 5
1.2 Elementary Reactions 5
1.2.1 Kinetic Theory of Gases 6
1.2.2 Rate of Formation 6
1.2.3 First-Order Reactions 8
1.2.4 Second-Order Reactions with One Reactant 8
1.2.5 Second-Order Reactions with Two Reactants 9
1.2.6 Third-Order Reactions 9
1.3 Reaction Order and Mechanism 9
1.4 Ideal, Isothermal Reactors 12
1.4.1 Ideal Batch Reactors 12
1.4.2 Reactor Performance Measures 17
1.4.3 Piston Flow Reactors 19
1.4.4 Continuous Flow Stirred Tanks 24
1.5 Mixing Times and Scaleup 26
1.6 Dimensionless Variables and Numbers 31
1.7 Batch Versus Flow and Tank Versus Tube 33
Suggested Further Readings 36
Problems 37
2 Multiple Reactions in Batch Reactors 41
2.1 Multiple and Nonelementary Reactions 41
2.1.1 Reaction Mechanisms 42
2.1.2 Byproducts 43
2.2 Component Reaction Rates for Multiple Reactions 43
2.3 Multiple Reactions in Batch Reactors 44
2.4 Numerical Solutions to Sets of First-Order ODEs 46
2.5 Analytically Tractable Examples 52
2.5.1 The mh-Order Reaction 52
2.5.2 Consecutive First-Order Reactions, A—? B-^C—» ••• 53
v
vi Contents
2.5.3 Quasi-Steady Hypothesis 56
2.5.4 Autocatalytic Reactions 62
2.6 Variable-Volume Batch Reactors 65
2.6.1 Systems with Constant Mass 65
2.6.2 Fed-Batch Reactors 71
2.7 Scaleup of Batch Reactions 73
2.8 Stoichiometry and Reaction Coordinates 74
2.8.1 Matrix Formulation of Reaction Rates 74
2.8.2 Stoichiometry of Single Reactions 76
2.8.3 Stoichiometry of Multiple Reactions 77
Suggested Further Readings 78
Problems 79
Appendix 2.1 Numerical Solution of Ordinary Differential
Equations 84
3 Isothermal Piston Flow Reactors 89
3.1 Piston Flow with Constant Mass Flow 90
3.1.1 Gas Phase Reactions 94
3.1.2 Liquid Phase Reactions 104
3.2 Scaleup Relationships for Tubular Reactors 107
3.2.1 Scaling Factors 107
3.2.2 Scaling Factors for Tubular Reactors 112
3.3 Scaleup Strategies for Tubular Reactors 113
3.3.1 Scaling in Parallel and Partial Parallel 113
3.3.2 Scaling in Series for Constant-Density Fluids 114
3.3.3 Scaling in Series for Gas Flows 116
3.3.4 Scaling with Geometric Similarity 117
3.3.5 Scaling with Constant Pressure Drop 119
3.4 Scaling Down 120
3.5 Transpired-Wall Reactors 122
Suggested Further Readings 124
Problems 124
4 Stirred Tanks and Reactor Combinations 129
4.1 Continuous Flow Stirred Tank Reactors 129
4.2 Method of False Transients 131
4.3 CSTRs with Variable Density 135
4.3.1 Liquid Phase CSTRs 136
4.3.2 Computational Scheme for Variable-Density CSTRs 137
4.3.3 Gas Phase CSTRs 138
4.4 Scaling Factors for Liquid Phase Stirred Tanks 143
4.5 Combinations of Reactors 145
4.5.1 Series and Parallel Connections 145
4.5.2 Tanks in Scries 148
Contents vii
4.5.3 Recycle Loops 150
4.5.4 Maximum Production Rate 153
4.6 Imperfect Mixing 154
Suggested Further Readings 154
Problems 155
Appendix 4.1 Solution of Nonlinear Algebraic Equations 158
5 Thermal Effects and Energy Balances 163
5.1 Temperature Dependence of Reaction Rates 163
5.1.1 Arrhenius Temperature Dependence 163
5.1.2 Optimal Temperatures for Isothermal Reactors 166
5.2 Energy Balance 170
5.2.1 Nonisothermal Batch Reactors 172
5.2.2 Nonisothermal Piston Flow 175
5.2.3 Heat Balances for CSTRs 178
5.3 Scaleup of Nonisothermal Reactors 185
5.3.1 Avoiding Scaleup Problems 185
5.3.2 Heat Transfer to Jacketed Stirred Tanks 187
5.3.3 Scaling Up Stirred Tanks with Boiling 190
5.3.4 Scaling Up Tubular Reactors 191
Suggested Further Readings 194
Problems 195
6 Design and Optimization Studies 199
6.1 Consecutive Reaction Sequence 199
6.2 Competitive Reaction Sequence 216
Suggested Further Readings 218
Problems 218
Appendix 6.1 Numerical Optimization Techniques 220
7 Fitting Rate Data and Using Thermodynamics 225
7.1 Fitting Data to Models 225
7.1.1 Suggested Forms for Kinetic Models 226
7.1.2 Fitting CSTR Data 228
7.1.3 Fitting Batch and PFR Data 233
7.1.4 Design of Experiments and Model Discrimination 238
7.1.5 Material Balance Closure 239
7.1.6 Confounded Reactors 241
7.2 Thermodynamics of Chemical Reactions 244
7.2.1 Terms in the Energy Balance 244
7.2.2 Reaction Equilibria 252
Suggested Further Readings 269
Problems 269
Appendix 7.1 Linear Regression Analysis 274
viii Contents
8 Real Tabular Reactors in Laminar Flow
8.1 Flow in Tubes with Negligible Diffusion 280
8.1.1 Criterion for Neglecting Radial Diffusion 281
8.1.2 Mixing-Cup Averages 282
8.1.3 Trapezoidal Rule 284
8.1.4 Preview of Residence Time Theory 287
8.2 Tube Flows with Diffusion 288
8.2.1 Convective Diffusion of Mass 288
8.2.2 Convective Diffusion of Heat 290
8.2.3 Use of Dimensionless Variables 290
8.2.4 Criterion for Neglecting Axial Diffusion 291
8.3 Method of Lines 292
8.3.1 Governing Equations for Cylindrical Coordinates
8.3.2 Solution by Euler s Method 294
8.3.3 Accuracy and Stability 295
8.3.4 Example Solutions 296
8.4 Effects of Variable Viscosity 301
8.4.1 Governing Equations for Axial Velocity 302
8.4.2 Calculation of Axial Velocities 303
8.4.3 Calculation of Radial Velocities 304
8.5 Comprehensive Models 307
8.6 Performance Optimization 307
8.6.1 Optimal Wall Temperatures 308
8.6.2 Static Mixers 308
8.6.3 Small Effective Diameters 310
8.7 Scaleup of Laminar Flow Reactors 311
8.7.1 Isothermal Laminar Flow 311
8.7.2 Nonisothermal Laminar Flow 312
Suggested Further Readings 312
Problems 313
Appendix 8.1 Convective Diffusion Equation 316
Appendix 8.2 External Resistance to Heat Transfer 317
Appendix 8.3 Finite-Difference Approximations 319
9 Packed Beds and Ttirbulcnt T ibes
9.1 Packed-Bed Reactors 324
9.1.1 Incompressible Fluids 324
9.1.2 Compressible Fluids in Packed Beds 333
9.2 Turbulence 334
9.2.1 Turbulence Models 335
9.2.2 Computational Fluid Dynamics 336
9.3 Axial Dispersion Model 336
9.3.1 Danckwerts Boundary Conditions 339
9.3.2 First-Order Reactions 340
Contents ix
9.3.3 Utility of the Axial Dispersion Model 342
9.3.4 Nonisothermal Axial Dispersion 344
9.3.5 Shooting Solutions to Two-Point Boundary Value
Problems 344
9.3.6 Axial Dispersion with Variable Density 352
9.4 Scaleup and Modeling Considerations 352
Suggested Further Readings 352
Problems 353
10 Heterogeneous Catalysis 355
10.1 Overview of Transport and Reaction Steps 357
10.2 Governing Equations for Transport and Reaction 358
10.3 Intrinsic Kinetics 360
10.3.1 Intrinsic Rate Expressions from Equality of Rates 361
10.3.2 Models Based on a Rate-Controlling Step 363
10.3.3 Recommended Models 367
10.4 Effectiveness Factors 368
10.4.1 Pore Diffusion 368
10.4.2 Film Mass Transfer 371
10.4.3 Nonisothermal Effectiveness 372
10.4.4 Deactivation 374
10.5 Experimental Determination of Intrinsic Kinetics 376
10.6 Unsteady Operation and Surface Inventories 380
Suggested Further Readings 381
Problems 382
11 Multiphase Reactors 385
11.1 Gas-Liquid and Liquid-Liquid Reactors 385
11.1.1 Two-Phase Stirred Tank Reactors 386
11.1.2 Measurement of Mass Transfer Coefficients 401
11.1.3 Fluid-Fluid Contacting in Piston Flow 404
11.1.4 Other Mixing Combinations 410
11.1.5 Prediction of Mass Transfer Coefficients 412
11.2 Three-Phase Reactors 415
11.3 Moving-Solids Reactors 417
11.3.1 Bubbling Fluidization 419
11.3.2 Fast Fluidization 420
11.3.3 Spouted Beds 420
11.3.4 Liquid-Fluidized Beds 421
] 1.4 Noncatalytic Fluid-Solid Reactions 421
11.5 Scaleup of Multiphase Reactors 427
11.5.1 Gas-Liquid Reactors 427
11.5.2 Gas-Moving Solids Reactors 429
X Contents
Suggested Further Readings 429
Problems 430
12 Biochemical Reaction Engineering _ ^
12.1 Enzyme Catalysis 434
12.1.1 Michaelis-Menten Kinetics 434
12.1.2 Inhibition, Activation, and Deactivation 438
12.1.3 Immobilized Enzymes 439
12.1.4 Reactor Design for Enzyme Catalysis 440
12.2 Cell Culture 444
12.2.1 Growth Dynamics 446
12.2.2 Reactors for Freely Suspended Cells 450
12.2.3 Immobilized Cells 457
12.2.4 Tissue Culture 458
12.3 Combinatorial Chemistry 458
Suggested Further Readings 459
Problems 459
13 Polymer Reaction Engineering 461
13.1 Polymerization Reactions 461
13.1.1 Step Growth Polymerizations 462
13.1.2 Chain Growth Polymerizations 466
13.2 Molecular Weight Distributions 468
13.2.1 Distribution Functions and Moments 469
13.2.2 Addition Rules for Molecular Weight 470
13.2.3 Molecular Weight Measurements 470
13.3 Kinetics of Condensation Polymerizations 471
13.3.1 Conversion 471
13.3.2 Number- and Weight-Average Chain Lengths 472
13.3.3 Molecular Weight Distribution Functions 473
13.4 Kinetics of Addition Polymerizations 478
13.4.1 Living Polymers 479
13.4.2 Free-Radical Polymerizations 481
13.4.3 Transition Metal Catalysis 486
13.4.4 Vinyl Copolymerizations 486
13.5 Polymerization Reactors 490
13.5.1 Stirred Tanks with a Continuous Polymer Phase 492
13.5.2 Tubular Reactors with a Continuous Polymer Phase 495
13.5.3 Suspending-Phase Polymerizations 507
13.6 Scaleup Considerations 509
13.6.1 Binary Polycondensations 509
13.6.2 Self-Condensing Polycondensations 509
13.6.3 Living Addition Polymerizations 510
13.6.4 Vinyl Addition Polymerizations 510
Contents xi
Suggested Further Readings 511
Problems 511
14 Unsteady Reactors 513
14.1 Unsteady Stirred Tanks 513
14.1.1 Transients in Isothermal CSTRs 515
14.1.2 Nonisothermal Stirred Tank Reactors 523
14.2 Unsteady Piston Flow 526
14.3 Unsteady Convective Diffusion 529
Suggested Further Readings 530
Problems 530
15 Residence Time Distributions 535
15.1 Residence Time Theory 535
15.1.1 Inert Tracer Experiments 536
15.1.2 Means and Moments 539
15.2 Residence Time Models 540
15.2.1 Ideal Reactors and Reactor Combinations 540
15.2.2 Hydrodynamic Models 552
15.3 Reaction Yields 557
15.3.1 First-Order Reactions 557
15.3.2 Other Reactions 560
15.4 Extensions of Residence Time Theory 569
15.4.1 Unsteady Flow Systems 570
15.4.2 Contact Times 570
15.4.3 Thermal Times 571
15.5 Scaleup Considerations 571
Suggested Further Readings 572
Problems 572
16 Reactor Design at Meso-, Micro-, and Nanoscales 575
16.1 Mesoscale Reactors 577
16.1.1 Flow in Rectangular Geometries 578
16.1.2 False Transients Applied to PDEs 580
16.1.3 Jet Impingement Mixers 584
16.2 Microscale Reactors 584
16.2.1 Mixing Times 585
16.2.2 Radial or Cross-Channel Diffusion 586
16.2.3 False Transients Versus Method of Lines 587
16.2.4 Axial Diffusion in Microscale Ducts 587
16.2.5 Second-Order Reactions with Unmixed Feed 591
16.2.6 Microelectronics 594
16.2.7 Chemical Vapor Deposition 595
xii Contents
16.3 Nanoscale Reactors 596
16.3.1 Self-Assembly 597
16.3.2 Molecular Dynamics 598
16.4 Scaling, Up or Down 599
Suggested Further Readings 599
Problems 599
References 601
Index 603
|
any_adam_object | 1 |
author | Nauman, Edward Bruce |
author_facet | Nauman, Edward Bruce |
author_role | aut |
author_sort | Nauman, Edward Bruce |
author_variant | e b n eb ebn |
building | Verbundindex |
bvnumber | BV024623238 |
classification_rvk | VN 7320 |
classification_tum | CIT 350f |
ctrlnum | (OCoLC)637290770 (DE-599)HBZHT015712037 |
dewey-full | 660.2832 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.2832 |
dewey-search | 660.2832 |
dewey-sort | 3660.2832 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Chemie-Ingenieurwesen |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01275nam a2200349 c 4500</leader><controlfield tag="001">BV024623238</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120719 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470105252</subfield><subfield code="9">978-0-470-10525-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)637290770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015712037</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.2832</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7320</subfield><subfield code="0">(DE-625)147617:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 350f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nauman, Edward Bruce</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical reactor design, optimization, and scaleup</subfield><subfield code="c">E. Bruce Nauman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXII, 608 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemischer Reaktor</subfield><subfield code="0">(DE-588)4121085-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chemischer Reaktor</subfield><subfield code="0">(DE-588)4121085-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595127&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018595127</subfield></datafield></record></collection> |
id | DE-604.BV024623238 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:03:15Z |
institution | BVB |
isbn | 9780470105252 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018595127 |
oclc_num | 637290770 |
open_access_boolean | |
owner | DE-83 DE-526 DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-83 DE-526 DE-11 DE-91G DE-BY-TUM |
physical | XXXII, 608 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Nauman, Edward Bruce Verfasser aut Chemical reactor design, optimization, and scaleup E. Bruce Nauman 2. ed. Hoboken, NJ Wiley 2008 XXXII, 608 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chemischer Reaktor (DE-588)4121085-2 gnd rswk-swf Chemischer Reaktor (DE-588)4121085-2 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595127&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nauman, Edward Bruce Chemical reactor design, optimization, and scaleup Chemischer Reaktor (DE-588)4121085-2 gnd |
subject_GND | (DE-588)4121085-2 |
title | Chemical reactor design, optimization, and scaleup |
title_auth | Chemical reactor design, optimization, and scaleup |
title_exact_search | Chemical reactor design, optimization, and scaleup |
title_full | Chemical reactor design, optimization, and scaleup E. Bruce Nauman |
title_fullStr | Chemical reactor design, optimization, and scaleup E. Bruce Nauman |
title_full_unstemmed | Chemical reactor design, optimization, and scaleup E. Bruce Nauman |
title_short | Chemical reactor design, optimization, and scaleup |
title_sort | chemical reactor design optimization and scaleup |
topic | Chemischer Reaktor (DE-588)4121085-2 gnd |
topic_facet | Chemischer Reaktor |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595127&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT naumanedwardbruce chemicalreactordesignoptimizationandscaleup |