Factorization: unique and otherwise
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Ottawa, Ont
Canadian Mathematical Society/Société mathématique du Canada
2008
|
Schriftenreihe: | CMS treatises in mathematics
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes index |
Beschreibung: | X, 260 S. graph. Darst. |
ISBN: | 9781568812410 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024621919 | ||
003 | DE-604 | ||
005 | 20200226 | ||
007 | t | ||
008 | 090924s2008 xxcd||| |||| 00||| eng d | ||
020 | |a 9781568812410 |9 978-1-568-81241-0 | ||
035 | |a (OCoLC)845377469 | ||
035 | |a (DE-599)GBV571162703 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxc |c XD-CA | ||
049 | |a DE-83 |a DE-11 |a DE-188 | ||
082 | 0 | |a 512.72 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
084 | |a 11A51 |2 msc | ||
100 | 1 | |a Weintraub, Steven H. |d 1951- |e Verfasser |0 (DE-588)113001770 |4 aut | |
245 | 1 | 0 | |a Factorization |b unique and otherwise |c Steven H. Weintraub |
264 | 1 | |a Ottawa, Ont |b Canadian Mathematical Society/Société mathématique du Canada |c 2008 | |
300 | |a X, 260 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a CMS treatises in mathematics | |
500 | |a Includes index | ||
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018593848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018593848 |
Datensatz im Suchindex
_version_ | 1804140642882813952 |
---|---|
adam_text | Titel: Factorization
Autor: Weintraub, Steven H
Jahr: 2008
Contents
Preface ix
Introduction 1
1 Basic Notions 7
1.1 Integral Domains....................... 7
1.2 Quadratic Fields....................... 12
1.3 Exercises ........................... 16
2 Unique Factorization 19
2.1 Euclidean Domains...................... 20
2.2 The GCD-L Property and Euclid s Algorithm....... 31
2.3 Ideals and Principal Ideal Domains............. 45
2.4 Unique Factorization Domains ............... 51
2.5 Nonunique Factorization: The Case D 0......... 60
2.6 Nonunique Factorization: The Case D 0......... 67
2.7 Summing Up......................... 78
2.8 Exercises ........................... 80
3 The Gaussian Integers 91
3.1 Fermat s Theorem...................... 92
3.2 Factorization into Primes.................. 101
3.3 Exercises ........................... 105
4 Pell s Equation 111
4.1 Representations and Their Composition.......... 112
4.2 Solving Pell s Equation.................... 118
4.3 Numerical Examples and Further Results......... 127
4.4 Units in 0(^/D) ....................... 137
4.5 Exercises ........................... 139
viii Contents
5 Towards Algebraic Number Theory 143
5.1 Algebraic Numbers and Algebraic Integers......... 144
5.2 Ideal Theory ......................... 147
5.3 Dedekind Domains...................... 150
5.4 Algebraic Number Fields and Dedekind Domains..... 154
5.5 Prime Ideals in 0(y/D) ................... 158
5.6 Examples of Ideals in 0(773)................ 166
5.7 Behavior of Ideals in Algebraic Number Fields ...... 178
5.8 Ideal Elements........................ 180
5.9 Dirichlet s Unit Theorem .................. 182
5.10 Exercises ........................... 186
A Mathematical Induction 191
A.l Mathematical Induction and Its Equivalents........ 191
A.2 Consequences of Mathematical Induction ......... 196
A.3 Exercises ........................... 199
B Congruences 205
B.l The Notion of Congruence.................. 205
B.2 Linear Congruences...................... 211
B.3 Quadratic Congruences ................... 223
B.4 Proof of the Law of Quadratic Reciprocity......... 236
B.5 Primitive Roots........................ 241
B.6 Exercises ........................... 245
C Continuations from Chapter 2 251
C.l Continuation of the Proof of Theorem 2.8......... 251
C.2 Continuation of Example 2.26................ 255
C.3 Exercises ........................... 257
Index 259
|
any_adam_object | 1 |
author | Weintraub, Steven H. 1951- |
author_GND | (DE-588)113001770 |
author_facet | Weintraub, Steven H. 1951- |
author_role | aut |
author_sort | Weintraub, Steven H. 1951- |
author_variant | s h w sh shw |
building | Verbundindex |
bvnumber | BV024621919 |
classification_rvk | SK 180 SK 450 |
ctrlnum | (OCoLC)845377469 (DE-599)GBV571162703 |
dewey-full | 512.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.72 |
dewey-search | 512.72 |
dewey-sort | 3512.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01300nam a2200349 c 4500</leader><controlfield tag="001">BV024621919</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200226 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2008 xxcd||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781568812410</subfield><subfield code="9">978-1-568-81241-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845377469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV571162703</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxc</subfield><subfield code="c">XD-CA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.72</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11A51</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weintraub, Steven H.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113001770</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factorization</subfield><subfield code="b">unique and otherwise</subfield><subfield code="c">Steven H. Weintraub</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ottawa, Ont</subfield><subfield code="b">Canadian Mathematical Society/Société mathématique du Canada</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 260 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">CMS treatises in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018593848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018593848</subfield></datafield></record></collection> |
id | DE-604.BV024621919 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:03:14Z |
institution | BVB |
isbn | 9781568812410 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018593848 |
oclc_num | 845377469 |
open_access_boolean | |
owner | DE-83 DE-11 DE-188 |
owner_facet | DE-83 DE-11 DE-188 |
physical | X, 260 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Canadian Mathematical Society/Société mathématique du Canada |
record_format | marc |
series2 | CMS treatises in mathematics |
spelling | Weintraub, Steven H. 1951- Verfasser (DE-588)113001770 aut Factorization unique and otherwise Steven H. Weintraub Ottawa, Ont Canadian Mathematical Society/Société mathématique du Canada 2008 X, 260 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier CMS treatises in mathematics Includes index HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018593848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Weintraub, Steven H. 1951- Factorization unique and otherwise |
title | Factorization unique and otherwise |
title_auth | Factorization unique and otherwise |
title_exact_search | Factorization unique and otherwise |
title_full | Factorization unique and otherwise Steven H. Weintraub |
title_fullStr | Factorization unique and otherwise Steven H. Weintraub |
title_full_unstemmed | Factorization unique and otherwise Steven H. Weintraub |
title_short | Factorization |
title_sort | factorization unique and otherwise |
title_sub | unique and otherwise |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018593848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT weintraubstevenh factorizationuniqueandotherwise |