Foundations of engineering acoustics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam << [u.a.]>>
Elsevier
2007
|
Ausgabe: | Repr. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [430] - 434 |
Beschreibung: | XIX, 443 S. Ill., graph. Darst. |
ISBN: | 9780122476655 0122476654 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024620739 | ||
003 | DE-604 | ||
005 | 20130122 | ||
007 | t | ||
008 | 090924s2007 ad|| |||| 00||| eng d | ||
020 | |a 9780122476655 |9 978-0-12-247665-5 | ||
020 | |a 0122476654 |9 0-12-247665-4 | ||
035 | |a (OCoLC)315476642 | ||
035 | |a (DE-599)BSZ277866553 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-573 |a DE-Aug4 | ||
084 | |a UF 6900 |0 (DE-625)145605: |2 rvk | ||
100 | 1 | |a Fahy, Frank J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Foundations of engineering acoustics |c Frank Fahy |
250 | |a Repr. | ||
264 | 1 | |a Amsterdam << [u.a.]>> |b Elsevier |c 2007 | |
300 | |a XIX, 443 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. [430] - 434 | ||
650 | 0 | 7 | |a Technische Akustik |0 (DE-588)4059219-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Technische Akustik |0 (DE-588)4059219-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www3.ub.tu-berlin.de/ihv/001766233.pdf |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m SWBplus Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018592727&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018592727 |
Datensatz im Suchindex
_version_ | 1804140641257521152 |
---|---|
adam_text | CONTENTS PREFACE
..............................................................................
.......................... XIII ACKNOWLEDGEMENTS
.........................................................................................
XIX CHAPTER 1 SOUND ENGINEERING 1.1 THE IMPORTANCE OF SOUND
......................................................................
1.2 ACOUSTICS AND THE ENGINEER
.................................................................... 1.3
SOUND THE SERVANT
.................................................................................
CHAPTER 2 THE NATURE OF SOUND AND SOME SOUND WAVE PHENOMENA 2.1
INTRODUCTION
........................................................................................
2.2 WHAT IS SOUND?
....................................................................................
2.3 SOUND AND VIBRATION
.............................................................................
2.4 SOUND IN SOLIDS
....................................................................................
2.5 A QUALITATIVE INTRODUCTION TO WAVE PHENOMENA
....................................... . 2.5.1 WAVEFRONTS
..............................................................................
2.5.2 INTERFERENCE
.............................................................................
2.5.3 REFLECTION
................................................................................
2.5.4 SCATTERING
................................................................................
2.5.5 DIFFRACTION
...............................................................................
2.5.6 REFRACTION
...............................................................................
2.5.7 THE DOPPLER EFFECT
....................................................................
2.5.8 CONVECTION
..............................................................................
2.6 SOME MORE COMMON EXAMPLES OF THE BEHAVIOUR OF SOUND WAVES
................ CHAPTER 3 SOUND IN FLUIDS 3.1 INTRODUCTION
........................................................................................
3.2 THE PHYSICAL CHARACTERISTICS OF FLUIDS
....................................................... 3.3 MOLECULES
AND PARTICLES
........................................................................
. 3.4 FLUID PRESSURE
......................................................................................
3.5 FLUID TEMPERATURE
................................................................................
3.6 PRESSURE, DENSITY AND TEMPERATURE IN SOUND WAVES IN A GAS
........................ 3.7 PARTICLE MOTION
....................................................................................
3.8 SOUND IN LIQUIDS
...................................................................................
3.9 MATHEMATICAL MODELS OF SOUND WAVES
..................................................... 3.9.1 THE PLANE
SOUND WAVE EQUATION ..................................................
3.9.2 SOLUTIONS OF THE PLANE WAVE EQUATION
.......................................... 3.9.3 HARMONIC PLANE WAVES:
SOUND PRESSURE ....................................... CONTENTS 3.9.4
PLANE WAVES: PARTICLE VELOCITY
..................................................... 3.9.5 THE WAVE
EQUATION IN THREE DIMENSIONS ........................................
3.9.6 PLANE WAVES IN THREE DIMENSIONS
................................................. 3.9.7 THE WAVE
EQUATION IN SPHERICAL COORDINATES .................................
3.9.8 THE SPHERICALLY SYMMETRIC SOUND FIELD
......................................... 3.9.9 PARTICLE VELOCITY IN THE
SPHERICALLY SYMMETRIC SOUND FIELD ............... 3.9.10 OTHER FORMS OF
SOUND FIELD .........................................................
CHAPTER 4 IMPEDANCE 4.1 INTRODUCTION
........................................................................................
4.2 SOME SIMPLE EXAMPLES OF THE UTILITY OF IMPEDANCE
..................................... 4.3 MECHANICAL IMPEDANCE
..........................................................................
4.3.1 IMPEDANCE OF LUMPED STRUCTURAL ELEMENTS
.................................... 4.4 FORMS OF ACOUSTIC IMPEDANCE
................................................................. 4.4.1
IMPEDANCES OF LUMPED ACOUSTIC ELEMENTS
..................................... 4.4.2 SPECIFIC ACOUSTIC IMPEDANCE
OF FLUID IN A TUBE AT LOW FREQUENCY ....... 4.4.3 NORMAL SPECIFIC
ACOUSTIC IMPEDANCE ............................................ 4.4.4
RADIATION IMPEDANCE
................................................................ 4.4.5
ACOUSTIC IMPEDANCE
.................................................................. 4.4.6
LINE AND SURFACE WAVE IMPEDANCE
............................................... 4.4.7 MODAL RADIATION
IMPEDANCE ....................................................... 4.5 AN
APPLICATION OF RADIATION IMPEDANCE OF A UNIFORMLY PULSATING SPHERE
...... 4.6 RADIATION EFFICIENCY
..............................................................................
CHAPTER 5 SOUND ENERGY AND INTENSITY 5.1 THE PRACTICAL IMPORTANCE OF
SOUND ENERGY ............................................... 5.2 SOUND
ENERGY
.......................................................................................
5.3 TRANSPORT OF SOUND ENERGY: SOUND INTENSITY
............................................. 5.4 SOUND INTENSITY IN
PLANE WAVE FIELDS
........................................................ 5.5 INTENSITY
AND MEAN SQUARE PRESSURE
........................................................ 5.6 EXAMPLES OF
IDEAL SOUND INTENSITY FIELDS
................................................... 5.6.1 THE POINT
MONOPOLE
.................................................................. 5.6.2
THE COMPACT DIPOLE
...................................................................
5.6.3 INTERFERING MONOPOLES
............................................................... 5.6.4
INTENSITY DISTRIBUTIONS IN ORTHOGONALLY DIRECTED HARMONIC PLANE WAVE
FIELDS
...............................................................................
5.7 SOUND INTENSITY MEASUREMENT
................................................................. 5.8
DETERMINATION OF SOURCE SOUND POWER USING SOUND INTENSITY MEASUREMENT ..
5.9 OTHER APPLICATIONS OF SOUND INTENSITY MEASUREMENT
.................................. CHAPTER 6 SOURCES OF SOUND 6.1
INTRODUCTION
........................................................................................
6.2 QUALITATIVE CATEGORIZATION OF SOURCES
...................................................... 6.2.1 CATEGORY 1
SOURCES
....................................................................
6.2.2 CATEGORY 2 SOURCES
....................................................................
6.2.3 CATEGORY 3 SOURCES
.................................................................... 6.3
THE INHOMOGENEOUS WAVE EQUATION
........................................................ 6.3.1 SOUND
RADIATION BY FOREIGN BODIES
.............................................. 6.3.2 BOUNDARY SOURCES
CAN REFLECT OR ABSORB ENERGY ........................... CONTENTS 6.4
IDEAL ELEMENTARY SOURCE MODELS
.............................................................. 6.4.1 THE
DIRAC DELTA FUNCTION
........................................................... 6.4.2 THE
POINT MONOPOLE AND THE PULSATING SPHERE ..............................
6.4.3 ACOUSTIC RECIPROCITY
.................................................................. 6.4.4
EXTERNAL FORCES ON A FLUID AND THE COMPACT DIPOLE
......................... 6.4.5 THE OSCILLATING SPHERE
................................................................ 6.4.6
BOUNDARY SOURCES
.................................................................... .
6.4.7 FREE-FIELD AND OTHER GREEN S FUNCTIONS
........................................ 6.4.8 THE RAYLEIGH INTEGRALS
.............................................................. 6.5 SOUND
RADIATION FROM VIBRATING PLANE SURFACES
......................................... 6.6 THE VIBRATING CIRCULAR
PISTON AND THE CONE LOUDSPEAKER ............................. 6.7
DIRECTIVITY AND SOUND POWER OF DISTRIBUTED SOURCES
.................................. 6.7.1 SOUND POWER OF A SOURCE IN THE
PRESENCE OF A SECOND SOURCE ........... 6.8 ZONES OF A SOUND FIELD
RADIATED BY A SPATIALLY EXTENDED SOURCE ................... 6.9
EXPERIMENTAL METHODS FOR SOURCE SOUND POWER DETERMINATION
................... 6.10 SOURCE CHARACTERIZATION
.........................................................................
CHAPTER 7 SOUND ABSORPTION AND SOUND ABSORBERS 7.1 INTRODUCTION
........................................................................................
7.2 THE EFFECTS OF VISCOSITY. THERMAL DIFFUSION AND RELAXATION PROCESSES
ON SOUND IN GASES
......................................................................................
7.2.1 THE ORIGIN OF GAS VISCOSITY
......................................................... 7.2.2 THE
EFFECTS OF THERMAL DIFFUSION
.................................................. 7.2.3 THE EFFECT OF
MOLECULAR RELAXATION ............................................. 7.2.4
SOUND ENERGY DISSIPATION AT THE RIGID BOUNDARY OF A GAS ................
7.2.5 ACOUSTICALLY INDUCED BOUNDARY LAYERS IN A GAS-FILLED TUBE
.............. 7.3 FORMS OF POROUS SOUND ABSORBENT MATERIAL
............................................. 7.4 MACROSCOPIC PHYSICAL
PROPERTIES OF POROUS SOUND-ABSORBING MATERIALS ....... 7.4.1 POROSITY
...................................................................................
7.4.2 FLOW RESISTANCE AND RESISTIVITY
.................................................... 7.4.3 STRUCTURE
FACTOR
........................................................................
7.5 THE MODIFIED EQUATION FOR PLANE WAVE SOUND PROPAGATION IN GASES
CONTAINED WITHIN RIGID POROUS MATERIALS
.................................................. 7.5.1 EQUATION OF
MASS CONSERVATION ...................................................
7.5.2 MOMENTUM EQUATION
................................................................ 7.5.3
THE MODIFIED PLANE WAVE EQUATION
.............................................. 7.5.4 HARMONIC SOLUTION
OF THE MODIFIED PLANE WAVE EQUATION ............... 7.6 SOUND ABSORPTION
BY A PLANE SURFACE OF UNIFORM IMPEDANCE ...................... 7.6.1 THE
LOCAL REACTION MODEL
........................................................... 7.6.2 SOUND
POWER ABSORPTION COEFFICIENT OF A LOCALLY REACTIVE SURFACE ..... 7.6.3
WAVE IMPEDANCE
......................................................................
7.7 SOUND ABSORPTION BY THIN POROUS SHEETS
.................................................. 7.7.1 THE IMMOBILE
SHEET IN FREE FIELD ..................................................
7.7.2 THE LIMP SHEET IN FREE FIELD
......................................................... 7.7.3 THE
EFFECT OF A RIGID WALL PARALLEL TO A THIN SHEET
............................ 7.8 SOUND ABSORPTION BY THICK SHEETS OF
RIGID POROUS MATERIAL ........................ 7.8.1 THE INFINITELY
THICK SHEET ..........................................................
7.8.2 THE SHEET OF FINITE THICKNESS
....................................................... VIII CONTENTS
7.8.3 THE EFFECT OF A BACKING CAVITY ON THE SOUND ABSORPTION OF A SHEET
OF POROUS MATERIAL
........................................................................
7.9 SOUND ABSORPTION BY FLEXIBLE CELLULAR AND FIBROUS MATERIALS
........................ 7.10 THE EFFECT OF PERFORATED COVER SHEETS ON
SOUND ABSORPTION BY POROUS MATERIALS
.............................................................................................
7.11 NON-POROUS SOUND ABSORBERS
................................................................. 7.1
1.1 HELMHOLTZ RESONATORS
................................................................ 7.1 1.2
PANEL ABSORBERS
........................................................................
7.12 METHODS OF MEASUREMENT OF BOUNDARY IMPEDANCE AND ABSORPTION
COEFFICIENT
............................................................................................
7.12.1 THE IMPEDANCE TUBE
..................................................................
7.12.2 REVERBERATION ROOM METHOD
...................................................... CHAPTER 8 SOUND
IN WAVEGUIDES 8.1 INTRODUCTION
........................................................................................
8.2 PLANE WAVE PULSES IN A UNIFORM TUBE
........................................................ 8.3 PLANE WAVE
MODES AND NATURAL FREQUENCIES OF FLUID IN UNIFORM WAVEGUIDES ... 8.3.1
CONSERVATIVE TERMINATIONS
......................................................... 8.3.2
NON-CONSERVATIVE TERMINATIONS
................................................... 8.4 RESPONSE TO
HARMONIC EXCITATION
............................................................ 8.4.1
IMPEDANCE MODEL
......................................................................
8.4.2 HARMONIC RESPONSE IN TERMS OF GREEN S FUNCTIONS
......................... 8.5 A SIMPLE CASE OF STRUCTURE-FLUID
INTERACTION .............................................. 8.6 PLANE
WAVES IN DUCTS THAT INCORPORATE IMPEDANCE DISCONTINUITIES
................ 8.6.1 INSERTION LOSS AND TRANSMISSION LOSS
............................................. 8.6.2 TRANSMISSION OF
PLANE WAVES THROUGH AN ABRUPT CHANGE OF CROSS- SECTIONAL AREA AND AN
EXPANSION CHAMBER ..................................... 8.6.3 SERIES
NETWORKS OF ACOUSTIC TRANSMISSION LINES ..............................
8.6.4 SIDE BRANCH CONNECTIONS TO UNIFORM ACOUSTIC WAVEGUIDES
.............. . 8.6.5 THE SIDE BRANCH TUBE
................................................................. 8.6.6
THE SIDE BRANCH ORIFICE
............................................................... 8.6.7
THE HELMHOLTZ RESONATOR SIDE BRANCH
.......................................... 8.6.8 BENDS IN OTHERWISE
STRAIGHT UNIFORM WAVEGUIDES ........................... 8.7 TRANSVERSE
MODES OF UNIFORM ACOUSTIC WAVEGUIDES ...................................
8.7.1 THE UNIFORM TWO-DIMENSIONAL WAVEGUIDE WITH RIGID WALLS
.............. 8.7.2 THE UNIFORM TWO-DIMENSIONAL WAVEGUIDE WITH FINITE
IMPEDANCE BOUNDARIES
...............................................................................
8.7.3 THE UNIFORM WAVEGUIDE OF RECTANGULAR CROSS-SECTION WITH RIGID
WALLS
........................................................................................
8.7.4 THE UNIFORM WAVEGUIDE OF CIRCULAR CROSS-SECTION WITH RIGID WALLS
.... 8.8 HARMONIC EXCITATION OF WAVEGUIDE MODES
................................................ 8.9 ENERGY FLUX IN A
WAVEGUIDE OF RECTANGULAR CROSS-SECTION WITH RIGID WALLS ...... 8.10
EXAMPLES OF THE SOUND ATTENUATION CHARACTERISTICS OF LINED DUCTS AND
SPLITTER ATTENUATORS
................................................................................
8.1 1 ACOUSTIC HORNS
.....................................................................................
8.1 1.1 APPLICATIONS
.............................................................................
8.11.2 THE HORN EQUATION
....................................................................
CONTENTS CHAPTER 9 SOUND IN ENCLOSURES 9.1 INTRODUCTION
........................................................................................
9.2 SOME GENERAL FEATURES OF SOUND FIELDS IN ENCLOSURES
................................... 9.3 APOLOGY FOR THE RECTANGULAR
ENCLOSURE .................................................... 9.4 THE
IMPULSE RESPONSE OF FLUID IN A REVERBERANT RECTANGULAR ENCLOSURE
.......... 9.5 ACOUSTIC NATURAL FREQUENCIES AND MODES OF FLUID IN A
RIGID-WALLED RECTANGULAR ENCLOSURE
............................................................................
9.6 MODAL ENERGY
......................................................................................
9.7 THE EFFECTS OF FINITE WALL IMPEDANCE ON MODAL ENERGY-TIME DEPENDENCE
IN FREE VIBRATION
.......................................................................................
9.8 THE RESPONSE OF FLUID IN A RECTANGULAR ENCLOSURE TO HARMONIC
EXCITATION BY A POINT MONOPOLE SOURCE
.......................................................................
9.9 THE SOUND POWER OF A POINT MONOPOLE IN A REVERBERANT ENCLOSURE
.............. 9.10 SOUND RADIATION INTO AN ENCLOSURE BY THE VIBRATION
OF A BOUNDARY ............. 9.11 PROBABILISTIC WAVE FIELD MODELS FOR
ENCLOSED SOUND FIELDS AT HIGH FREQUENCY . 9.11.1 THE MODAL OVERLAP
FACTOR AND RESPONSE UNCERTAINTY ...................... 9.1 1.2
HIGH-FREQUENCY SOUND FIELD STATISTICS
........................................... 9.11.3 THE DIFFUSE FIELD
MODEL ..............................................................
9.12 APPLICATIONS OF THE DIFFUSE FIELD MODEL
.................................................... 9.12.1 STEADY STATE
DIFFUSE FIELD ENERGY, INTENSITY AND ENCLOSURE ABSORPTION 9.12.2
REVERBERATION TIME
...................................................................
9.12.3 STEADY STATE SOURCE SOUND POWER AND REVERBERANT FIELD ENERGY
........ 9.13 A BRIEF INTRODUCTION TO GEOMETRIC (RAY) ACOUSTICS
...................................... CHAPTER 10 STRUCTURE-BORNE SOUND
10.1 THE NATURE AND PRACTICAL IMPORTANCE OF STRUCTURE-BORNE SOUND
.................. 10.2 EMPHASIS AND CONTENT OF THE CHAPTER
...................................................... 10.3 THE ENERGY
APPROACH TO MODELLING STRUCTURE-BORNE SOUND .........................
10.4 QUASI-LONGITUDINAL WAVES IN UNIFORM RODS AND PLATES
................................ 10.5 THE BENDING WAVE IN UNIFORM
HOMOGENEOUS BEAMS .................................. 10.5.1 A REVIEW OF
THE ROLES OF DIRECT AND SHEAR STRESSES ...........................
10.5.2 SHEAR FORCE AND BENDING MOMENT
............................................... 10.5.3 THE BEAM BENDING
WAVE EQUATION ............................................... 10.5.4
HARMONIC SOLUTIONS OF THE BENDING WAVE EQUATION ........................
10.6 THE BENDING WAVE IN THIN UNIFORM HOMOGENEOUS PLATES
............................ 10.7 TRANSVERSE PLANE WAVES IN FLAT PLATES
....................................................... 10.8 DISPERSION
CURVES, WAVENUMBER VECTOR DIAGRAMS AND MODAL DENSITY .......... 10.9
STRUCTURE-BORNE WAVE ENERGY AND ENERGY FLUX
.......................................... . 10.9.1 QUASI-LONGITUDINAL
WAVES .......................................................... 10.9.2
BENDING WAVES IN BEAMS
............................................................ 10.9.3
BENDING WAVES IN PLATES
............................................................. .
........... 10.10 MECHANICAL IMPEDANCES OF INFINITE. UNIFORM RODS BEAMS
AND PLATES 10.10.1 IMPEDANCE OF QUASI-LONGITUDINAL WAVES IN RODS
............................ 10.10.2 IMPEDANCES OF BEAMS IN BENDING
................................................ 10.10.3 IMPEDANCES OF
THIN. UNIFORM, FLAT PLATES IN BENDING ....................... 10.10.4
IMPEDANCE AND MODAL DENSITY
.................................................... 10.11 WAVE ENERGY
TRANSMISSION THROUGH JUNCTIONS BETWEEN STRUCTURAL COMPONENTS
.........................................................................................
X CONTENTS 10.12 IMPEDANCE. MOBILITY AND VIBRATION ISOLATION
............................................ 10.13 STRUCTURE-BORNE SOUND
GENERATED BY IMPACT ............................................. 10.14
SOUND RADIATION BY VIBRATING FLAT PLATES
.................................................. . 10.14.1 THE
CRITICAL FREQUENCY AND RADIATION CANCELLATION ..........................
10.14.2 ANALYSIS OF MODAL RADIATION
....................................................... 10.14.3 PHYSICAL
INTERPRETATIONS AND PRACTICAL IMPLICATIONS ........................
CHAPTER 11 TRANSMISSION OF SOUND THROUGH PARTITIONS 1 1 . 1 PRACTICAL
ASPECTS OF SOUND TRANSMISSION THROUGH PARTITIONS
........................ 11.2 TRANSMISSION OF NORMALLY INCIDENT PLANE
WAVES THROUGH AN UNBOUNDED PARTITION
..............................................................................................
11.3 TRANSMISSION OF SOUND THROUGH AN UNBOUNDED FLEXIBLE PARTITION
................ I 1.4 TRANSMISSION OF DIFFUSE SOUND THROUGH A BOUNDED
PARTITION IN A BAFFLE ........ 1 1.5 DOUBLE-LEAF PARTITIONS
...........................................................................
11.6 TRANSMISSION OF NORMALLY INCIDENT PLANE WAVES THROUGH AN UNBOUNDED
DOUBLE-LEAF PARTITION
.............................................................................
11.7 THE EFFECT OF CAVITY ABSORPTION
............................................................... 11.8
TRANSMISSION OF OBLIQUELY INCIDENT PLANE WAVES THROUGH AN UNBOUNDED
DOUBLE-LEAF PARTITION
.............................................................................
1 1.9 CLOSE-FITTING ENCLOSURES
.........................................................................
11 . 10 A SIMPLE MODEL OF A NOISE CONTROL ENCLOSURE
............................................ 11.11 MEASUREMENT OF SOUND
REDUCTION INDEX (TRANSMISSION LOSS) ........................ CHAPTER 12
REFLECTION. SCATTERING. DIFFRACTION AND REFRACTION 12.1 INTRODUCTION
........................................................................................
12.2 SCATTERING BY A DISCRETE BODY
.................................................................. 12.3
SCATTERING BY CROWDS OF RIGID BODIES
........................................................ 12.4 RESONANT
SCATTERING
..............................................................................
12.4.1 DISCRETE SCATTERERS
.....................................................................
12.4.2 DIFFUSORS
..................................................................................
12.5 DIFFRACTION
...........................................................................................
12.5.1 DIFFRACTION BY PLANE SCREENS
....................................................... 12.5.2
DIFFRACTION BY APERTURES IN PARTITIONS
.......................................... 12.6 REFLECTION BY THIN.
PLANE RIGID SHEETS
....................................................... 12.7 REFRACTION
...........................................................................................
12.7.1 REFRACTED RAY PATH THROUGH A UNIFORM. WEAK SOUND SPEED GRADIENT .
12.7.2 REFRACTION OF SOUND IN THE ATMOSPHERE
........................................ APPENDIX 1 COMPLEX EXPONENTIAL
REPRESENTATION OF HARMONIC FUNCTIONS A1.1 HARMONIC FUNCTIONS OF TIME
.................................................................. A1.2
HARMONIC FUNCTIONS OF SPACE
.................................................................. A L .
3 CER OF TRAVELLING HARMONIC PLANE WAVES
................................................. A 1.4 OPERATIONS ON
HARMONICALLY VARYING QUANTITIES REPRESENTED BY CER ........... APPENDIX
2 FREQUENCY ANALYSIS A2.1 INTRODUCTION
........................................................................................
A2.2 CATEGORIES OF SIGNAL
..............................................................................
A2.3 FOURIER ANALYSIS OF SIGNALS
.....................................................................
A2.3.1 THE FOURIER INTEGRAL TRANSFORM
................................................... A2.3.2 FOURIER
SERIES ANALYSIS
............................................................... CONTENTS
XI A2.3.3 PRACTICAL FOURIER ANALYSIS
.......................................................... 388 A2.3.4
FREQUENCY ANALYSIS BY FILTERS
...................................................... 390 A2.4
PRESENTATION OF THE RESULTS OF FREQUENCY ANALYSIS
....................................... 392 A2.5 FREQUENCY RESPONSE
FUNCTIONS ..............................................................
392 A2.6 IMPULSE RESPONSE
................................................................................
393 APPENDIX 3 SPATIAL FOURIER ANALYSIS OF SPACE-DEPENDENT VARIABLES 394
A3.1 WAVENUMBER TRANSFORM
........................................................................
394 A3.2 WAVE DISPERSION
...................................................................................
394 APPENDIX 4 COHERENCE AND CROSS-CORRELATION 397 A4.1 BACKGROUND
........................................................................................
397 A4.2 CORRELATION
......................................................................................
397 A4.3 COHERENCE
.....................................................................................
398 A4.4 THE RELATION BETWEEN THE CROSS-CORRELATION AND COHERENCE
FUNCTIONS ........... 399 APPENDIX 5 THE SIMPLE OSCILLATOR 401 A5.1 FREE
VIBRATION OF THE UNDAMPED MASS-SPRING OSCILLATOR
............................ 401 A5.2 IMPULSE RESPONSE OF THE UNDAMPED
OSCILLATOR ........................................... 401 A5.3 THE
VISCOUSLY DAMPED OSCILLATOR
............................................................. 402 A5.4
IMPULSE RESPONSE OF THE VISCOUSLY DAMPED OSCILLATOR
................................. 403 A5.5 RESPONSE OF A VISCOUSLY
DAMPED OSCILLATOR TO HARMONIC EXCITATION ............. 403 APPENDIX 6
MEASURES OF SOUND. FREQUENCY WEIGHTING AND NOISE RATING INDICATORS 406
-46.1 INTRODUCTION
........................................................................................
406 A6.2 PRESSURE-TIME HISTORY
........................................................................
406 A6.3 MEAN SQUARE PRESSURE
...........................................................................
407 A6.4 SOUND PRESSURE LEVEL
...........................................................................
408 A6.5 SOUND INTENSITY LEVEL
...........................................................................
408 A6.6 SOUND POWER LEVEL
...............................................................................
408 A6.7 STANDARD REFERENCE CURVES
......................................................................
409 APPENDIX 7 DEMONSTRATIONS AND EXPERIMENTS A7.1 INTRODUCTION
........................................................................................
A7.2 DEMONSTRATIONS
...................................................................................
A7.2.1 NOISE SOURCES
...........................................................................
A7.2.2 SOUND INTENSITY AND SURFACE ACOUSTIC IMPEDANCE
........................... A7.2.3 ROOM ACOUSTICS
........................................................................
A7.2.4 MISCELLANEOUS
..........................................................................
A7.3 FORMAL LABORATORY CLASS EXPERIMENTS
...................................................... A7.3.1 CONSTRUCT
A CALIBRATED VOLUME VELOCITY SOURCE (CVVS) .................. A7.3.2
SOURCE SOUND POWER DETERMINATION USING INTENSITY SCANS. REVERBERATION
TIME MEASUREMENTS AND POWER BALANCE .................... A7.3.3
INVESTIGATION OF SMALL ROOM ACOUSTIC RESPONSE
.............................. A7.3.4 DETERMINATION OF COMPLEX
WAVENUMBERS OF POROUS MATERIALS ........ A7.3.5 MEASUREMENT OF THE
SPECIFIC ACOUSTIC IMPEDANCE OF A SHEET OF POROUS MATERIAL
........................................................................
A7.3.6 MEASUREMENT OF THE IMPEDANCE OF SIDE BRANCH AND IN-LINE REACTIVE
ATTENUATORS
..............................................................................
XII CONTENTS A7.3.7 SOUND PRESSURE GENERATION BY A MONOPOLE IN FREE
SPACE AND IN A TUBE
.........................................................................................
419 A7.3.8 MODE DISPERSION IN A DUCT
.......................................................... 419 A7.3.9
SCATTERING BY A ROUGH SURFACE
..................................................... 419 A7.3.10
RADIATION BY A VIBRATING PLATE
.................................................... 420 ANSWERS
........................................................................................................
421 BIBLIOGRAPHY
.................................................................................................
430 REFERENCES
....................................................................................................
432 INDEX
............................................................................................................
435
|
any_adam_object | 1 |
author | Fahy, Frank J. |
author_facet | Fahy, Frank J. |
author_role | aut |
author_sort | Fahy, Frank J. |
author_variant | f j f fj fjf |
building | Verbundindex |
bvnumber | BV024620739 |
classification_rvk | UF 6900 |
ctrlnum | (OCoLC)315476642 (DE-599)BSZ277866553 |
discipline | Physik |
edition | Repr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01379nam a2200361 c 4500</leader><controlfield tag="001">BV024620739</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130122 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780122476655</subfield><subfield code="9">978-0-12-247665-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0122476654</subfield><subfield code="9">0-12-247665-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315476642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ277866553</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 6900</subfield><subfield code="0">(DE-625)145605:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fahy, Frank J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of engineering acoustics</subfield><subfield code="c">Frank Fahy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Repr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam << [u.a.]>></subfield><subfield code="b">Elsevier</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 443 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [430] - 434</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Akustik</subfield><subfield code="0">(DE-588)4059219-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Akustik</subfield><subfield code="0">(DE-588)4059219-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www3.ub.tu-berlin.de/ihv/001766233.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWBplus Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018592727&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018592727</subfield></datafield></record></collection> |
id | DE-604.BV024620739 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:03:12Z |
institution | BVB |
isbn | 9780122476655 0122476654 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018592727 |
oclc_num | 315476642 |
open_access_boolean | |
owner | DE-83 DE-573 DE-Aug4 |
owner_facet | DE-83 DE-573 DE-Aug4 |
physical | XIX, 443 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Elsevier |
record_format | marc |
spelling | Fahy, Frank J. Verfasser aut Foundations of engineering acoustics Frank Fahy Repr. Amsterdam << [u.a.]>> Elsevier 2007 XIX, 443 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. [430] - 434 Technische Akustik (DE-588)4059219-4 gnd rswk-swf Technische Akustik (DE-588)4059219-4 s DE-604 http://www3.ub.tu-berlin.de/ihv/001766233.pdf Inhaltsverzeichnis SWBplus Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018592727&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fahy, Frank J. Foundations of engineering acoustics Technische Akustik (DE-588)4059219-4 gnd |
subject_GND | (DE-588)4059219-4 |
title | Foundations of engineering acoustics |
title_auth | Foundations of engineering acoustics |
title_exact_search | Foundations of engineering acoustics |
title_full | Foundations of engineering acoustics Frank Fahy |
title_fullStr | Foundations of engineering acoustics Frank Fahy |
title_full_unstemmed | Foundations of engineering acoustics Frank Fahy |
title_short | Foundations of engineering acoustics |
title_sort | foundations of engineering acoustics |
topic | Technische Akustik (DE-588)4059219-4 gnd |
topic_facet | Technische Akustik |
url | http://www3.ub.tu-berlin.de/ihv/001766233.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018592727&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fahyfrankj foundationsofengineeringacoustics |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis