Strapdown inertial navigation technology:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Reston, Va.
American Inst. of Aeronautics and Astronautics
2004
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Progress in astronautics and aeronautics
207 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 558 S. Ill., graph. Darst. |
ISBN: | 1563476932 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV024603735 | ||
003 | DE-604 | ||
005 | 20100105 | ||
007 | t | ||
008 | 090924s2004 ad|| |||| 00||| eng d | ||
020 | |a 1563476932 |9 1-56347-693-2 | ||
035 | |a (OCoLC)635958184 | ||
035 | |a (DE-599)BVBBV024603735 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 629.13251 | |
084 | |a ZO 7600 |0 (DE-625)157858: |2 rvk | ||
100 | 1 | |a Titterton, David H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Strapdown inertial navigation technology |c D. H. Titterton ; J. L. Weston |
250 | |a 2. ed. | ||
264 | 1 | |a Reston, Va. |b American Inst. of Aeronautics and Astronautics |c 2004 | |
300 | |a XVII, 558 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in astronautics and aeronautics |v 207 | |
650 | 0 | 7 | |a Strapdown-System |0 (DE-588)4745184-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kreisel |0 (DE-588)4032978-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Trägheitsnavigation |0 (DE-588)4185821-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Trägheitsnavigation |0 (DE-588)4185821-9 |D s |
689 | 0 | 1 | |a Strapdown-System |0 (DE-588)4745184-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kreisel |0 (DE-588)4032978-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Weston, John L. |e Verfasser |4 aut | |
830 | 0 | |a Progress in astronautics and aeronautics |v 207 |w (DE-604)BV001890233 |9 207 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018576906&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018576906 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804140618719428608 |
---|---|
adam_text | Titel: Strapdown inertial navigation technology
Autor: Titterton, David H.
Jahr: 2004
Contents
Preface xv
1 Introduction 1
1.1 Navigation 1
1.2 Inertial navigation 2
1.3 Strapdown technology 3
1.4 Layout of the book 4
2 Fundamental principles and historical developments of
inertial navigation 7
2.1 Basic concepts 7
2.2 Summary 11
2.3 Historical developments 11
2.4 The modern-day inertial navigation system 14
2.5 Trends in inertial sensor development 15
3 Basic principles of strapdown inertial navigation systems 17
3.1 Introduction 17
3.2 A simple two-dimensional strapdown navigation system 17
3.3 Reference frames 21
3.4 Three-dimensional strapdown navigation system - general
analysis 22
3.4.1 Navigation with respect to a fixed frame 22
3.4.2 Navigation with respect to a rotating frame 24
3.4.3 The choice of reference frame 24
3.4.4 Resolution of accelerometer measurements 24
3.4.5 System example 25
3.5 Strapdown system mechanisations 25
3.5.1 Inertial frame mechanisation 26
3.5.2 Earth frame mechanisation 28
3.5.3 Local geographic navigation frame mechanisation 31
vi Contents
3.5.4 Wander azimuth navigation frame mechanisation 34
3.5.5 Summary of strapdown system mechanisations 36
3.6 Strapdown attitude representations 36
3.6.1 Introductory remarks 36
3.6.2 Direction cosine matrix 39
3.6.3 Euler angles 40
3.6.4 Quaternions 42
3.6.5 Relationships between direction cosines, Euler angles
and quaternions 45
3.7 Detailed navigation equations 47
3.7.1 Navigation equations expressed in
component form 47
3.7.2 The shape of the Earth 49
3.7.3 Datum reference models 51
3.7.4 Variation of gravitational attraction over the Earth 55
Gyroscope technology 1 59
4.1 Introduction 59
4.2 Conventional sensors 60
4.2.1 Introduction 60
4.2.2 Fundamental principles 60
4.2.3 Components of a mechanical gyroscope 68
4.2.4 Sensor errors 71
4.2.5 Rate-integrating gyroscope 73
4.2.6 Dynamically tuned gyroscope 77
4.2.7 Flex gyroscope 81
4.3 Rate sensors 84
4.3.1 Dual-axis rate transducer (DART) 84
4.3.2 Magnetohydrodynamic sensor 86
4.4 Vibratory gyroscopes 88
4.4.1 Introduction 88
4.4.2 Vibrating wine glass sensor 89
4.4.3 Hemispherical resonator gyroscope 91
4.4.4 Vibrating disc sensor 93
4.4.5 Tuning fork sensor 94
4.4.6 Quartz rate sensor 94
4.4.7 Silicon sensor 96
4.4.8 Vibrating wire rate sensor 98
4.4.9 General characteristics of vibratory sensors 99
4.5 Cryogenic devices 100
4.5.1 Nuclear magnetic resonance gyroscope 100
4.5.2 SARDIN 103
4.6 Electrostatically suspended gyroscope 103
4.7 Other devices for sensing angular motion 105
4.7.1 Fluidic (flueric) sensors 105
Contents vii
4.7.2 Fluxgate magnetometers 107
4.7.3 The transmission line gyroscope 112
Gyroscope technology 2 115
5.1 Optical sensors 115
5.1.1 Introduction 115
5.1.2 Fundamental principles 116
5.1.3 Ring laser gyroscope 118
5.1.4 Three-axis ring laser gyroscope
configuration 126
5.1.5 Fibre optic gyroscope 126
5.1.6 Photonic crystal optical fibre gyroscope 137
5.1.7 Fibre optic ring resonator gyroscope 140
5.1.8 Ring resonator gyroscope 142
5.1.9 Integrated optical gyroscope 143
5.2 Cold atom sensors 143
5.2.1 Introduction 143
5.2.2 Rotation sensing 144
5.2.3 Measurement of acceleration 145
5.2.4 Gravity gradiometer 146
5.3 Summary of gyroscope technology 148
Accelerometer and multi-sensor technology 153
6.1 Introduction 153
6.2 The measurement of translational motion 153
6.3 Mechanical sensors 155
6.3.1 Introduction 155
6.3.2 Principles of operation 155
6.3.3 Sensor errors 156
6.3.4 Force-feedback pendulous accelerometer 157
6.3.5 Pendulous accelerometer hinge elements 159
6.3.6 Two-axes force-feedback accelerometer 160
6.3.7 Open-loop accelerometers 161
6.4 Solid-state accelerometers 161
6.4.1 Vibratory devices 162
6.4.2 Surface acoustic wave accelerometer 163
6.4.3 Silicon sensors 165
6.4.4 Fibre optic accelerometer 168
6.4.5 Optical accelerometers 173
6.4.6 Other acceleration sensors 173
6.5 Multi-functional sensors 174
6.5.1 Introduction 174
6.5.2 Rotating devices 174
6.5.3 Vibratory multi-sensor 178
6.5.4 Mass unbalanced gyroscope 179
viii Contents
6.6 Angular accelerometers 182
6.6.1 Liquid rotor angular accelerometer 183
6.6.2 Gas rotor angular accelerometer 184
6.7 Inclinometers 185
6.8 Summary of accelerometer and multi-sensor technology 186
7 MEMS inertial sensors 189
7.1 Introduction 189
7.2 Silicon processing 192
7.3 MEMS gyroscope technology 193
7.3.1 Introduction 193
7.3.2 Tuning fork MEMS gyroscopes 195
7.3.3 Resonant ring MEMS gyroscopes 202
7.4 MEMS accelerometer technology 205
7.4.1 Introduction 205
7.4.2 Pendulous mass MEMS accelerometers 206
7.4.3 Resonant MEMS accelerometers 207
7.4.4 Tunnelling MEMS accelerometers 209
7.4.5 Electrostatically levitated MEMS
accelerometers 210
7.4.6 Dithered accelerometers 212
7.5 MOEMS 212
7.6 Multi-axis/rotating structures 212
7.7 MEMS based inertial measurement units 213
7.7.1 Silicon IMU 213
7.7.2 Quartz IMU 214
7.8 System integration 215
7.9 Summary 216
8 Testing, calibration and compensation 219
8.1 Introduction 219
8.2 Testing philosophy 220
8.3 Test equipment 221
8.4 Data-logging equipment 222
8.5 Gyroscope testing 223
8.5.1 Stability tests - multi-position tests 223
8.5.2 Rate transfer tests 226
8.5.3 Thermal tests 231
8.5.4 Oscillating rate table tests 233
8.5.5 Magnetic sensitivity tests 233
8.5.6 Centrifuge tests 235
8.5.7 Shock tests 237
8.5.8 Vibration tests 238
8.5.9 Combination tests 241
8.5.10 Ageing and storage tests 242
Contents ix
8.6 Accelerometer testing 242
8.6.1 Multi-position tests 244
8.6.2 Long-term stability 244
8.6.3 Thermal tests 246
8.6.4 Magnetic sensitivity tests 246
8.6.5 Centrifuge tests 247
8.6.6 Shock tests 250
8.6.7 Vibration tests 250
8.6.8 Combination tests 251
8.6.9 Ageing and storage tests 252
8.7 Calibration and error compensation 253
8.7.1 Introduction 253
8.7.2 Gyroscope error compensation 254
8.7.3 Accelerometer error compensation 254
8.7.4 Further comments on error compensation 255
8.8 Testing of inertial navigation systems 255
8.9 Hardware in the loop tests 259
9 Strapdown system technology 263
9.1 Introduction 263
9.2 The components of a strapdown navigation system 263
9.3 The instrument cluster 264
9.3.1 Orthogonal sensor configurations 264
9.3.2 Skewed sensor configurations 265
9.3.3 A skewed sensor configuration using dual-axis
gyroscopes 266
9.3.4 Redundant sensor configurations 268
9.4 Instrument electronics 269
9.5 The attitude computer 271
9.6 The navigation computer 272
9.7 Power conditioning 274
9.8 Anti-vibration mounts 274
9.9 Concluding remarks 274
0 Inertial navigation system alignment 277
10.1 Introduction 277
10.2 Basic principles 278
10.2.1 Alignment on a fixed platform 278
10.2.2 Alignment on a moving platform 280
10.3 Alignment on the ground 282
10.3.1 Introduction 282
10.3.2 Ground alignment methods 283
10.3.3 Northfinding techniques 287
10.4 In-flight alignment 289
10.4.1 Introduction 289
Contents
10.4.2 Sources of error 289
10.4.3 In-flight alignment methods 289
10.5 Alignment at sea 300
10.5.1 Introduction 300
10.5.2 Sources of error 300
10.5.3 Shipboard alignment methods 301
11 Strapdown navigation system computation 309
309
310
311
315
316
318
319
322
324
324
325
326
328
329
329
332
12 Generalised system performance analysis 335
12.1 Introduction 335
12.2 Propagation of errors in a two-dimensional strapdown
navigation system 336
12.2.1 Navigation in a non-rotating reference frame 336
12.2.2 Navigation in a rotating reference frame 337
12.2.3 The Schuler pendulum 339
12.2.4 Propagation of errors in a Schuler tuned system 340
12.2.5 Discussion of results 341
12.3 General error equations 342
12.3.1 Derivation of error equations 342
12.3.2 Discussion 346
12.4 Analytical assessment 350
12.4.1 Single channel error model 350
12.4.2 Derivation of single channel error propagation
equations 352
12.4.3 Single-channel error propagation examples 358
Strapdown navigation system computation
11.1 Introduction
11.2 Attitude computation
11.2.1 Direction cosine algorithms
11.2.2 Rotation angle computation
11.2.3 Rotation vector compensation
11.2.4 Body and navigation frame rotations
11.2.5 Quaternion algorithms
11.2.6 Orthogonalisation and normalisation algorithms
11.2.7 The choice of attitude representation
11.3 Acceleration vector transformation algorithm
11.3.1 Acceleration vector transformation using direction cosines
11.3.2 Rotation correction
11.3.3 Dynamic correction
11.3.4 Acceleration vector transformation using quaternions
11.4 Navigation algorithm
11.5 Summary
Contents xi
12.5 Assessment by simulation 360
12.5.1 Introductory remarks 360
12.5.2 Error modelling 361
12.5.3 Simulation techniques 363
12.6 Motion dependence of strapdown system performance 365
12.6.1 Manoeuvre-dependent error terms 366
12.6.2 Vibration dependent error terms 368
12.7 Summary 374
13 Integrated navigation systems 377
13.1 Introduction 377
13.2 Basic principles 378
13.3 External navigation aids 379
13.3.1 Radio navigation aids 379
13.3.2 Satellite navigation aids 384
13.3.3 Star trackers 391
13.3.4 Surface radar trackers 393
13.4 On-board measurements 394
13.4.1 Doppler radar 394
13.4.2 Magnetic measurements 395
13.4.3 Altimeters 396
13.4.4 Terrain referenced navigation 397
13.4.5 Scene matching 398
13.4.6 Continuous visual navigation 399
13.5 System integration 401
13.6 Application of Kalman filtering to aided inertial navigation
systems 402
13.6.1 Introduction 402
13.6.2 Design example of aiding 403
13.7 INS-GPS integration 409
13.7.1 Uncoupled systems 411
13.7.2 Loosely coupled integration 412
13.7.3 Tightly coupled integration 413
13.7.4 Deep integration 415
13.7.5 Concluding remarks 416
13.7.6 INS aiding of GPS signal tracking 416
13.8 Multi-sensor integrated navigation 417
13.9 Summary 418
14 Design example 421
14.1 Introduction 421
14.2 Background to the requirement 422
14.3 The navigation system requirement 423
14.3.1 Navigation data required 423
14.3.2 Operating and storage environment 423
xii Contents
14.3.3 Performance 424
14.3.4 System reaction time 425
14.3.5 Physical characteristics 425
14.4 Why choose strapdown inertial navigation? 426
14.5 Navigation system design and analysis process 426
14.5.1 Introduction 426
14.5.2 Choice of system mechanisation 427
14.5.3 Error budget calculations 428
14.5.4 System alignment 433
14.5.5 Choice of inertial instruments 434
14.5.6 Computational requirements 436
14.5.7 Electrical and mechanical interfaces 437
14.6 Testing, calibration and compensation requirements 438
14.7 Performance enhancement by aiding 438
14.8 Concluding remarks 439
15 Alternative applications of IN sensors and systems 441
15.1 Introduction 441
15.2 Borehole surveying 442
15.2.1 Introduction 442
15.2.2 Historical background 443
15.2.3 Inertial survey system 445
15.2.4 System design requirements 446
15.2.5 System design issues 447
15.2.6 System calibration and test 451
15.2.7 Concluding remarks 452
15.3 Ship s inertial navigation systems (SINS) 453
15.3.1 NATO SINS 454
15.4 Vehicle stabilisation and control 456
15.4.1 Autopilots 456
15.4.2 Passive missile roll control (rollerons) 462
15.4.3 Intelligent transport systems - automotive
applications 464
15.4.4 Intelligent transport systems - trains 467
15.4.5 Personal transport 467
15.5 Equipment stabilisation 469
15.5.1 Aero-flexure compensation 470
15.5.2 Laser beam director 475
15.5.3 Laser radar 479
15.5.4 Seeker-head stabilisation 482
15.5.5 Sightline stabilisation 487
15.5.6 Relative angular alignment 491
15.5.7 Calibration and measurement 493
15.6 Geodetic and geophysical measurements and observation of
fundamental physical phenomena 495
Contents xiii
15.7 Other applications
15.7.1 Moving-map displays
15.7.2 Safety and arming units
15.7.3 Aircraft ejection seats
15.7.4 Agricultural survey
15.7.5 Artillery pointing
15.7.6 Other unusual applications
15.8 Concluding remarks
Appendix A Kalman filtering
Appendix B Inertial navigation system error budgets
Appendix C Inertial system configurations
Appendix D Comparison of GPS and GLONASS satellite
navigation systems
List of symbols
Glossary of principal terms
Index
499
499
502
503
505
505
507
508
511
519
523
529
535
539
549
|
any_adam_object | 1 |
author | Titterton, David H. Weston, John L. |
author_facet | Titterton, David H. Weston, John L. |
author_role | aut aut |
author_sort | Titterton, David H. |
author_variant | d h t dh dht j l w jl jlw |
building | Verbundindex |
bvnumber | BV024603735 |
classification_rvk | ZO 7600 |
ctrlnum | (OCoLC)635958184 (DE-599)BVBBV024603735 |
dewey-full | 629.13251 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.13251 |
dewey-search | 629.13251 |
dewey-sort | 3629.13251 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Verkehr / Transport |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01804nam a2200445 cb4500</leader><controlfield tag="001">BV024603735</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100105 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2004 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1563476932</subfield><subfield code="9">1-56347-693-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635958184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV024603735</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.13251</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 7600</subfield><subfield code="0">(DE-625)157858:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Titterton, David H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strapdown inertial navigation technology</subfield><subfield code="c">D. H. Titterton ; J. L. Weston</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Reston, Va.</subfield><subfield code="b">American Inst. of Aeronautics and Astronautics</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 558 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in astronautics and aeronautics</subfield><subfield code="v">207</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strapdown-System</subfield><subfield code="0">(DE-588)4745184-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kreisel</subfield><subfield code="0">(DE-588)4032978-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Trägheitsnavigation</subfield><subfield code="0">(DE-588)4185821-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Trägheitsnavigation</subfield><subfield code="0">(DE-588)4185821-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strapdown-System</subfield><subfield code="0">(DE-588)4745184-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kreisel</subfield><subfield code="0">(DE-588)4032978-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weston, John L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in astronautics and aeronautics</subfield><subfield code="v">207</subfield><subfield code="w">(DE-604)BV001890233</subfield><subfield code="9">207</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018576906&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018576906</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV024603735 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:02:51Z |
institution | BVB |
isbn | 1563476932 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018576906 |
oclc_num | 635958184 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | XVII, 558 S. Ill., graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | American Inst. of Aeronautics and Astronautics |
record_format | marc |
series | Progress in astronautics and aeronautics |
series2 | Progress in astronautics and aeronautics |
spelling | Titterton, David H. Verfasser aut Strapdown inertial navigation technology D. H. Titterton ; J. L. Weston 2. ed. Reston, Va. American Inst. of Aeronautics and Astronautics 2004 XVII, 558 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in astronautics and aeronautics 207 Strapdown-System (DE-588)4745184-1 gnd rswk-swf Kreisel (DE-588)4032978-1 gnd rswk-swf Trägheitsnavigation (DE-588)4185821-9 gnd rswk-swf Trägheitsnavigation (DE-588)4185821-9 s Strapdown-System (DE-588)4745184-1 s DE-604 Kreisel (DE-588)4032978-1 s 1\p DE-604 Weston, John L. Verfasser aut Progress in astronautics and aeronautics 207 (DE-604)BV001890233 207 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018576906&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Titterton, David H. Weston, John L. Strapdown inertial navigation technology Progress in astronautics and aeronautics Strapdown-System (DE-588)4745184-1 gnd Kreisel (DE-588)4032978-1 gnd Trägheitsnavigation (DE-588)4185821-9 gnd |
subject_GND | (DE-588)4745184-1 (DE-588)4032978-1 (DE-588)4185821-9 |
title | Strapdown inertial navigation technology |
title_auth | Strapdown inertial navigation technology |
title_exact_search | Strapdown inertial navigation technology |
title_full | Strapdown inertial navigation technology D. H. Titterton ; J. L. Weston |
title_fullStr | Strapdown inertial navigation technology D. H. Titterton ; J. L. Weston |
title_full_unstemmed | Strapdown inertial navigation technology D. H. Titterton ; J. L. Weston |
title_short | Strapdown inertial navigation technology |
title_sort | strapdown inertial navigation technology |
topic | Strapdown-System (DE-588)4745184-1 gnd Kreisel (DE-588)4032978-1 gnd Trägheitsnavigation (DE-588)4185821-9 gnd |
topic_facet | Strapdown-System Kreisel Trägheitsnavigation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018576906&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001890233 |
work_keys_str_mv | AT tittertondavidh strapdowninertialnavigationtechnology AT westonjohnl strapdowninertialnavigationtechnology |