Geometry and the imagination:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Providence, RI
American Math. Soc., Chelsea
1999
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IX, 357 S. Ill. graph. Darst. |
ISBN: | 0821819984 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024515236 | ||
003 | DE-604 | ||
005 | 20140417 | ||
007 | t| | ||
008 | 090924s1999 xx ad|| |||| 00||| eng d | ||
020 | |a 0821819984 |9 0-8218-1998-4 | ||
035 | |a (OCoLC)41256151 | ||
035 | |a (DE-599)BVBBV024515236 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 1 | |a eng |h ger | |
049 | |a DE-83 |a DE-739 |a DE-29T | ||
050 | 0 | |a QA685 | |
082 | 0 | |a 516.9 |2 21 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a 00A05 |2 msc | ||
084 | |a 53Axx |2 msc | ||
084 | |a 51Axx |2 msc | ||
084 | |a 01A75 |2 msc | ||
100 | 1 | |a Hilbert, David |d 1862-1943 |e Verfasser |0 (DE-588)11855090X |4 aut | |
240 | 1 | 0 | |a Anschauliche Geometrie |
245 | 1 | 0 | |a Geometry and the imagination |c D. Hilbert and S. Cohn-Vossen |
250 | |a 2. ed. | ||
264 | 1 | |a Providence, RI |b American Math. Soc., Chelsea |c 1999 | |
300 | |a IX, 357 S. |b Ill. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Nichteuklidische Geometrie |2 swd | |
650 | 4 | |a Geometry, Non-Euclidean | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Cohn-Vossen, Stefan |d 1902-1936 |e Verfasser |0 (DE-588)124733905 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018489361&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-018489361 |
Datensatz im Suchindex
_version_ | 1821765536675004416 |
---|---|
adam_text |
CONTENTS
Preface
.
iii
Chapter I
THE SIMPLEST CURVES AND SURFACES
§ 1.
Plane Curves
. 1
§ 2.
The Cylinder, the Cone, the Conic Sections and Their
Surfaces of Revolution
. 7
§ 3.
The Second-Order Surfaces
. 12
§4.
The Thread Construction of the Ellipsoid, and Confocal
Quadrics
.-----. 19
APPENDICES TO CHAPTEH I
1.
The Pedal-Point Construction of the Conies.
. 25
2.
The Directrices of the Conies
._. 27
3.
The Movable Rod Model of the
Hyperboloid. 29
Chapter II
REGULAR SYSTEMS OF POINTS
Plane Lattices
. 32
Plane Lattices in the Theory of Numbers
. 37
Lattices in Three and More than Three Dimensions
. 44
Crystals as Regular Systems of Points
. 52
Regular Systems of Points and Discontinuous Groups of
Motions
.56
§ 10.
Plane Motions and their Composition
;
Classification of the
Discontinuous Groups of Motions in the Plane
. 59
§ 11.
The Discontinuous Groups of Plane Motions with Infinite
Unit Cells
. 64
§ 12.
The Crystallographic Groups of Motions in the Plane.
Regular Systems of Points and Pointers. Division of
the Plane into Congruent Cells
. 70
§ 13.
Crystallographic Classes and Groups of Motions in Space.
Groups and Systems of Points with Bilateral Symmetry
81
§ 14.
The Regular Polyhedra
. 89
Chapter
III
PROJECTIVE CONFIGURATIONS
§ 15.
Preliminary Remarks about Plane Configurations
. 95
§ 16.
The Configurations (73) and (83)
. 98
§ 17.
The Configurations (93)
.102
§ 18.
Perspective, Ideal Elements, and the Principle of Duality
in the Plane
.112
§ 19.
Ideal Elements and the Principle of Duality in Space.
Desargues'
Theorem and the
Desargues
Configuration
(10.) .119
§ 20.
Comparison of Pascal's and
Desargues
Theorems
.128
§ 21.
Preliminary Remarks on Configurations in Space
.133
§ 22.
Reye's Configuration
.134
§ 23.
Regular Polyhedra in Three and Four Dimensions, and
their Projections
.143
§ 24.
Enumerative Methods of Geometry
.157
§ 25. Schläfli's
Double-Six
.164
Chapter IV
DIFFERENTIAL GEOMETRY
§ 26.
Plane Curves
.„.172
§ 27.
Space Curves
.178
§ 28.
Curvature of Surfaces. Elliptic, Hyperbolic, and Parabolic
Points. Lines of Curvature and Asymptotic Lines. Um¬
bilical Points, Minimal Surfaces, Monkey Saddles
.183
§ 29.
The Spherical Image and Gaussian Curvature
.193
§ 30.
Developable Surfaces, Ruled Surfaces
.204
§ 31.
The Twisting of Space Curves
.211
§ 32.
Eleven Properties of the Sphere
.215
§ 33.
Bendings Leaving a Surface Invariant.
.232
§ 34.
Elliptic Geometry
.235
§ 35.
Hyperbolic Geometry, and its Relation to Euclidean and to
Elliptic Geometry
.242
§ 36. Stereographic
Projection and Circle-Preserving Trans¬
formations.
Poincaré's
Model of the Hyperbolic Plane
. 248
§ 37.
Methods of Mapping, Isometric, Area-Preserving, Geo¬
desic, Continuous and
Conformai
Mappings
.260
§ 38.
Geometrical Function Theory. Riemann's Mapping Theo¬
rem.
Conformai
Mapping in Space
.263
§ 39.
Conformai
Mappings of Curved Surfaces. Minimal Sur¬
faces. Plateau's Problem
.268
Chapter V
KINEMATICS
§ 40.
Linkages
.272
§ 41.
Continuous Rigid Motions of Plane Figures.
. .275
§ 42.
An Instrument for Constructing the Ellipse and its Roul¬
ettes
.283
§ 43.
Continuous Motions in Space
.285
Chapter VI
TOPOLOGY
§ 44.
Polyhedra
.-----._.-----290
§ 45.
Surfaces
.295
§ 46.
One-Sided Surfaces
.302
§ 47.
The
Projective
Plane as a Closed Surface
.313
§ 49.
Topological Mappings of a Surface onto Itself. Fixed
Points. Classes of Mappings. The Universal Covering
Surface of the Torus
.324
§ 50.
Conformai
Mapping of the Torus
.330
§ 51.
The Problem of Contiguous Regions, The Thread Problem,
and the Color Problem
.333
APPENDICES TO CHAPTER VI
1.
The
Projective
Plane in Four-Dimensional Space
.340
2.
The Euclidean Plane in Four-Dimensional Space
. 341
Index
._. 345 |
any_adam_object | 1 |
author | Hilbert, David 1862-1943 Cohn-Vossen, Stefan 1902-1936 |
author_GND | (DE-588)11855090X (DE-588)124733905 |
author_facet | Hilbert, David 1862-1943 Cohn-Vossen, Stefan 1902-1936 |
author_role | aut aut |
author_sort | Hilbert, David 1862-1943 |
author_variant | d h dh s c v scv |
building | Verbundindex |
bvnumber | BV024515236 |
callnumber-first | Q - Science |
callnumber-label | QA685 |
callnumber-raw | QA685 |
callnumber-search | QA685 |
callnumber-sort | QA 3685 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)41256151 (DE-599)BVBBV024515236 |
dewey-full | 516.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.9 |
dewey-search | 516.9 |
dewey-sort | 3516.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV024515236</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140417</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090924s1999 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821819984</subfield><subfield code="9">0-8218-1998-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)41256151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV024515236</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA685</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.9</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">00A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53Axx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51Axx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">01A75</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilbert, David</subfield><subfield code="d">1862-1943</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11855090X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Anschauliche Geometrie</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry and the imagination</subfield><subfield code="c">D. Hilbert and S. Cohn-Vossen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc., Chelsea</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 357 S.</subfield><subfield code="b">Ill. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Non-Euclidean</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohn-Vossen, Stefan</subfield><subfield code="d">1902-1936</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124733905</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018489361&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018489361</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV024515236 |
illustrated | Illustrated |
indexdate | 2025-01-20T11:03:22Z |
institution | BVB |
isbn | 0821819984 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018489361 |
oclc_num | 41256151 |
open_access_boolean | |
owner | DE-83 DE-739 DE-29T |
owner_facet | DE-83 DE-739 DE-29T |
physical | IX, 357 S. Ill. graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | American Math. Soc., Chelsea |
record_format | marc |
spelling | Hilbert, David 1862-1943 Verfasser (DE-588)11855090X aut Anschauliche Geometrie Geometry and the imagination D. Hilbert and S. Cohn-Vossen 2. ed. Providence, RI American Math. Soc., Chelsea 1999 IX, 357 S. Ill. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nichteuklidische Geometrie swd Geometry, Non-Euclidean Geometrie (DE-588)4020236-7 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Geometrie (DE-588)4020236-7 s Topologie (DE-588)4060425-1 s 2\p DE-604 DE-604 Cohn-Vossen, Stefan 1902-1936 Verfasser (DE-588)124733905 aut Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018489361&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hilbert, David 1862-1943 Cohn-Vossen, Stefan 1902-1936 Geometry and the imagination Nichteuklidische Geometrie swd Geometry, Non-Euclidean Geometrie (DE-588)4020236-7 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4060425-1 (DE-588)4151278-9 |
title | Geometry and the imagination |
title_alt | Anschauliche Geometrie |
title_auth | Geometry and the imagination |
title_exact_search | Geometry and the imagination |
title_full | Geometry and the imagination D. Hilbert and S. Cohn-Vossen |
title_fullStr | Geometry and the imagination D. Hilbert and S. Cohn-Vossen |
title_full_unstemmed | Geometry and the imagination D. Hilbert and S. Cohn-Vossen |
title_short | Geometry and the imagination |
title_sort | geometry and the imagination |
topic | Nichteuklidische Geometrie swd Geometry, Non-Euclidean Geometrie (DE-588)4020236-7 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Nichteuklidische Geometrie Geometry, Non-Euclidean Geometrie Topologie Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018489361&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hilbertdavid anschaulichegeometrie AT cohnvossenstefan anschaulichegeometrie AT hilbertdavid geometryandtheimagination AT cohnvossenstefan geometryandtheimagination |