Biomedical engineering towards the year 2000 and beyond: Hong Kong SAR, China, October 29 - November 1, 1998 4 Instrumentation and sensors, brain and neural engineering
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
Piscataway, NJ
IEEE Operations Center
1998
|
Schriftenreihe: | Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society
20,4 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII S., S. 1681 - 2242, S. A-I - A-XI Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV024180118 | ||
003 | DE-604 | ||
005 | 20090910 | ||
007 | t | ||
008 | 090924s1998 ad|| |||| 00||| und d | ||
035 | |a (OCoLC)916135941 | ||
035 | |a (DE-599)BVBBV024180118 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | |a und | ||
049 | |a DE-83 | ||
245 | 1 | 0 | |a Biomedical engineering towards the year 2000 and beyond |b Hong Kong SAR, China, October 29 - November 1, 1998 |n 4 |p Instrumentation and sensors, brain and neural engineering |c ed. by H. K. Chang ... |
264 | 1 | |a Piscataway, NJ |b IEEE Operations Center |c 1998 | |
300 | |a XVIII S., S. 1681 - 2242, S. A-I - A-XI |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society |v 20,4 | |
490 | 0 | |a Proceedings of the ... annual international conference of the IEEE Engineering in Medicine and Biology Society |v 20 | |
700 | 1 | |a Chang, H. K. |4 edt | |
773 | 0 | 8 | |w (DE-604)BV024137992 |g 4 |
830 | 0 | |a Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society |v 20,4 |w (DE-604)BV024643382 |9 20,4 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018303631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018303631 |
Datensatz im Suchindex
_version_ | 1804140274213978112 |
---|---|
adam_text | CONTENTS BY PARTS
Pages
PART 1 Cardiovascular System
MS1.1 Modeling and Imaging of Cardiac Bioelectrical Activity 1-12
551 Bioacoustics Revisited 13-24
Theme 1 Cardiovascular System 25-531
PART 2 Imaging and Image Processing, Developing Areas
Theme 2 Imaging and Image Processing 532-1067
Theme 12 Developing Areas 1068-1089
PART 3 Biomedical Informatics, Biosignal Processing
MSB Virtual Auditory Displays 1090-1112
MS2 Biomedical Applications of Computational Intelligence 1113-1129
MS5 New Advances in Time-Frequency and Wavelets Methods 1130-1144
552 Hidden Markov Models in Biomedical Signal Processing 1145-1150
Theme 3 Biomedical Informatics 1151-1328
Theme 5 Biosignal Processing 1329-1680
PART 4 Instrumentation and Sensors, Brain and Neural Engineering
MSI.2 Modeling and Imaging of Brain Electrical Activity 1681-1691
MS12 Advanced Micro Instrumentation for Medicine and Biology 1692-1702
SS4 Application of Ultrashot Laser Pulses in Medicine and Biology 1703-1718
Theme 6 Instrumentation and Sensors 1719-1991
Theme 11 Brain and Neural Engineering 1992-2242
PART 5 Neuro-Muscular Systems Biomechanics
MS6 New Approaches in the Development of Motor Neuroprostheses 2243-2250
MS8.1 Innovative Techniques in Rehabilitation Engineering Research Applications I 2251-2272
MS8.2 Innovative Techniques in Rehabilitation Engineering Research Applications II 2273-2296
SS7 New Devices for Improved Functional Electrical Stimulation Systems 2297-2312
Theme 7 Neuro-Muscular Systems Biomechanics 2313-2778
PART 6 Cellular and Tissue Engineering, Physiological Systems: Modeling and Measurements,
Electromagnetic Interactions Issues, Clinical Engineering and Education
MSI 1 Biosensors and Biomedical Actuators 2779-2790
MS7 Biological Effects and Medical Applications of Electromagnetic Energy 2791-2801
MS9 Gastrointestinal Myoelectrical Activity and Pacing 2802-2811
Theme 4 Cellular and Tissue Engineering 2812-2990
Theme 8 Physiological Systems: Modeling and Measurements 2991-3241
Theme 9 Electromagnetic Interactions Issues 3242-3326
Theme 10 Clinical Engineering and Education 3327-3384
ix
OVERVIEW OF TECHNICAL PROGRAM
Part Pages
MS1.1 Modeling and Imaging of Cardiac Electrical Activity I 1-12
MS1.2 Modeling and Imaging of Brain Electrical Activity IV 1681-1691
MS2 Biomedical Applications of Computational Intelligence Ill 1113-1129
MS3 Collaborative Learning Approaches to Biomedical Engineering Education in
Computer-Aided Learning Environments of the 21st Century *
MS4 Neural Engineering - an Emerging Discipline *
MS5 New Advances In Time-Frequency And Wavelets Methods Ill 1130-1144
MS6 New Approaches in the Development of Motor Neuroprostheses V 2243-2250
MS7 Biological Effects and Medical Applications of Electromagnetic Energy VI 2791-2801
MS8.1 Innovative Techniques in Rehabilitation Engineering Research Applications I V 2251-2272
MS8.2 Innovative Techniques in Rehabilitation Engineering Research Applications II V 2273-2296
MS9 Gastrointestinal Myoelectrical Activity and Pacing VI 2802-2811
MS10 Cardiac Rhythms: from Single Beat to Chaos *
MS11 Biosensors and Biomedical Actuators VI 2779-2790
MS12 Advanced Micro Instrumentation for Medicine and Biology IV 1692-1702
MS13 Virtual Auditory Displays Ill 1090-1112
551 Bioacoustics Revisited I 13-24
552 Hidden Markov Models in Biomedical Signal Processing Ill 1145-1150
553 Articicial Arm and Micro-Surgical Robot Control *
554 Application of Ultrashot Laser Pulses in Medicine and Biology IV 1703-1718
555 Medical Ultrasonics *
556 Physiological Modeling and Identification I (Session 8.4.1) IV 3032-3055
557 New Devices for Improved Functional Electrical Stimulation Systems V 2297-2312
558 Chaos and Fractals I (Session 5.5.1) Ill 1553-1575
559 Fuzzy Logic and Hybrid Systems I (Session 5.2.1) Ill 1352-1374
Theme 1 Cardiovascular System
Track 1.1 Cardiac Electrical Activity I 25-97
Track 1.2 ECG Signal Analysis I 98-244
Track 1.3 Electrocardiotherapy I 245-270
Track 1.4 Heart Rate Variability I 271-366
Track 1.5 Cardiac Hemodynamics I 367-416
Track 1.6 Cardiac Mechanics **
Track 1.7 Cardiac Instrumentation I 417-467
Track 1.8 Cardiovascular Imaging I 468-519
Track 1.9 Other Cardiac Topics I 520-531
Theme 2 Imaging and Image Processing
Track 2.1 2D/3D Image Display Visualization II 532-597
Track 2.2 CT and MR Imaging II 598-706
Track 2.3 Radiographic Imaging II 707-751
Track 2.4 Nuclear Medicine Imaging II 752-774
Track 2.5 Ultrasound Imaging and Therapy II 775-875
Track 2.6 Optical/Infra-red Imaging II 876-1005
Track 2.7 Mammography II 1006-1027
Track 2.8 Impedance, Other Imaging Modalities II 1028-1067
Theme 3 Biomedical Informatics
Track 3.1 Telecommunication for Health Care Delivery HI 1151-1173
Track 3.2 Information Infrastructure in Health Care Ill 1174-1193
Track 3.3 High-Performance Biomedical Computing Ill 1194-1241
Track 3.4 Virtual Reality in Medicine and Surgery Ill 1242-1262
Track 3.5 Telemedicine and Teleradiology Ill 1263-1328
* No paper
** Merged with other tracks
x
Part Pages
Theme 4 Cellular and Tissue Engineering
Track 4.1 Biomembranes VI 2812-2857
Track 4.2 Cell-based Biosensors VI 2858-2878
Track 4.3 Artificial Organs **
Track 4.4 Biomaterials VI 2879-2934
Track 4.5 Tissue Engineering VI 2935-2990
Theme 5 Biosignal Processing
Track 5.1 Artificial Neural Networks Ill 1329-1351
Track 5.2 Fuzzy Logic Hybrid Intelligent Systems Ill 1352-1441
Track 5.3 Signal Visualization **
Track 5.4 Wavelets/Time-Frequency Analysis Ill 1442-1552
Track 5.5 Chaos and Fractals Ill 1553-1597
Track 5.6 High-order Statistics Ill 1598-1660
Track 5.7 Other Signal Analysis Techniques Ill 1661-1680
Theme 6 Instrumentation and Sensors
Track 6.1 Instrumentation IV 1719-1821
Track 6.2 Micro-Machined Sensors IV 1822-1844
Track 6.3 Lasers and Electro-optics IV 1845-1905
Track 6.4 Molecular Electronics **
Track 6.5 Data Acquisition Measurement Systems IV 1906-1969
Track 6.6 Geronetechnology IV 1970-1991
Theme 7 Neuro-Muscular Systems Biomechanics
Track 7.1 Posture, Gait and Locomotion V 2313-2429
Track 7.2 Ergonomics Human Performance Analysis V 2430-2459
Track 7.3 Orthopaedic Biomechanics V 2460-2523
Track 7.4 FES/Mobility Aids V 2524-2615
Track 7.5 Robotics Micro-Mechanical Devices **
Track 7.6 EMG/VMG Signal Analysis V 2616-2673
Track 7.7 Rehabilitation Engineering V 2674-2759
Track 7.8 Sport Medicine V 2760-2778
Theme 8 Physiological Systems: Modeling and Measurements
Track 8.1 Biocontrol **
Track 8.2 Bioelectric and Biophysical Phenomena VI 2991-3011
Track 8.3 Nonlinear Bio-dynamics VI 3012-3031
Track 8.4 Physiological Modeling Identification VI 3032-3125
Track 8.5 Speech, Hearing and Vision VI 3126-3194
Track 8.6 Respiratory System VI 3195-3226
Track 8.7 EGG Analysis and Modeling VI 3227-3241
Theme 9 Electromagnetic Interactions Issues
Track 9.1 Bioeffects of RF / Microwaves VI 3242-3264
Track 9.2 Bioeffects of Power Line EMF VI 3265-3287
Track 9.3 MRI Safety Issues VI 3288-3302
Track 9.4 Electromagnetic Absorption Modeling **
Track 9.5 Electromagnetic Healthcare Devices **
Track 9.6 EM Compatibility of Medical Devices VI 3303-3326
Theme 10 Clinical Engineering and Education
Track 10.1 Clinical Engineering **
Track 10.2 Technology Assessment VI 3327-3346
Track 10.3 Critical Care / Intelligent Monitoring **
Track 10.4 Education and Ethics VI 3347-3363
Track 10.5 Economics, Liability, Responsibility **
Track 10.6 Standardization and Safety VI 3364-3384
Theme 11 Brain and Neural Engineering
Track 11.1 Neural Information Processing and EEG Signal Processing IV 1992-2107
Track 11.2 Brain Electricity and Neuroimaging IV 2108-2196
Track 11.3 Magnetic Sensing MEG Mapping IV 2197-2220
Track 11.4 Instrumentation In Neurology IV 2221-2242
Theme 12 Developing Areas
Track 12.1 Biotechnology II 1068-1082
Track 12.2 Engineering in Alternative Medicine II 1083-1089
* No paper
** Merged with other tracks
xi
MINI-SYMPOSIA
MS1.2 Modeling and Imaging of Brain Electrical Activity MSl.2-1 Cortical Source Modeling and Imaging 1681
He B, University of Illinois, USA
MS1.2-2 EEG Dipole Tracing 1683
Musha T, Okamoto Y, Brain Functions Lab., Inc., Japan
MS1.2-3 Transcranial Magnetic Stimulation Combined with EEG: A New Brain Imaging Tool 1689
Ilmoniemi RJ, Karhu J, Ollikainen M, Naatanen R, Ruohonen J, Virtanen J, Tiitinen H, Ylostalo J, Katila T, Helsinki Univ.
Central Hospital, BioMag Lab., Finland
MS12 Advanced Micro Instrumentation for Medicine and Biology MS12-1 Microfluidics and Bioanalysis Systems : Issues and Examples 1692
Beebe DJ, Trumbull JD, Glasgow K, University of Illinois, USA
MS12-2 A Microsturcture for Interfacing with Neurons : the Neurochip 1698
Maher M, Wright J, Pine J, Tai YC, California Institute of Technology, USA
SPECIAL SESSIONS
SS4 Application of Ultrashort Laser Pulses in Medicine and Biology SS4-1 Tissue Ablation with 100-fs and 200-ps Laser Pulses 1703
Nishimura N, Schaffer CB, Li EH, Mazur E, The Univ. of Hong Kong, Hong Kong SAR
SS4-2 Detection Sensitivity Enhancements for Fluorescence Imaging with Multi-Photon Excitation Microscopy 1707
Wokosin DL, Amos B, White JG, DviR/Univ. WI, USA
SS4-3 Nanometer Imaging by Differential Confocal Microscopy and Its Applications in Biology 1715
Lee CH, Wang J, Guo CL, Institute of Atomic and Molecular Sciences, Taiwan, China
THEME 6: INSTRUMENTATION AND SENSORS
6.1.1 Acoustic and Elastic Measurement
6.1.1-1 An Improved Phonocardiographic Method for Fetal Heart Rate Monitoring 1719
Kovacs F, Torok M, Techn. University Budapest, Dept. EET, Hungary
6.1.1-2 Non-Invasive Blood Pressure Measurement Based on the Electronic Palpation Method 1723
Nissila S. Sorvisto M, Sorvoja H, Vieri-Gashi E, Myllyla R, University of Oulu, Finland
6.1.1-3 The Absolute Sensitivity Characteristics of Lung-Sound Transducers Coupled to Chest Wall 1727
Suzuki A, Nakayama K, Sophia University, Japan
6.1.1-4 Characterization of Improved Tactile Sensors Using Piezoelectric Resonator 1731
Maezawa M, Kuroda Y, Ohta R, Olympus Optical Co., Ltd., Japan
6.1.1-5 A Deforming Sensing Surface for Evaluaton of Contact Conditions 1735
Stone RSW, Tongpadungrod P, Brett PN, University of Bristol, UK
6.1.1-6 Haptic Display Able to Replicate the Rheological Behaviour of Surgical Tissues 1738
Scilingo EP. Bicchi A, De Rossi D, Iacconi P, Centre E. Piaggio , Italy
6.1.1-8 SAR and Temperature Distributions of Cylindrical Ultrasound Transducers for Intracavitary Hyperthermia 1742
Liang TC, Lin WL. Fan WC, Yen JY, Chen YY, Nat l Taiwan University, Taiwan, China
6.1.1-9 Heating Patterns of Cylindrical Ultrasound Transducers for Breast Tumors 1746
Ju KC. Chen YY, Yen JY, Cheng KS, Lin WL, Nat l Taiwan University, Taiwan, China
6.1.1-10 Development of Eye Pointer with Free Head-Motion 1750
Kuno Y, Yagi T, Uchikawa Y, Nagoya University, Japan
6.1.1-11 Electroporation Apparatus for Transdermal Drug Delivery 1753
Bao JL, Lang WQ, Hu QH, Gao JQ, Zhejiang Medical University, China
6.1.1-12 A Portable Bone Fracture Detector 1756
Singh K. Kurukshetra University. India
6.1.1-13 An Integrated Instrumentation Approach to the Study of Wound Healing 1760
Wertheim D. Melhuish J, Llewellyn M, Hoppe A, Williams R, Harding K, University of Glamorgan, UK
xii
6.1.1-14 A Rectal Ultrasound Probe Positioner for Prostate Brachytherapy 1762
Coles JR, Todd SP, Das KR, Peter MacCallum Cancer Institute, Australia
6.1.2 Chemical Measurements 6.1.2-1 Development of Noninvasive Procedure for Monitoring Blood Glucose Levels Using Saliva 1763
Yamaguchi M, Mitsumori M, Kano Y, Tokyo University of A T, Japan
6.1.2-2 A New Approach to Noninvasive Measurement of Blood Glucose using Saliva Analyzing System 1767
Mitsumori M, Yamaguchi M, Kano Y, Tokyo University of A T, Japan
6.1.2-3 A Numerical Analysis of Continous Glucose Monitoring Method Using A Microdialysis Technique 1771
Koseki K, Tamura T, Sumino T, Ogawa M, Togawa T, Tsuchiya K, Waseda University, Japan
6.1.2-4 Preliminary Study of Calibration-Free Continuous Glucose Monitoring with Microdialysis Technique 1775
Sumino T, Tamura T, Koseki K, Nawata M, Ogawa M, Togawa T, Tsuchiya K, Waseda Unviersity, Japan
6.1.2-5 Control and Safety Systems for the Microspheres Based Detoxification System 1779
Vogt G, Schrefl A, Schmidt C, Willinger M, Strobl W, Losert U, Schima H, Falkenhagen D, Danube-University of Krems,
Austria
6.1.3 Electronic and Electro-optical Sensors 6.1.3-1 In-Vitro Size Estimation of Protein Clots Generated by Brain Electrodes 1783
Eriksson O, Wardell K, Linkoping University, Sweden
6.1.3-2 Prototype Development of Digital Spirometer 1786
Lin CW, Wang DH, Wang HC, Wu HD, National Taiwan University, Taiwan, China
6.1.3-3 Non-Linear Transient Response of Electrode-Electrolyte Interfaces. 1789
McAdams ET, Jossinet J, University of Ulster, UK
6.1.3-4 Inductively Coupled Wideband Transceiver for Bioimpedance Spectroscopy (IBIS) 1791
Hutten H, Scharfetter H, Ninaus W, Puswald B, Petrova GI, Kovachev D, Technical University Graz, Austria
6.1.3-5 Development of A Miniaturized IV Drip Rate Meter Using Optical Sensors and Fuzzy Rule Based Detection 1795
Algorithm
Yang YS, Kim HC, Seoul National University, Korea
6.1.3-6 Fluorescence-Based Implantable Biosensors: Monte Carlo Modeling for Optical Probe Design 1799
McShane M, Rastegar S, Cote G, Texas A M University, USA
6.1.4 Instrumentation 6.1.4-1 An Adaptive Cradle for the Neonatal Growth 1803
Lu CH, Luo CH, Chen YJ, Yeh TF, National Cheng-Kung University, Taiwan, China
6.1.4-2 A New Subjective Visual Vertical Assessment System 1808
Cavalleri M, Reni G, Pozzoli U, Brambilla D, 1RCCS E. MEDEA, Italy
6.1.4-3 Development of An Automatic Blood Sampling System: Control of the Puncturing Needle by Measuring 1811
Forces
Okuno D, Togawa T, Saito H, Tsuchiya K, Waseda University, Japan
6.1.4-4 The Application of Cross-Correlation Method in Blood Flow Sonography 1813
Gao SK, Xu GF, Chen SG, Zeng LP, Tsinghua Unviversity , China
6.1.4-5 A Guided Acoustic Wave Method for Characterization of Medical Ultrasound Transducers 1816
Zhang R, Wan MX, Cao WW, Xi an Jiaotong University, China
6.1.4-6 A Squid Based AC Susceptometer with A Magnetising Field Improving the Sensitivity Profile 1818
Delia Penna SD, Del Gratta C, Di Luzio S, Pasquarelli A, Pizzella V, Pulvirenti I, Torquati K, Romani GL, G.D Annunzio
University, Italy
6.2.1 Micro-machined Sensors 6.2.1-1 Micro Motor Based A New Type of Endoscope 1822
Gao LM, Chen Y, Lin LM, Yan GZ, Shanghai Jiaotong University, China
6.2.1-2 Single-Unit Neural Recordings Using Active Microelectrodes 1826
Bai Q, Wise KD, The University of Michigan, USA
6.2.1-3 Acceleration - Type Cardiographic Sensor Using Amorphous Core 1830
Shimada 1, Kano Y, Tanaka H, Yamaguchi M, Tokyo University of A T, Japan
6.2.1-4 Development of Micromachined Electrochemical Sensor and Portable Meter System 1834
Lin CW, Jan CY, Chen OTC, Wang S, Kao T, National Taiwan University, Taiwan, China
6.2.1-5 Fluid Coupled Metallic Micromachined Needle Arrays 1837
Brazzle J, Papautsky I, Frazier AB, University of Utah. USA
6.2.1-6 Progress Towards A Smart Skin: Fabrication and Preliminary Testing 1841
Liu RH, Wang L, Beebe DJ, University of Illinois at Urbana-Champaign, USA
xiii
6.3.1 Spectroscopy 6.3.1-1 Screening of Therapeutical Drugs and Substances of Abuse in Human Body Fluids by Near-IR Laser Raman 1845
Spectroscopy
Qu J, Yau OL, Yau SF, Suria D, Wilson BC, Hong Kong University of Science Technology, Hong Kong SAR
6.3.1-2 Correction of the Influences of A Subcutaneous Fat Layer and Skin in A Near-Infrared Muscle Oximeter 1849
Niwayama M, Shiga T, Lin L, Kudo N, Takahashi M, Yamamoto K, Hokkaido University, Japan
6.3.1-3 Quantitation of Brain Oxygenation and Blood Volume Using A New Intensity Modulated NIR Instrument. 1851
Alford K, Wickramasinghe Y, El Haj AJ, Keele University, UK
6.3.1-4 Biochemical Sensors Based on Thin-Film Waveguide 1855
Minamitani H, Kim K, Matsumoto K, Keio University, Japan
6.3.1-5 A Novel Hybrid Reflectance Pulse Oximeter Sensor with Improved Linearity and General Applicability to 1858
Various Portions of the Body
Nogawa M, Kaiwa T, Takatani S, Yamagata University, Japan
6.3.2 Tissue Optics
6.3.2-1 Reduction of NIRS Near-Surface Sensitivity Using Two Detectors 1862
Himeno H, Fujii M, Suzuki A, Nakayama K, Sophia University, Japan
6.3.2-2 Influence of Adipose Tissue on Near Infrared Oxygenation Monitoring in Muscle 1864
Matsushita K, Okada E, Keio University, Japan
6.3.2-3 3-D Spatial Sensitivity Profiles of Head Model in Near-Infrared Spectrocspy 1868
Okada E, Keio University, Japan
6.3.2-4 Fiber-Optic Viscoelasticity Measurement System for Embryo : Gelatin Model Experiment 1871
Itoh H, Araia T, Kikuchia M, Morita N, Obara M, National Defense Medical College, Japan
6.3.2-5 Temperature Measurements by Thermal Radiation During ARF Excimer Laser Ablation with Gelatin Gel 1873
Ishihara M, Arai T, Kikuchi M, Nakano H, Obara M, National Defense Medical College, Japan
6.3.3 Blood Measurement 6.3.3-1 Pulse Profile Registration Using Self-Mixing in A Diode Laser 1875
Meigas K, Hinrikus H, Lass J, Kattai R, Tallinn Technical University, Estonia
6.3.3-2 ECG-Triggering of the Laser Doppler Perfusion Imaging Signal 1879
Wardell K, Eriksson O, Linkoping University, Sweden
6.3.3-3 An Impulse Response Flow Cytometric Technique for Blood Cell Characterisation - Instrumentation and 1881
Preliminary Evaluation
Liu Y, Abel EW, Belch JJF, Chen S, Unviersity of Portsmouth, UK
6.3.3-4 The Blood Cell Counting and Classification From Stationary Suspensions by Laser Light Scattering Method 1885
Yang Y, Zhang ZX, Yang XH, Jiang DZ, Xi an Jiaotong University, China
6.3.3-5 Plethysmography Measurements Using Short Current Pulses with Low Duty Cycle 1889
Santic A, Stritof T, Bilas V, University of Zagreb, Croatia
6.3.3-6 Computational Intelligence in Surgery and Diagnosis 1893
Micheli-Tzanakou E, Rutgers University, USA
6.3.4 Lasers Electro Optics
6.3.4-1 Optical Measurement of Glucose Levels in Scattering Media 1897
Yoon GW, Amerov AK, Jeon KJ, Kim JB, Kim YJ, Samsung, Korea
6.3.4-2 Indocyanine Green Enhanced Diode Laser Ablation for Porcine Gastric Wall with Ablation Depth 1900
Monitoring Using Scattering Light
Arai T, Hayashi T, Nakamura N, Hino S, Kikuchi M, Natl. Defense Med. Coll., Japan
6.3.4-3 A Pilot Study for Video-Based Dynamic Retinoscopy 1902
Ebisawa Y, Shizuoka University, Japan
6.5.1 Measurement Systems
6.5.1-1 The Ring Sensor: A New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring 1906
Rhee SW, Yang BH, Chang K, Asada H, Massachusetts Institute of Technology, USA
6.5.1-2 A PC-Based System for Long-Term Monitoring of Animal Activity 1910
Wu BM, Chan FHY, Lam FK. Lam MC, Poon PWF, Poon AMS, University of Hong Kong, Hong Kong SAR
6.5.1-3 The Development of Long-Term Ambulatory pH Monitoring System and Its Clinical Application 1914
Kong FL, Pan GT, Xia ZW, Chai HJ, Lin SR, Huang XM, Academia Sinica, China
xiv
6.5.1-4 An Ambulatory Physiological Monitor for Extended Use in Animal Welfare Studies 1917
Harris PJ, Henderson JD, Schaare PN, HortResearch TDG, New Zealand
6.5.1-5 A Multichannel Implantable Electronic System with TDM 1921
Wu DQ, Wang BH, Shanghai University, China
6.5.1-6 Advanced Medical Instrument-Oriented Operating System 1924
Liu MY, Wu Y, Ge JG, Zhejiang University, China
6.5.2 Long-term Monitoring 6.5.2-1 Design Consideration of A Multi-Function Otoacoustic Emission Measurement System 1928
Du MH , Chan FHY, Lam FK, Ren J, The University of Hong Kong, Hong Kong SAR
6.5.2-2 Application of Neural Networks to A Magnetic Measurement System for Mandibular Movement 1932
Akutagawa M, Kinouchi Y, Nagashino H, The University of Tokushima, Japan
6.5.2-3 Joint Motion Monitoring by Accelerometers Set at Both Near Sides Around the Joint 1936
Kurata S, Makikawa M, Kobayashi H, Takahashi A, Tokue R, Ritsumeikan University, Japan
6.5.2-4 Ultrasound Elastography of Articular Cartilage: A Preliminary Study 1940
Zheng YP, Mak AFT, Qin L, Ding CX, Hong Kong Polytechnic University, Hong Kong SAR
6.5.2-5 An Implantable Telemetry System Powered by A Capacitor Having High Capacitance 1943
Maki H, Yonezawa Y, Harada E, Ninomiya I, Hiroshima Institute of Technology, Japan
6.5.2-6 Fully Automated Biosignal Acquisition in Daily Routine Through 1 Month 1947
Ogawa M, Tamura T, Togawa T, Tokyo Medical and Dental Unviersity, Japan
6.5.3 Data Acquisition 6.5.3-1 A Recording and Analyzing System for Cutaneous Electrogastrography 1951
Wu HC, Wang SC, Young ST, Kuo TS, National Taiwan University, Taiwan, China
6.5.3-2 Effects of Anisotropy in Cornea Thermal Conductivity on Temperature Profiles in RF Thermokeratoplasty 1953
Berjano FJ, Saiz J, Ferrero JM, Alio JL, Univ. Politecnica Valencia, Spain
6.5.3-3 The UnEmap Project 1956
Martel S, Hunter P, Bullivant D, Lafontaine S, Hunter I, Massachusetts Institute of Technology, USA
6.5.3-4 A Study on the Integration and Synchronization of Video Image Using H.261 in Polysomnography 1960
Choi MH, Park HJ, Han JM , Jeong DU, Park KS, Seoul National University, Korea
6.5.3-5 Digitization of Electrocardiogram (ECG) Signals Using Delta-Sigma Modulation 1964
Leung SW, Zhang YT, Chinese University of Hong Kong, Hong Kong SAR
6.5.3-6 Automatic Body Temperature Control System for Small Animal Studies Using Dual Mode PI Control 1967
Kim HI, Kim HC, Yoon BW, Seoul National University, Korea
6.6.1 Gerontechnology
6.6.1-1 Improvement in Optic Target Detection and Reaction Time by Acoustic Stimulation: Comparison Between 1970
Elder and Young
Mitobe K, Akiyama T, Yoshimura N, Takahashi M, AKITA University, Japan
6.6.1-2 Automated Handling System for Excretion 1973
Fujimoto T, Hashimoto T, Sakai H, Higashi Y, Tamura T, Tsuji T, Fujimoto Hospital, Japan
6.6.1-3 Monitoring Behaviour in the Home Using Positioning Sensors 1977
Yamaguchi A, Ogawa M, Tamura T, Togawa T, Tokyo Medical and Dental University, Japan
6.6.1-4 DIANA-A Telecare System for Supporting Dementia Sufferers in the Community 1980
Doughty K, Williams G, King PJ, Woods R, University of Wales, Bangor, UK
6.6.1-5 Evaluation of Automated Health Monitoring System at the Welfare Techno House 1984
Kawarada A, Takagi T, Tsukada A, Sasaki K, Ishijima M, Tamura T, Togawa T, and Yamakoshi Kl, Toyama University, Japan
6.6.1-6 Terva: Wellness Monitoring System 1988
Korhonen I, Lappalainen R, Tuomisto T, Koobi T, Pentikainen V, Tuomisto M, Turjanmaa V, VTT Information Technology.
Finland
THEME 11: BRAIN AND NEURAL ENGINEERING
11.1.1 Evoked/Event Related Potentials 11.1.1-1 Analysis of Functional Components of P300 by Wavelet Transform 1992
Demiralp T, Istefanopulos Y, Ademoglu A, Yordanova J, Kolev V, Bogazici University, Turkey
XV
11.1.1-2 Relation Between Auditory Stimulus Intensity and Response of P300 with Eyes-Opened and Eyes-Closed 1996
State
Fukami T, Shina T, Ishikawa F, Saito Y, University of Tsukuba, Japan
11.1.1-3 Estimation of Evoked Potentials Using Segment Latency Corrected Average 2000
Lee YH, Lee DH, Kim YS, Lee DS, Kim SI, Hanyang University, Korea
11.1.1-4 Identification of Finger Flexions From Continuous EEG As A Brain Computer Interface 2004
Lisogurski D, Birch GE, The University of British Columbia, Canada
11.1.1-5 Adaptive Brain Interfaces for Physically-Disabled People 2008
Millan JdR, Mourino J, Marciani MG, Babiloni F, Topani F, Canale I, HeikJconen J, Kaski K, Joint Research Centre of the
European Commission, Italy
11.1.1-6 A Time-Frequency Analysis of the EEG Evoked by Negative and Positive Visual Stimuli 2012
Ryu CS, Song YS, Kim SH, Yi I, Kim JE, Sohn JH, ETRI, South Korea
11.1.2 EEG: Nonlinear/Chaotic Analysis 11.1.2-1 Injury Detection and Signal Discrimination of EEG by Higher Order Crossings 2016
Kong X, Qiu TS, Northern Illinois University, USA
11.1.2-2 Spectral Correlation of Action Potential Firing Rates After Hypoxic-Ischemic Brain Injury 2020
Muthuswamy J, Sherman DL, Hinich MJ, Hanley DF, Thakor NV, Johns Hopkins University, USA
11.1.2-3 Bispectrum Analysis of Focal Ischemic Cerebral EEG Signal 2023
Zhang JW, Zheng CX, Jiang DZ, Xie A, Zang YM, Xi an Jiaotong University, China
11.1.2-4 EEG Complexity Measurement of Focal Ischemic Cerebral Injury 2027
Zhang JW, Zheng CX, Jiang DZ, Xi an Jiaotong University, China
11.1.2-5 Chaotic Behavior in Two Hippocampal Models of Epilepsy 2030
Slutzky MW, Mogul DJ, Northwestern University, USA
11.1.2-6 Nonlinear Investigation of Developmental Changes of the ECoG Activity in Fetal Sheep 2034
Schmidt K, Schwab M, Kott M, Szeto HH, Friedrich Schiller University, Germany
11.1.3 EEG/EP Signal Processing 11.1.3-1 Blind Source Separation of EEG Data Using Matched Filters 2038
Kohler BU, Orglmeister R, B.-Flick B, TU Berlin, Germany
11.1.3-2 New Indices in Wavelet Coefficients Domain : Possible Use As Electrodiagnosis Indicators 2042
Zhao J, Xiao SJ, The Hong Kong Polytechnic University, Hong Kong SAR
11.1.3-3 Nonlinear Changes in Evoked Potentials During Recovery From Hypoxic-Ischemic Injury 2046
Sherman DL, Hinich MJ, Hanley DF, Thakor NV, Johns Hopkins University, USA
11.1.3-4 A New Adaptive Time Delay Estimation Algorithm with Local Variable Gain for Evoked Potential Latency 2050
Change Estimation
Kong X, Qiu TS, Northern Illinois University, USA
11.1.3-5 Latency Change Detection in Evoked Potentials by Direct Least Mean p-Norm Adaptive Time Delay 2054
Estimation
Qiu TS, Kong X, Northern Illinois University, USA
11.1.3-6 Feature Extraction in Development of Brain-Computer Interface: A Cast Study 2058
Polak M. Kostov A, University of Alberta, Canada
11.1.3-7 Integrated System for Analysis and Automatic Classification of Sleep EEG 2062
Pacheco OR, Vaz F, University of Aveiro, Portugal
11.1.4 Neural Networks
11.1.4-1 A Model of Cortical Neural Network Structure 2066
Togawa T, Otsuka K, Tokyo Medical Dental University, Japan
11.1.4-2 An EEG Spike Detection Algorithm Using Artiflcal Neural Network with Multi-Channel Correlation 2070
Ko CW, Lin YD, Chung HW, Jan GJ, National Taiwan University, Taiwan, China
11.1.4-3 Sleep Stage Diagnosis System with Neural Network Analysis 2074
Shimada T, Shiina T, Saito Y, University of Tsukuba, Japan
11.1.4-4 Automatic Detection of Epileptiform Activity Using Wavelet and Expert Rule Base 2078
Kim SB. Lee YH, Kim JH. Kim SI, Hanyang University, Korea
11.1.4-5 Prediction of Histopathological Outcome Using Averaged Multimodal Information in Rat 2082
Zhao WZ, Ginsberg MD. Belayev L, Truettner J, Schmidt-Kastner R, University of Miami School of Medicine, USA
11.1.4-6 The Relationship Between the Ability to Learn and Thiamine Concentration in the Nervous Tissue of Rats 2084
Terasawa M. Yoneyama T, Tsukada N, Nakahara T, Itokawa Y, Tamagawa University, Japan
xvi
11.1.5 Neural Stimulation and Modeling 11.1.5-1 A Study of A Rectifying Electrical Synapse Activated with A Random Action Potential Train 2088
Hu XL, Zhang YT, Bao JL, The Chinese University of Hong Kong, Hong Kong SAR
11.1.5-2 Approximate Entropy and Its Preliminary Application in the Field of EEG and Cognition 2091
Hong B, Yang FS, Tang QY, Chan TC, Tsinghua University, China
11.1.5-3 A Simulation Model and Its Identification for Transmission Mechanism of Pain Information 2095
Jiang GT, Chen J, Tongji University, China
11.1.5-4 Physiological Effects of Transcranial Electrical Stimulation of the Brain in Spontaneously Hypertensive Rat 2099
Hong B, Ju K, Kumada M, Ueno S, University of Tokyo, Japan
11.1.5-5 Breakdown Effects and Steady-State Visual Evoked Potentials in Short-Range Apparent Motion 2102
Tsuda R, Ueno S, Kyushu Tokai University, Japan
11.1.5-6 The Localization of Energized Coils Using MEG Sensors: Theory and Appliations 2104
De Munck JC, Verbunt JPA, van Dijk BW, MEG Center KNAW, The Netherlands
11.2.1 Functional Brain Imaging 11.2.1-1 The Laplacian Weighted Minimum Norm Estimate of Three Dimensional Equivalent Charge Distribution 2108
in the Brain
Yao DZ, He B, University of Dlinois at Chicago, USA
11.2.1-2 Inverse Calculations in EEG Source Analysis Applying the Finite Difference Method, Reciprocity and Lead 2112
Fields
Vanrumste B, Hoey GV, Boon P, D Have M, Lemahieu I, University of Ghent, Belgium
11.2.1-3 Enhancement of Epileptiform Activity in the EEG by 3-D Adaptive Spatial Filtering: Simulations and Real 2116
Data
Ward DM, Jones RD, Bones PJ, Carroll GJ, Canterbury Health Ltd and Univeristy of Otago, New Zealand
11.2.1-4 Magnetoencephalography and Functional MRI: A Quantitative Study of Speech Perception 2120
Roberts TPL, Poeppel D, Rowley HA, Univeristy California, San Francisco, USA
11.2.1-5 Visualizing Spatially Distributed Hemodynamic Lag Times in Event-Related Functional MRI: Estimation of 2124
A Characteristic Visual Impulse Response
Calhoun VD, Adali T, Kraut M, Rivkin P, Pearlson G, University of Maryland, USA
11.2.2 EEG Linear Inverse Imaging 11.2.2-1 High-Resolution ERD: Cortical Imaging of Event-Related Desynchronization During Motor Imagery 2128
Edlinger G, Prull A, Neuper C, Pfurtscheller G, Medical Informatics, Austria
11.2.2-2 Inward Continuation of the Scalp Potential Distribution by Means of the Vector BEM 2131
Bunk MJv, Mulder MC, Stinstra JG, Peters MJ, University of Twente, The Netherlands
11.2.2-3 Combined High Resolution EEG and Functional MRI Data for Modeling of Cortical Sources of Human 2135
Movement-Related Potentials
Babiloni F, Carducci F, Del Gratta C, Babiloni C, Roberti GM, Romani GL, Caltagirone C, Rossini PM, Urbano A, Univ. of
Rome La Sapienza, Italy
11.2.2-4 Local Maxima in EEG Tomographies and Their Relation to Multiple Point Sources 2139
Pflieger ME, Neuro Scan Labs, USA
11.2.2-5 Basic Limitations of Linear Inverse Solutions: A Case Study 2143
Rolando GdP, Gonzalez SL, Uni. Hosp. Geneva, Switzerland
11.2.2-6 Identifying the Neural Network Subserving Specific Brain Process 2147
Gonzalez Andino SL, Grave de Peralta R, Morand S, Brain Mapping Lab., Switzerland
11.2.3 EEG Inverse/Forward Problems 11.2.3-1 Combined High Resolution EEG and MEG Data for Linear Inverse Estimate of Human Event-Related 2151
Cortical Activity
Babiloni F, Del Gratta C, Carducci F, Babiloni C, Roberti GM, Pizzella V, Rossini PM. Romani GL. Urbano A. G D Annunzio
University, Italy
11.2.3-2 A New Method for Implementation of Regularization in Cortical Potential Imaging 2155
Lian J. Yao DZ, He B, UIC, USA
11.2.3-3 Combined Detection and Source Analysis of Epileptic EEG Spikes 2159
Van Hoey G, Vanrumste B , Boon P , D Have M, Van de Walle R. Lemahieu I, University of Ghent. Belgium
11.2.3-4 Single Dipole Source Localization From Conventional EEG Using BP Neural Networks 2163
Zhang QY, Yuasa M, Nagashino H, Kinouchi Y, The Univ. of Tokushima. Japan
11.2.3-5 A Pseudo-Conductivity Inhomogeneous Head Model for Computation of EEG 2167
Wen P. He FP, Sammut K, Flinders University, Australia
xvii
11.2.3-6 Numerical Estimation of Skull and Cortex Boundaries From Scalp Geometry. 2171
Haque HA, Musha T, Nakajima M, Graduate school of Inf. Science, Japan
11.2.4 EEG/EP Mapping
11.2.4-1 Spatial Analysis of Multi-Channel EEG Recordings Through A Fuzzy-Rule Based System in the Detection of 2175
Epileptiform Events
James C, Jones R, Bones P, Carroll G, Canterbury Health Ltd and University of Otag , New Zealand
11.2.4-2 A 3-Dimensional EEG Topography Based on the Polygon Technique 2179
Han IB, Lee YH, Kim JH, Lee DS, Hanyang University, Korea
11.2.4-3 A New Realistic Geometry Spline Laplacian Algorithm and Its Application to VEP 2183
Zhao FQ, Wu DN, Krumick G, Li Y, Wu DS, He B, University of Illinois, USA
11.2.4-4 Development of A Visual Stimulation System and Itsapplication to Visual Evoked Potentials 2186
Krumdick G, He B, University of Illinois at Chicago, USA
11.2.4-5 EEG Source Localization for Two Dipoles by Neural Networks 2190
Yuasa M, Zhang QY, Nagashino H, Kinouchi Y, The Univ. of Tokushima, Japan
11.2.4-6 Estimation of the Single Evoked Potential Using Dipole Transitional Pattern 2193
Fukami T, Mizuno R, Shiina T, Saito Y, University of Tsukuba, Japan
11.3.1 Magnetoencephalogram 11.3.1-1 Source Current Estimation of Brain Magnetic Field Evoked by Mental Rotation Task Using Minimum- 2197
Norm Method with Music Prescanning
Iwaki S, Ueno S, Imada T, Life Electronics Research Center, Japan
11.3.1-2 Detecting Activity From Deep Brain Areas with MEG Arrays 2201
Tesche CD, Helsinki University of Technology, Finland
11.3.1-3 Application of 3D MEG Measurement for Estimating Multiple Sources 2205
Uchikawa Y, Kobayashi K, Tokyo Denki University, Japan
11.3.1-4 Combination of MEG and FMRI for Neurosurgical Mapping of the Sensory and Motor Cortices 2209
Nakasato N, Inoue T, Takahashi A, Kanno A, Hatanaka K, Shimizu H, Kumabe T, Yoshimoto T, Tohoku Univ. School of
Medi., Japan
11.3.1-5 Odorant Perception and Active Olfaction: A Study of Olfactory Magnetic Fields Evoked by Odorant Pulse 2213
Stimuli Synchronized with Respiratory Cycle
Tonoike M, Yamaguchi M, Hamada T, Kaetsu I, Koizuka I, Seo R, Life Electronics Research Center, Japan
11.3.1-6 Improvement of S/N in Evoked Neuromagnetic Fields by Eliminating A Spontaneous Field Component 2217
Kobayashi T, Kuriki S, Hokkaido University, Japan
11.4.1 Neural Instrumentation and Sensors 11.4.1-1 Active Electrodes for EEG and Evoked Potential 2221
Ko WH, Case Western Reserve University, USA
11.4.1-2 Silicon Sieve Electrodes for Neural Implants - in Vitro Characterisation in Vivo Recordings 2225
Wallman L, Levinsson A, Schouengorg J, Holmberg H, Montelius L, Danielsen N, Laurell T, Lund University, Sweden
11.4.1-3 Porous Silicon As An Inherent Surface Enlarging Layer for Improved Electrode Performance in Stimulation 2229
and Recording Applications
Bengtsson M, Wallman L, Drott J, Laurell T, Lund University, Sweden
11.4.1-4 A 100 Channel Neural Stimulator for Excitation of Retinal Ganglion Cells 2232
Suaning GJ, Lovell NH, University of New South Wales, Australia
11.4.1-5 A Microelectrode Positioning System for Semiautomatically Tracking Neuronal Spikes 2236
Kaneko H, Suzuki SS, Tamura H, Takita M, Akamatsu M, Natl. Inst. of Biosci. and Human-tech, Japan
11.4.1 -6 Fast Measurement of SEP for Monitoring Spinal Cord During Scoliosis 2239
Fung KSM, Du MH, Liu WQ, Chan FHY, Urn FK, Luk DK, Hu Y, The University of Hong Kong, Hong Kong SAR
xviii
|
any_adam_object | 1 |
author2 | Chang, H. K. |
author2_role | edt |
author2_variant | h k c hk hkc |
author_facet | Chang, H. K. |
building | Verbundindex |
bvnumber | BV024180118 |
ctrlnum | (OCoLC)916135941 (DE-599)BVBBV024180118 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01541nam a2200301 cc4500</leader><controlfield tag="001">BV024180118</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090910 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s1998 ad|| |||| 00||| und d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)916135941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV024180118</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomedical engineering towards the year 2000 and beyond</subfield><subfield code="b">Hong Kong SAR, China, October 29 - November 1, 1998</subfield><subfield code="n">4</subfield><subfield code="p">Instrumentation and sensors, brain and neural engineering</subfield><subfield code="c">ed. by H. K. Chang ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Piscataway, NJ</subfield><subfield code="b">IEEE Operations Center</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII S., S. 1681 - 2242, S. A-I - A-XI</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society</subfield><subfield code="v">20,4</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Proceedings of the ... annual international conference of the IEEE Engineering in Medicine and Biology Society</subfield><subfield code="v">20</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, H. K.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV024137992</subfield><subfield code="g">4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society</subfield><subfield code="v">20,4</subfield><subfield code="w">(DE-604)BV024643382</subfield><subfield code="9">20,4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018303631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018303631</subfield></datafield></record></collection> |
id | DE-604.BV024180118 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:57:22Z |
institution | BVB |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018303631 |
oclc_num | 916135941 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | XVIII S., S. 1681 - 2242, S. A-I - A-XI Ill., graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | IEEE Operations Center |
record_format | marc |
series | Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society |
series2 | Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society Proceedings of the ... annual international conference of the IEEE Engineering in Medicine and Biology Society |
spelling | Biomedical engineering towards the year 2000 and beyond Hong Kong SAR, China, October 29 - November 1, 1998 4 Instrumentation and sensors, brain and neural engineering ed. by H. K. Chang ... Piscataway, NJ IEEE Operations Center 1998 XVIII S., S. 1681 - 2242, S. A-I - A-XI Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society 20,4 Proceedings of the ... annual international conference of the IEEE Engineering in Medicine and Biology Society 20 Chang, H. K. edt (DE-604)BV024137992 4 Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society 20,4 (DE-604)BV024643382 20,4 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018303631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Biomedical engineering towards the year 2000 and beyond Hong Kong SAR, China, October 29 - November 1, 1998 Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society |
title | Biomedical engineering towards the year 2000 and beyond Hong Kong SAR, China, October 29 - November 1, 1998 |
title_auth | Biomedical engineering towards the year 2000 and beyond Hong Kong SAR, China, October 29 - November 1, 1998 |
title_exact_search | Biomedical engineering towards the year 2000 and beyond Hong Kong SAR, China, October 29 - November 1, 1998 |
title_full | Biomedical engineering towards the year 2000 and beyond Hong Kong SAR, China, October 29 - November 1, 1998 4 Instrumentation and sensors, brain and neural engineering ed. by H. K. Chang ... |
title_fullStr | Biomedical engineering towards the year 2000 and beyond Hong Kong SAR, China, October 29 - November 1, 1998 4 Instrumentation and sensors, brain and neural engineering ed. by H. K. Chang ... |
title_full_unstemmed | Biomedical engineering towards the year 2000 and beyond Hong Kong SAR, China, October 29 - November 1, 1998 4 Instrumentation and sensors, brain and neural engineering ed. by H. K. Chang ... |
title_short | Biomedical engineering towards the year 2000 and beyond |
title_sort | biomedical engineering towards the year 2000 and beyond hong kong sar china october 29 november 1 1998 instrumentation and sensors brain and neural engineering |
title_sub | Hong Kong SAR, China, October 29 - November 1, 1998 |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018303631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV024137992 (DE-604)BV024643382 |
work_keys_str_mv | AT changhk biomedicalengineeringtowardstheyear2000andbeyondhongkongsarchinaoctober29november119984 |