The lightning flash:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Institution of Electrical Engineers
2003
|
Schriftenreihe: | IEE power and energy series
34 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 574 S. Ill., graph. Darst. |
ISBN: | 0852967802 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV024121345 | ||
003 | DE-604 | ||
005 | 20110513 | ||
007 | t | ||
008 | 090924s2003 ad|| |||| 00||| eng d | ||
020 | |a 0852967802 |9 0-85296-780-2 | ||
035 | |a (OCoLC)248499847 | ||
035 | |a (DE-599)BVBBV024121345 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-706 | ||
082 | 0 | |a 621.317 | |
084 | |a ZN 8430 |0 (DE-625)157619: |2 rvk | ||
245 | 1 | 0 | |a The lightning flash |c ed. by Vernon Cooray |
264 | 1 | |a London |b Institution of Electrical Engineers |c 2003 | |
300 | |a XIX, 574 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a IEE power and energy series |v 34 | |
650 | 0 | 7 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Blitz |0 (DE-588)4124914-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrische Entladung |0 (DE-588)4139646-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetismus |0 (DE-588)4014306-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Blitzschutz |0 (DE-588)4122941-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Blitz |0 (DE-588)4124914-8 |D s |
689 | 0 | 1 | |a Blitzschutz |0 (DE-588)4122941-1 |D s |
689 | 0 | 2 | |a Elektrische Entladung |0 (DE-588)4139646-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Blitz |0 (DE-588)4124914-8 |D s |
689 | 1 | 1 | |a Elektromagnetismus |0 (DE-588)4014306-5 |D s |
689 | 1 | 2 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Cooray, Vernon |d 1951- |0 (DE-588)1011783584 |4 edt | |
810 | 2 | |a Institution of Electrical Engineers |t IEE power engineering series |v 34 |w (DE-604)BV035421413 |9 34 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018338067&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018338067 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804140308618805248 |
---|---|
adam_text | THE LIGHTNING FLASH EDITED BY VERNON COORAY THE INSTITUTION OF
ELECTRICAL ENGINEERS CONTENTS PREFACE XXI ACKNOWLEDGEMENTS XXIII 1
CHARGE STRUCTURE AND GEOGRAPHICAL VARIATION OF THUNDERCLOUDS 1 EARLE
WILLIAMS 1.1 THE FORMATION OF CLOUDS 1 1.2 LOCAL CONDITIONS NECESSARY
FOR THUNDERCLOUDS 1 1.3 THE GROSS CHARGE STRUCTURE OF THUNDERCLOUDS 3
1.4 SPRITE-PRODUCING THUNDERCLOUDS: MESOSCALE CONVECTIVE SYSTEMS 5 1.5
GEOGRAPHICAL VARIABILITY OF THUNDERCLOUDS 6 1.5.1 ENVIRONMENTAL CONTROLS
6 1.5.2 TROPICAL THUNDERSTORMS 10 1.5.3 MIDLATITUDE THUNDERSTORMS 11
1.5.4 WINTER THUNDERSTORMS 12 1.6 REFERENCES 12 2 THUNDERSTORM
ELECTRIFICATION MECHANISMS 17 ROHAN JAYARATNE 2.1 INTRODUCTION 17 2.2
THE SUGGESTED MECHANISMS 19 19 21 23 23 24 24 25 25 27 30 31 32 38 40
2.3 2.4 2.5 2.6 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9
2.2.10 THE INDUCTIVE MECHANISM THE CONVECTIVE MECHANISM THE SELECTIVE
ION CAPTURE THEORY DROP BREAKUP THEORY MELTING OF ICE THE
WORKMAN-REYNOLDS EFFECT THE THERMOELECTRIC EFFECT SURFACE POTENTIAL
THEORIES THE QUASILIQUID LAYER THEORY CHARGING DUE TO THE FRAGMENTATION
OF ICE RIMING EXPERIMENTS DROPLET SIZE EFFECT EFFECT OF CHEMICAL
IMPURITIES REFERENCES VIII CONTENTS MECHANISM OF ELECTRICAL DISCHARGES
45 VERNON COORAY 3.1 INTRODUCTION 45 3.2 BASIC DEFINITIONS 45 3.2.1 MEAN
FREE PATH AND CROSS SECTION 45 3.2.2 DRIFT VELOCITY AND MOBILITY 46
3.2.3 THERMAL EQUILIBRIUM AND LOCAL THERMAL EQUILIBRIUM 48 3.3
IONISATION PROCESSES 49 3.3.1 IONISATION DUE TO ELECTRON IMPACT 49 3.3.2
PHOTOIONISATION 52 3.3.3 THERMAL IONISATION 53 3.3.4 IONISATION CAUSED
BY META-STABLE EXCITED ATOMS 55 3.3.5 IONISATION DUE TO POSITIVE IONS 55
3.4 DEIONISATION PROCESSES 56 3.4.1 ELECTRON-ION RECOMBINATION 56
3.4.1.1 RADIATIVE RECOMBINATION 57 3.4.1.2 DISSOCIATIVE RECOMBINATION 57
3.4.1.3 THREE-BODY RECOMBINATION 57 3.5 OTHER PROCESSES THAT CAN
INFLUENCE THE PROCESS OF IONISATION 57 3.5.1 ELECTRON ATTACHMENT AND
DETACHMENT 57 3.5.2 EXCITATION OF MOLECULAR VIBRATIONS 60 3.5.3
DIFFUSION 60 3.6 CATHODE PROCESSES 62 3.6.1 PHOTOELECTRIC EMISSION 62
3.6.2 THERMIONIC EMISSION 62 3.6.3 SCHOTTKY EFFECT 64 3.6.4 FIELD
EMISSION 65 3.6.5 INCIDENCE OF POSITIVE IONS 65 3.7 ELECTRICAL BREAKDOWN
66 3.7.1 ELECTRON AVALANCHE 68 3.7.2 THE SPACE CHARGE ELECTRIC FIELD DUE
TO AN AVALANCHE 69 3.7.3 FORMATION OF A STREAMER 70 3.7.4
CHARACTERISTICS OF THE STREAMERS 73 3.7.4.1 THE PHYSICAL PROCESSES
TAKING PLACE AT THE STREAMER HEAD AND ITS PROPAGATION 73 3.7.4.2
PROPAGATION OF THE STREAMER DISCHARGES 77 3.7.4.3 PHYSICAL PROPERTIES OF
THE POSITIVE STREAMER CHANNEL 78 3.7.4.4 CRITICAL BACKGROUND ELECTRIC
FIELD NECESSARY FOR STREAMER PROPAGATION 79 3.7.4.5 STREAMER SPEED 79
3.7.4.6 CURRENT IN THE STREAMER 79 3.7.4.7 POTENTIAL GRADIENT OF THE
STREAMER CHANNEL 80 3.7.4.8 CHARGE DISTRIBUTION ALONG THE STREAMER
CHANNEL 80 CONTENTS IX 3.7.5 STREAMER-TO-SPARK TRANSITION AND
THERMALISATION 82 3.7.6 ELECTRICAL BREAKDOWN CRITERION IN THE PRESENCE
OF STREAMER DISCHARGES 84 3.7.6.1 PLANE UNIFORM GAP 84 3.7.6.2
NONUNIFORM GAP 85 3.8 ELECTRICAL BREAKDOWN IN VERY SMALL GAPS -
TOWNSEND S BREAKDOWN MECHANISM 86 3.8.1 TOWNSEND S EXPERIMENT 86 3.8.2
TOWNSEND S THEORY OF ELECTRICAL BREAKDOWN 87 3.8.2.1 PRIMARY IONISATION
STAGE 88 3.8.2.2 SECONDARY IONISATION STAGE 88 3.8.2.3 TOWNSEND S
ELECTRICAL BREAKDOWN CRITERION 91 3.8.2.4 TOWNSEND S MECHANISM IN THE
PRESENCE OF ELECTRON ATTACHMENT 92 3.9 PASCHEN S LAW 93 3.9.1 PHYSICAL
INTERPRETATION OF THE SHAPE OF THE PASCHEN CURVE 95 3.9.2 VALIDITY OF
PASCHEN S LAW 96 3.10 VOLTAGE AND CURRENT (V-I) CHARACTERISTICS AND THE
POST BREAKDOWN STAGE (LOW PRESSURES) 96 97 98 99 100 100 103 104 3.12.1
NEGATIVE CORONA MODES 105 3.12.1.1 TRICHEL STREAMERS 106 3.12.1.2
NEGATIVE PULSELESS GLOW 107 3.12.1.3 NEGATIVE STREAMERS 107 3.12.2
POSITIVE CORONA MODES 107 3.12.2.1 BURST CORONA 107 3.12.2.2 ONSET
STREAMER 108 3.12.2.3 POSITIVE GLOW 109 3.12.2.4 BREAKDOWN STREAMERS 110
3.12.3 ELECTRICAL BREAKDOWN AND CORONA 110 3.13 DEPENDENCE OF ELECTRICAL
BREAKDOWN CONDITIONS ON ATMOSPHERIC CONDITIONS 110 3.14 STATISTICAL
NATURE OF ELECTRICAL BREAKDOWN 112 3.14.1 ELECTRICAL BREAKDOWN UNDER THE
APPLICATION OF IMPULSE VOLTAGES 113 3.14.2 STATISTICAL NATURE OF THE
ELECTRICAL BREAKDOWN 114 3.15 THE LONG SPARK 114 3.10.1 3.10.2 3.10.3
THE GLOW DISCHARGE 3.10.1.1 PHYSICAL EXPLANATION 3.10.1.2 THE EFFECT OF
CHANGING THE PRESSURE ABNORMAL GLOW THE GLOW TO ARC TRANSITION 3.11
RESISTANCE OF SPARK CHANNELS 3.12 CORONA DISCHARGES X CONTENTS 3.15.1
STREAMER-TO-LEADER TRANSITION AND THE INITIATION OF THE LEADER 114
3.15.2 GENERAL CHARACTERISTICS OF IMPULSE BREAKDOWN IN ROD-PLANE
3.15.2.1 3.15.2.2 3.15.2.3 3.15.2.4 3.15.2.5 3.15.2.6 3.15.2.7 HUMIDITY
EFFECTS GAPS POSITIVE BREAKDOWN NEGATIVE BREAKDOWN INCEPTION AND
CHARACTERISTICS OF FIRST CORONA LEADER VELOCITY THE POTENTIAL GRADIENT
OF THE LEADER CHANNEL THE FINAL JUMP THE CRITICAL RADIUS 115 115 117 119
120 121 121 122 123 3.16 3.16.1 CRITICAL ELECTRIC FIELD NECESSARY FOR
STREAMER PROPAGATION 123 3.16.2 INFLUENCE ON THE CORONA DEVELOPMENT AT
THE INITIATION OF LONG SPARKS 123 3.16.3 INFLUENCE ON LEADER PROPAGATION
124 3.17 REFERENCES 124 4 THE MECHANISM OF THE LIGHTNING FLASH 127
VERNON COORAY 4.1 INTRODUCTION 127 4.2 THE GROUND FLASH 127 4.3 THE
CLOUD FLASH 130 4.4 FREQUENCY OF LIGHTNING DISCHARGES 131 4.4.1 CLOUD TO
GROUND FLASH RATIO 132 4.4.2 GROUND FLASH DENSITY 132 4.4.3 TOTAL
LIGHTNING ACTIVITY 133 4.5 INCEPTION OF LIGHTNING DISCHARGES IN CLOUDS
133 4.5.1 INITIATION OF STREAMER DISCHARGES FROM A SINGLE WATER DROP 133
4.5.2 INITIATION OF STREAMER DISCHARGES BY A CHAIN OF WATER DROPS 135
4.5.3 CONDITIONS NECESSARY FOR THE STREAMER PROPAGATION AND STREAMER TO
LEADER TRANSITION 138 4.5.4 CONDITIONS NECESSARY FOR THE PROPAGATION OF
THE LEADER 139 4.5.5 CONDITIONS NECESSARY FOR LIGHTNING INITIATION - A
SUMMARY 139 4.5.6 THE RUNAWAY ELECTRON HYPOTHESIS 139 4.6 PHYSICAL
PROCESSES AND THE ELECTROMAGNETIC FIELDS OF GROUND FLASHES 140 CONTENTS
XI 4.6.1 PRELIMINARY BREAKDOWN PROCESS 140 4.6.1.1 ELECTROMAGNETIC
FIELDS AT GROUND LEVEL GENERATED BY THE PRELIMINARY BREAKDOWN PROCESS
140 4.6.1.2 DURATION OF THE PRELIMINARY BREAKDOWN PROCESS 142 4.6.1.3
LOCATION OF THE PRELIMINARY BREAKDOWN STAGE IN THE CLOUD 142 4.6.1.4
PHYSICAL NATURE OF THE PRELIMINARY BREAKDOWN PROCESS 143 4.6.2
STEPPEDLEADER 144 4.6.2.1 S TRUCTURE OF THE STEPPED LEADER 144 4.6.2.2
OPTICALLY DETERMINED PROPERTIES OF THE STEPPED LEADER 145 4.6.2.3 THE
ELECTRIC FIELD GENERATED BY THE STEPPED LEADER 146 4.6.2.4 LINEAR CHARGE
DENSITY AND THE TOTAL CHARGE OF THE LEADER CHANNEL 148 4.6.2.5 CHARGE
DISTRIBUTION ALONG THE LEADER CHANNEL 150 4.6.2.6 LEADER CURRENT 151
4.6.2.7 BIDIRECTIONAL AND UNIDIRECTIONAL LEADER CONCEPT 152 4.6.2.8
ENERGY DISSIPATION DURING THE LEADER STAGE 154 4.6.2.9 STEPPED LEADER AS
A SOURCE OF DISTURBANCE 154 4.6.2.10 INTERCEPTION OF THE STEPPED LEADER
AND GROUNDED STRUCTURES 155 4.6.3 RETURN STROKE 159 4.6.3.1 THE ORIGIN
OF THE RETURN STROKE 159 4.6.3.2 OPTICALLY DETERMINED PROPERTIES 159
4.6.3.3 CHARACTERISTICS OF THE OPTICAL RADIATION GENERATED BY THE RETURN
STROKE 161 4.6.3.4 THE PROPERTIES OF RETURN STROKE CURRENTS MEASURED AT
THE BASE OF THE CHANNEL 165 4.6.3.5 ELECTROMAGNETIC FIELDS GENERATED BY
RETURN STROKES 170 4.6.4 CONTINUING CURRENT 186 4.6.5 M COMPONENTS 186
4.6.5.1 ORIGIN INSIDE THE CLOUD 189 4.6.6 * CHANGES 189 4.6.6.1 ORIGIN
191 4.6.7 SUBSEQUENT STROKES 191 4.6.7.1 GENERAL PROPERTIES 191 4.6.8
DART LEADERS 192 4.6.8.1 OPTICALLY DETERMINED PROPERTIES 193 XII
CONTENTS 4.6.8.2 ORIGIN OF THE DART LEADER IN THE CLOUD 195 4.6.8.3
CURRENT AND CHARGE OF DART LEADERS 196 4.6.8.4 STATIC FIELDS GENERATED
BY DART LEADERS 196 4.6.8.5 RF RADIATION FROM DART LEADERS 196 4.6.8.6
THE PARAMETERS THAT CONTROL THE DART LEADER SPEED 197 4.6.8.7
CORRELATION BETWEEN PARAMETERS OF DART LEADERS AND RETURN STROKES 198
4.6.8.8 DART STEPPED LEADERS 199 4.6.8.9 CHAOTIC LEADERS 200 4.7
ELECTROMAGNETIC FIELDS GENERATED BY CLOUD FLASHES 201 4.7.1 GENERAL
FEATURES 201 4.7.2 RADIATION FIELD PULSE CHARACTERISTICS 202 4.7.2.1
LARGE BIPOLAR PULSES 203 4.7.2.2 BURSTS OF PULSES SIMILAR TO THE DART
STEPPED LEADER PULSES 203 4.7.2.3 NARROW ISOLATED PULSES 206 4.7.2.4
MICROSECOND SCALE PULSES WITH A SMOOTH RISE TO PEAK 207 4.8 THE
DIFFERENCE BETWEEN THE GROUND FLASHES AND CLOUD FLASHES 208 4.9 ENERGY
DISSIPATION IN RETURN STROKES AND LIGHTNING FLASHES 208 4.10 MEASURING
LIGHTNING-GENERATED ELECTRIC AND MAGNETIC FIELDS 212 4.10.1 ELECTRIC
FIELD MILL OR GENERATING VOLTMETER 212 4.10.2 PLATE OR WHIP ANTENNA 213
4.10.3 CROSSED LOOP ANTENNAS TO MEASURE THE MAGNETIC FIELD 217 4.11
DETECTION OF LIGHTNING FLASHES 219 4.11.1 LIGHTNING FLASH COUNTERS 220
4.11.2 MAGNETIC DIRECTION FINDING 221 4.11.3 TIME OF ARRIVAL TECHNIQUE:
VLF RANGE 222 4.11.4 TIME OF ARRIVAL TECHNIQUE: VHF RANGE 222 4.11.5 VHF
RADIO INTERFEROMETRY 223 4.12 REFERENCES 225 5 COMPUTATION OF
ELECTROMAGNETIC FIELDS FROM LIGHTNING DISCHARGE 241 RAJEEV THOTTAPPILLIL
5.1 ELECTROSTATICS AND MAGNETOSTATICS 241 5.1.1 ELECTROSTATIC FIELD FROM
A DIPOLE 241 5.1.2 MAGNETOSTATIC FIELD FROM A LINE CURRENT 243 5.2
TIME-VARYING FIELDS FROM LIGHTNING 244 5.2.1 INTRODUCTION 244 5.2.1.1
THREE APPROACHES FOR CALCULATING THE ELECTRIC FIELDS 245 5.3 TREATMENT
OF RETARDATION EFFECTS 246 5.4 FIELDS IN TERMS OF CURRENT (THE LORENTZ
CONDITION APPROACH) 248 CONTENTS XII I 5.5 FIELDS IN TERMS OF CURRENT
AND CHARGE (THE CONTINUITY EQUATION APPROACH) 252 5.6 NONUNIQUENESS OF
ELECTROSTATIC, INDUCTION AND RADIATION FIELD COMPONENTS 255 5.7 THE
CONTINUITY EQUATION 258 5.8 FIELDS IN TERMS OF APPARENT CHARGE
DISTRIBUTION 261 5.8.1 THEORY 262 5.8.1.1 GENERAL 262 5.8.1.2 RELATION
BETWEEN APPARENT CHARGE DENSITY AND RETARDED CURRENT 263 5.8.1.3 GENERAL
EXPRESSIONS FOR DIFFERENTIAL ELECTRIC AND MAGNETIC FIELDS 264 5.8.2
RETURN STROKE ELECTRIC AND MAGNETIC FIELDS 266 5.8.2.1 EXACT EXPRESSIONS
266 5.8.2.2 NUMERICAL ILLUSTRATION 268 5.8.2.3 EXPRESSION FOR ELECTRIC
FIELD AT AN ELEVATION 268 5.8.2.4 THE MOMENT APPROXIMATION 270 5.8.3
LEADER ELECTRIC FIELDS 271 5.8.3.1 EXACT EXPRESSIONS 271 5.8.3.2
ELECTROSTATIC APPROXIMATION 272 5.9 CALCULATION OF FIELDS FROM LIGHTNING
RETURN STROKE 273 5.9.1 BRUCE-GOLDE MODEL (BG) 274 5.9.2 TRAVELLING
CURRENT SOURCE MODEL (TCS) 274 5.9.3 DIENDORFER-UMAN MODEL (DU) 274
5.9.4 TRANSMISSION LINE MODEL (TL) 275 5.9.5 MODIFIED TRANSMISSION LINE
MODEL, LINEAR (MTLL) 275 5.9.6 MODIFIED TRANSMISSION LINE MODEL,
EXPONENTIAL (MTLE) 276 5.10 TRANSMISSION LINE MODEL OF THE RETURN STROKE
276 5.11 REFERENCES 277 MATHEMATICAL MODELLING OF RETURN STROKES 281
VERNON COORAY 6.1 INTRODUCTION 281 6.2 ELECTROTHERMODYNAMIC MODELS 283
6.3 TRANSMISSION LINE OR LCR MODELS 287 6.4 ENGINEERING AND SEMIPHYSICAL
MODELS 295 6.4.1 CURRENT PROPAGATION MODELS (CP MODELS) 295 296 297 298
6.4.1.1 6.4.1.2 6.4.1.3 6.4.1.4 NORINDER BRUCE AND GOLDE DENNIS AND
PIERCE UMAN AND MCLAIN MODEL (TLM) THE TRANSMISSION LINE 300 XIV
CONTENTS 6.4.1.5 NUCCI ET AL. [36] AND RAKOV AND DULZON [37] - MODIFIED
TRANSMISSION LINE MODELS (MTL) 302 6.4.2 CURRENT GENERATION MODELS (CG
MODELS) 307 6.4.2.1 THE RELATIONSHIP BETWEEN THE TRANSMISSION LINES AND
CURRENT GENERATION MODELS 307 6.4.2.2 MATHEMATICAL DERIVATION OF RETURN
STROKE CURRENT USING THE PRINCIPLES OF CURRENT GENERATION MODELS 308
6.4.2.3 WAGNER 311 6.4.2.4 LIN ET AL. 312 6.4.2.5 HEIDLER - TRAVELLING
CURRENT SOURCE MODEL 312 6.4.2.6 COORAY AND COLLABORATORS 315 6.4.2.7
DIENDORFER AND UMAN 350 6.5 RETURN STROKE SPEED 351 6.5.1 LUNDHOLM AND
WAGNER 353 6.5.2 RAI 355 6.5.3 COORAY 356 6.6 CURRENT PROPAGATION VERSUS
CURRENT GENERATION MODELS 361 6.6.1 THE CORONA CURRENT 361 6.6.2
MATHEMATICAL EXPRESSIONS FOR THE EQUIVALENT CORONA CURRENTS FOR CG
REPRESENTATION OF THREE COMMONLY APPLIED CP MODELS 362 6.6.2.1
TRANSMISSION LINE MODEL 362 6.6.2.2 MTLE MODEL 363 6.6.2.3 MTLL MODEL
363 6.7 REMOTE SENSING AND RETURN STROKE MODELS 363 6.8 THE FUTURE OF
RETURN STROKE MODELS 364 6.9 APPENDIX: ANALYTICAL EXPRESSION FOR THE
VELOCITY PROFILE AS PREDICTED BY THE SUBSEQUENT RETURN STROKE MODEL 1
365 6.10 REFERENCES 366 THE EFFECTS OF PROPAGATION ON ELECTRIC RADIATION
FIELDS 369 VERNON COORAY 7.1 INTRODUCTION 369 7.2 THEORY 370 7.2.1 BASIC
EQUATIONS 370 7.2.2 HOMOGENEOUS GROUND 372 7.2.2.1 A SIMPLIFIED EQUATION
TO CALCULATE PROPAGATION EFFECTS 372 7.2.2.2 EXPERIMENTAL VALIDATION OF
THE SIMPLIFIED EQUATION 373 7.2.3 STRATIFIED GROUND 374 7.2.4
PROPAGATION ALONG A MIXED PATH OF TWO SECTIONS 378 CONTENTS XV 7.2.5
PROPAGATION ACROSS A FINITELY CONDUCTING ROUGH OCEAN SURFACE 379 7.3
RESULTS 380 7.3.1 MATHEMATICAL PROCEDURE 380 7.3.2 HOMOGENEOUS GROUND
381 7.3.2.1 PROPAGATION EFFECTS ON RADIATION FIELDS OF THE FIRST RETURN
STROKES OF NEGATIVE AND POSITIVE LIGHTNING FLASHES 381 7.3.2.2 THE
EFFECT OF PROPAGATION ON THE TIME DERIVATIVE OF THE RADIATION FIELDS OF
NEGATIVE RETURN STROKES 385 7.3.3 THE EFFECT OF PROPAGATION ON TRIGGERED
RETURN STROKES 390 7.3.4 THE EFFECT OF PROPAGATION ON ELECTROMAGNETIC
FIELDS GENERATED BY CLOUD FLASHES 394 7.3.5 THE EFFECT OF A SEA-LAND
BOUNDARY ON PROPAGATION 398 7.3.6 THE EFFECT OF A ROUGH OCEAN ON
PROPAGATION 402 7.3.7 PROPAGATION OVER STRATIFIED GROUND 405 7.4
OBTAINING THE LIGHTNING-GENERATED ELECTROMAGNETIC FIELDS REQUIRED FOR
THE EVALUATION OF INDUCED VOLTAGES IN POWER DISTRIBUTION SYSTEMS 408
7.4.1 THE COORAY-RUBINSTEIN APPROXIMATION 415 7.4.2 ELECTROMAGNETIC
FIELDS UNDERGROUND 416 7.5 FUTURE RESEARCH WORK 420 7.6 REFERENCES 420 8
INTERACTION OF ELECTROMAGNETIC FIELDS GENERATED BY LIGHTNING WITH
OVERHEAD ELECTRICAL NETWORKS 425 CARLO ALBERTO NUCCI AND FARHAD RACHIDI
8.1 INTRODUCTION 425 8.2 FIELD-TO-TRANSMISSION LINE COUPLING MODELS 426
8.2.1 USE OF THE TRANSMISSION LINE THEORY 426 8.2.2 CASE OF SINGLE WIRE
LINE ABOVE A PERFECTLY CONDUCTING GROUND 427 8.2.3 AGRAWAL, PRICE, AND
GURBAXANI MODEL 428 8.2.4 TAYLOR SATTERWHITE, AND HARRISON MODEL 429
8.2.5 RACHIDI MODEL 429 8.2.6 CONTRIBUTION OF THE DIFFERENT COMPONENTS
OF THE ELECTROMAGNETIC FIELD IN THE COUPLING MECHANISM 430 8.2.7 OTHER
MODELS 433 8.2.8 INCLUSION OF LOSSES 434 8.2.9 DISCUSSION ON THE
RELATIVE IMPORTANCE OF DIFFERENT TRANSMISSION LINE PARAMETERS WHEN
CALCULATING LIGHTNING-INDUCED VOLTAGES 436 8.2.10 CASE OF MULTICONDUCTOR
LINES 438 XVI CONTENTS 8.2.11 TIME-DOMAIN REPRESENTATION OF COUPLING
EQUATIONS 440 8.2.12 EXPERIMENTAL VALIDATION OF THE
FIELD-TO-TRANSMISSION LINE COUPLING MODELS 441 8.2.12.1 NATURAL AND
TRIGGERED LIGHTNING EXPERIMENTS 442 8.2.12.2 EMP SIMULATORS 443 8.2.12.3
REDUCED SCALE MODELLING 443 8.3 LIGHTNING-INDUCED VOLTAGES ON OVERHEAD
POWER LINES 444 8.3.1 RETURN STROKE CURRENT MODEL, COMPUTATION OF THE
INCIDENT ELECTROMAGNETIC FIELD, AND COUPLING MODEL 444 8.3.2 MECHANISM
OF VOLTAGE INDUCTION BY A NEARBY LIGHTNING RETURN STROKE ON AN OVERHEAD
LINE 446 8.3.3 PRELIMINARY REMARKS ON THE INFLUENCE OF THE GROUND
RESISTIVITY ON THE INDUCED VOLTAGES 449 8.3.4 SENSITIVITY ANALYSIS AND
DISCUSSION 451 8.3.4.1 CHANNEL BASE CURRENT AND RETURN STROKE SPEED 452
8.3.4.2 GROUND ELECTRICAL PARAMETERS 453 8.3.4.3 LINE CONFIGURATION AND
STROKE LOCATION 453 8.3.4.4 INFLUENCE OF CHANNEL BASE CURRENT: STROKE
LOCATION A 453 8.3.4.5 INFLUENCE OF CHANNEL BASE CURRENT: STROKE
LOCATION * 456 8.3.4.6 INFLUENCE OF LINE HEIGHT 459 8.3.4.7
MULTICONDUCTOR LINES 459 8.3.4.8 INFLUENCE OF LINE LENGTH 460 8.3.4.9
INFLUENCE OF THE POSITION OF THE STROKE LOCATION WITH RESPECT TO THE
LINE AND OBSERVATION POINT 461 8.3.4.10 INFLUENCE OF RETURN STROKE SPEED
462 8.3.4.11 INFLUENCE OF DISTANCE OF THE STROKE LOCATION TO THE LINE
462 8.3.4.12 COMPARISON WITH THE RESULTS OBTAINED USING THE SIMPLIFIED
RUSCK FORMULA 462 8.3.5 INFLUENCE OF ADDITIONAL FACTORS (DOWNWARD
LEADER, CORONA, CHANNEL INCLINATION AND TORTUOSITY) 465 8.3.5.1 DOWNWARD
LEADER ELECTROMAGNETIC FIELD CHANGE 465 8.3.5.2 EFFECT OF CORONA 466
8.3.5.3 CHANNEL INCLINATION AND TORTUOSITY 468 8.3.6 APPLICATION TO
REALISTIC CASES: USE OF THE LIOV-EMTP 469 8.4 REFERENCES 471 CONTENTS
XVII 9 LIGHTNING AND EMC 479 MICHEL IANOZ 9.1 INTRODUCTION 479 9.2 SHORT
OVERVIEW OF EMC HISTORY 480 9.3 LIGHTNING AS A DISTURBANCE SOURCE 481
9.4 TYPES OF COUPLING BETWEEN LIGHTNING AND CIRCUITS OR INSTALLATIONS
482 9.4.1 COUPLING MODES 482 9.4.2 EFFECTS DUE TO CONDUCTIVE COUPLING
483 9.4.3 CALCULATION OF THE AVERAGE NUMBER OF LIGHTNING STROKES PER
YEAR ON A OVERHEAD LINE 484 9.4.4 EFFECTS DUE TO ELECTROMAGNETIC FIELD
COUPLING 485 9.4.4.1 DIRECT STROKES ON A BUILDING 485 9.4.4.2 LIGHTNING
STROKE NEAR A BUILDING 487 9.5 TYPICAL EMC PROBLEMS DUE TO LIGHTNING 488
9.5.1 LIGHTNING EFFECTS IN POWER NETWORKS 488 9.5.2 LIGHTNING EFFECTS ON
POWER NETWORK SUBSTATION EQUIPMENT 490 9.5.3 LIGHTNING EFFECTS ON
TELECOMMUNICATION NETWORKS 492 9.5.4 LIGHTNING EFFECTS ON LOW-VOLTAGE
POWER NETWORKS 492 9.5.5 LIGHTNING EFFECTS ON AIRCRAFTS 493 9.6 SPECIFIC
EMC LIGHTNING PROTECTION PARAMETERS 495 9.6.1 GENERAL 495 9.6.2 PEAK
CURRENT 497 9.6.3 PEAK CURRENT DERIVATIVE 497 9.6.4 PEAK RATE OF CHANGE
OF VOLTAGE 497 9.6.5 TOTAL CHARGE 498 9.6.6 THE ACTION INTEGRAL:
INTEGRAL I 2 X DT 498 9.6.7 TIME TO HALF VALUE OF THE CURRENT 498 9.6.8
CONCLUSIONS ON LEMP AND FAST TRANSIENTS PROTECTION COMPARISON 498 9.7
SPECIFIC EMC LIGHTNING PROTECTION CONCEPTS 499 9.7.1 GENERAL EMC
PROTECTION CONCEPTS 499 9.7.2 SUPPRESSORS 500 9.7.3 SHIELDED CAGES 501
9.8 REFERENCES 501 10 PRINCIPLES OF PROTECTION OF STRUCTURES AGAINST
LIGHTNING 503 CARLO MAZZETTI 10.1 PARAMETERS OF LIGHTNING CURRENT 504
10.2 CLASSIFICATION OF STRUCTURES 504 10.3 DAMAGE DUE TO LIGHTNING 505
10.3.1 EFFECTS OF LIGHTNING 505 10.3.2 CAUSES AND TYPES OF DAMAGE 506
10.3.3 TYPES OF LOSS 507 XVIII CONTENTS 10.4 RISK 507 10.4.1 NUMBER OF
FLASHES 508 10.4.2 PROBABILITY OF DAMAGE 509 10.4.3 AMOUNT OF LOSS 509
10.4.4 RISK COMPONENTS 510 10.4.5 TOLERABLE VALUE OF RISK 511 10.4.5.1
PROCEDURE FOR SELECTION OF PROTECTION MEASURES 511 10.4.5.2 PROTECTION
MEASURES 512 10.5 BASIC CRITERIA OF PROTECTION 512 10.5.1 PROTECTION OF
STRUCTURES AGAINST PHYSICAL DAMAGES AND LIFE HAZARD 512 10.5.2
PROTECTION OF ELECTRICAL AND ELECTRONIC SYSTEMS WITHIN THE STRUCTURE
AGAINST LIGHTNING ELECTROMAGNETIC IMPULSE (LEMP) 513 10.5.3 PROTECTION
OF SERVICES ENTERING THE STRUCTURE 515 10.6 PROTECTION BY MEANS OF SPD
516 10.7 MAIN FEATURES OF LIGHTNING PROTECTION SYSTEM (LPS) 517 10.7.1
EXTERNAL LIGHTNING PROTECTION SYSTEM 517 10.7.2 POSITIONING OF THE AIR
TERMINATION SYSTEM 518 10.7.2.1 PRINCIPLES OF POSITIONING 518 10.7.2.2
TYPES OF AIR TERMINATION SYSTEM 519 10.7.3 DOWN CONDUCTOR SYSTEMS 521
10.7.4 PROTECTION MEASURES AGAINST TOUCH AND STEP VOLTAGES 522 10.7.5
EARTH TERMINATION SYSTEM 523 10.7.5.1 PRINCIPLES OF DESIGN 523 10.7.5.2
EARTHING ARRANGEMENT IN GENERAL CONDITIONS 526 10.7.6 MATERIALS AND
DIMENSIONS 529 10.8 INTERNAL LIGHTNING PROTECTION SYSTEM 530 10.8.1
GENERAL 530 10.8.2 LIGHTNING EQUIPOTENTIAL BONDING 530 10.8.3 ELECTRICAL
INSULATION OF THE EXTERNAL LPS 531 10.9 SHIELDING 532 10.10 MAINTENANCE
AND INSPECTION OF LPS 532 10.11 ANNEX A: PARAMETERS OF LIGHTNING CURRENT
532 10.11.1 LIGHTNING FLASHES TO EARTH 532 10.11.2 LIGHTNING CURRENT
PARAMETERS 534 10.11.3 MAXIMUM LIGHTNING CURRENT PARAMETERS USED FOR
DIMENSIONING LIGHTNING PROTECTION SYSTEMS 539 10.11.3.1 FIRST SHORT
STROKE AND LONG STROKE 540 10.11.3.2 SUBSEQUENT SHORT STROKE 543 10.11.4
MINIMUM LIGHTNING CURRENT PARAMETERS USED FOR INTERCEPTION EFFICIENCY OF
AIR TERMINALS 543 CONTENTS XIX 10.12 ANNEX B: MODELS FOR THE EVALUATION
OF LIGHTNING EXPOSURE OF STRUCTURES AND INTERCEPTION PROBABILITY OF AIR
TERMINALS 543 10.12* EIECTROGEOMTTRIC MODE 543 10.12.2 IMPROVED
ELECTROGEOMETRIC MODEL 544 10.12.3 GENERALISED LEADER INCEPTION MODEL
545 10.12.4 LEADER PROGRESSION MODEL 545 10.13 REFERENCES 545 549 549
549 551 552 552 553 553 553 553 553 556 557 557 559 561 563 563 11
ELECTRICAL ASPECTS OF LIGHTNING STRIKE TO HUMANS CHRIS ANDREWS 11.1 11.2
11.3 11.4 11.5 11.6 11.7 11.8 11.9 INTRODUCTION STRIKE MECHANISMS
EXPERIMENTAL PARALLELS IMPORTANT FACTORS PROPOSED SHOCK MECHANISM
RESULTS 11.6.1 IN THE FIELD STRIKE 11.6.1.1 BODY MODEL 11.6.1.2 EARTH
RESISTANCE COMPONENT 11.6.1.3 DIRECT STRIKE - NO FLASHOVER 11.6.1.4
DIRECT STRIKE WITH FLASHOVER 11.6.1.5 HEATING CONSIDERATIONS 11.6.2 EPR
MEDIATED SHOCK 11.6.3 TELEPHONE-MEDIATED STRIKE EXPERIMENTAL SUPPORT
CONCLUSION REFERENCES INDEX 565
|
any_adam_object | 1 |
author2 | Cooray, Vernon 1951- |
author2_role | edt |
author2_variant | v c vc |
author_GND | (DE-588)1011783584 |
author_facet | Cooray, Vernon 1951- |
building | Verbundindex |
bvnumber | BV024121345 |
classification_rvk | ZN 8430 |
ctrlnum | (OCoLC)248499847 (DE-599)BVBBV024121345 |
dewey-full | 621.317 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.317 |
dewey-search | 621.317 |
dewey-sort | 3621.317 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02011nam a2200481 cb4500</leader><controlfield tag="001">BV024121345</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110513 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2003 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0852967802</subfield><subfield code="9">0-85296-780-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248499847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV024121345</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.317</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8430</subfield><subfield code="0">(DE-625)157619:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The lightning flash</subfield><subfield code="c">ed. by Vernon Cooray</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Institution of Electrical Engineers</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 574 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IEE power and energy series</subfield><subfield code="v">34</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Blitz</subfield><subfield code="0">(DE-588)4124914-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrische Entladung</subfield><subfield code="0">(DE-588)4139646-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetismus</subfield><subfield code="0">(DE-588)4014306-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Blitzschutz</subfield><subfield code="0">(DE-588)4122941-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Blitz</subfield><subfield code="0">(DE-588)4124914-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Blitzschutz</subfield><subfield code="0">(DE-588)4122941-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elektrische Entladung</subfield><subfield code="0">(DE-588)4139646-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Blitz</subfield><subfield code="0">(DE-588)4124914-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Elektromagnetismus</subfield><subfield code="0">(DE-588)4014306-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cooray, Vernon</subfield><subfield code="d">1951-</subfield><subfield code="0">(DE-588)1011783584</subfield><subfield code="4">edt</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Institution of Electrical Engineers</subfield><subfield code="t">IEE power engineering series</subfield><subfield code="v">34</subfield><subfield code="w">(DE-604)BV035421413</subfield><subfield code="9">34</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018338067&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018338067</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV024121345 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:57:55Z |
institution | BVB |
isbn | 0852967802 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018338067 |
oclc_num | 248499847 |
open_access_boolean | |
owner | DE-83 DE-706 |
owner_facet | DE-83 DE-706 |
physical | XIX, 574 S. Ill., graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Institution of Electrical Engineers |
record_format | marc |
series2 | IEE power and energy series |
spelling | The lightning flash ed. by Vernon Cooray London Institution of Electrical Engineers 2003 XIX, 574 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier IEE power and energy series 34 Elektromagnetisches Feld (DE-588)4014305-3 gnd rswk-swf Blitz (DE-588)4124914-8 gnd rswk-swf Elektrische Entladung (DE-588)4139646-7 gnd rswk-swf Elektromagnetismus (DE-588)4014306-5 gnd rswk-swf Blitzschutz (DE-588)4122941-1 gnd rswk-swf Blitz (DE-588)4124914-8 s Blitzschutz (DE-588)4122941-1 s Elektrische Entladung (DE-588)4139646-7 s DE-604 Elektromagnetismus (DE-588)4014306-5 s Elektromagnetisches Feld (DE-588)4014305-3 s 1\p DE-604 Cooray, Vernon 1951- (DE-588)1011783584 edt Institution of Electrical Engineers IEE power engineering series 34 (DE-604)BV035421413 34 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018338067&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | The lightning flash Elektromagnetisches Feld (DE-588)4014305-3 gnd Blitz (DE-588)4124914-8 gnd Elektrische Entladung (DE-588)4139646-7 gnd Elektromagnetismus (DE-588)4014306-5 gnd Blitzschutz (DE-588)4122941-1 gnd |
subject_GND | (DE-588)4014305-3 (DE-588)4124914-8 (DE-588)4139646-7 (DE-588)4014306-5 (DE-588)4122941-1 |
title | The lightning flash |
title_auth | The lightning flash |
title_exact_search | The lightning flash |
title_full | The lightning flash ed. by Vernon Cooray |
title_fullStr | The lightning flash ed. by Vernon Cooray |
title_full_unstemmed | The lightning flash ed. by Vernon Cooray |
title_short | The lightning flash |
title_sort | the lightning flash |
topic | Elektromagnetisches Feld (DE-588)4014305-3 gnd Blitz (DE-588)4124914-8 gnd Elektrische Entladung (DE-588)4139646-7 gnd Elektromagnetismus (DE-588)4014306-5 gnd Blitzschutz (DE-588)4122941-1 gnd |
topic_facet | Elektromagnetisches Feld Blitz Elektrische Entladung Elektromagnetismus Blitzschutz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018338067&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035421413 |
work_keys_str_mv | AT coorayvernon thelightningflash |