Principles of laser materials processing:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2009
|
Schriftenreihe: | Wiley series on processing of engineering materials
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | XXVI, 819 S. Ill., graph. Darst. |
ISBN: | 9780470177983 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023805523 | ||
003 | DE-604 | ||
005 | 20090701 | ||
007 | t | ||
008 | 090423s2009 ad|| |||| 00||| eng d | ||
020 | |a 9780470177983 |9 978-0-470-17798-3 | ||
035 | |a (OCoLC)230180435 | ||
035 | |a (DE-599)BVBBV023805523 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-29T |a DE-703 |a DE-1050 | ||
050 | 0 | |a TA1675 | |
082 | 0 | |a 621.36/6 |2 22 | |
084 | |a UH 5750 |0 (DE-625)145705: |2 rvk | ||
100 | 1 | |a Kannatey-Asibu, Elijah |e Verfasser |4 aut | |
245 | 1 | 0 | |a Principles of laser materials processing |c Elijah Kannatey-Asibu, Jr. |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2009 | |
300 | |a XXVI, 819 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Wiley series on processing of engineering materials | |
650 | 4 | |a Lasers |x Industrial applications | |
650 | 4 | |a Materials science | |
650 | 0 | 7 | |a Laserbearbeitung |0 (DE-588)4139080-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoff |0 (DE-588)4065579-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Werkstoff |0 (DE-588)4065579-9 |D s |
689 | 0 | 1 | |a Laserbearbeitung |0 (DE-588)4139080-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017447698&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017447698&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017447698 |
Datensatz im Suchindex
_version_ | 1804139005159145472 |
---|---|
adam_text | Coverage of the most recent
advancements and applications in
laser materials processing
This book provides state-of-the-art coverage of the field of laser materials process¬
ing, from fundamentals to applications to the latest research topics. The content
is divided into three succinct parts:
•
Principles of laser engineering
—
an introduction to the basic concepts and
characteristics or lasers, design of their components, and beam delivery
•
Engineering background
—
a review of engineering concepts needed to
analyze different processes: thermal analysis and fluid flow; solidification of
molten metal; and residual stresses that evolve during processes
•
Laser materials processing
—
a rigorous and detailed treatment of laser
materials processing and its principle applications, including laser cutting and
drilling, welding, surface modification, laser forming, and rapid prototyping
Each chapter includes an outline, summary, and example sets to help readers
reinforce their understanding of the material. This book is designed to pre¬
pare graduate students who will be entering industry; researchers interested in
initiating a research program; and practicing engineers who need to stay abreast
of the latest developments in this rapidly evolving field.
ELIJAH KANNATEY-ASIBU Jr., PhD, received his BSc from the
Kwame Nkrumah
Universit}
of Science and Technology, Kumasi, Ghana, in
1974
and his PhD from the University of California at Berkeley in
1980.
He has
been with the Mechanical Engineering Department at the
Universit}
of Michigan
in Ann Arbor since
1983.
Dr. Kannatey-Asibus research focuses on multisensor
monitoring of manufacturing processes, multiple-beam laser processing, acoustic
emission investigation of manufacturing processes, and
microfabrication
using
femtosecond lasers. He is a Fellow of the Society of Manufacturing Engineers and
of the American Society or Mechanical Engineers.
PRINCIPLES OF LASER MATERIALS PROCESSING ELIJAH KANNATEY-ASIBU, JR.
WILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS PREFACE XXV PARTI
PRINCIPLES OF INDUSTRIAL LASERS 1 1 LASER GENERATION 3 1 .1 BASIC ATOMIC
STRUCTURE 3 1.2 ATOMIC TRANSITIONS 7 1.2.1 SELECTION RULES 7 1.2.2
POPULATION DISTRIBUTION 8 1.2.3 ABSORPTION 8 1.2.4 SPONTANEOUS EMISSION
9 1.2.5 STIMULATED EMISSION 10 1.2.6 EINSTEIN COEFFICIENTS: A E ,5I2,AE2I
11 1.3 LIFETIME 13 1.4 OPTICAL ABSORPTION 14 1.5 POPULATION INVERSION 17
1.6 THRESHOLD GAIN 18 1.7 TWO-PHOTON ABSORPTION 21 1.8 SUMMARY 23
REFERENCES 24 APPENDIX 1A 24 PROBLEMS 25 2 OPTICAL RESONATORS 26 2.1
STANDING WAVES IN A RECTANGULAR CAVITY 26 2.2 PLANAR RESONATORS 33 2.2.1
BEAM MODES 34 2.2.1.1 LONGITUDINAL MODES 35 2.2.1.2 TRANSVERSE MODES 36
2.2.2 LINE SELECTION 38 VII VILI CONTENTS 2.2.3 MODE SELECTION 39
2.2.3.1 TRANSVERSE MODE SELECTION 39 2.2.3.2 LONGITUDINAL MODE SELECTION
40 2.3 CONFOCAL RESONATORS 43 2.4 GENERALIZED SPHERICAL RESONATORS 48
2.5 CONCENTRIC RESONATORS 49 2.6 STABILITY OF OPTICAL RESONATORS 51 2.7
SUMMARY 56 APPENDIX 2A 56 PROBLEMS 57 3 LASER PUMPING 63 3.1 OPTICAL
PUMPING 63 3.1.1 ARC OR FLASH LAMP PUMPING 63 3.1.2 DIODE LASER PUMPING
65 3.1.2.1 LONGITUDINAL PUMPING 65 3.1.2.2 TRANSVERSE PUMPING 65 3.1.3
PUMPING EFFICIENCY 66 3.1.4 ENERGY DISTRIBUTION IN THE ACTIVE MEDIUM 66
3.2 ELECTRICAL PUMPING 68 3.3 SUMMARY 70 4 RATE EQUATIONS 71 4.1
TWO-LEVEL SYSTEM 71 4.2 THREE-LEVEL SYSTEM 73 4.3 FOUR-LEVEL SYSTEM 76
4.4 SUMMARY 79 APPENDIX 4A 80 PROBLEMS 80 5 BROADENING MECHANISMS 83 5.1
LINE-SHAPE FUNCTION 83 5.2 LINE-BROADENING MECHANISMS 84 5.2.1
HOMOGENEOUS BROADENING 84 5.2.1.1 NATURAL BROADENING 84 5.2.1.2
COLLISION BROADENING 86 5.2.2 INHOMOGENEOUS BROADENING 89 5.3 COMPARISON
OF INDIVIDUAL MECHANISMS 90 CONTENTS 5.4 SUMMARY 92 APPENDIX 5 A 93
PROBLEMS 93 6 BEAM MODIFICATION 96 6.1 QUALITY FACTOR 96 6.2 Q-SWITCHING
99 6.2.1 MECHANICAL SHUTTERS 100 6.2.2 ELECTRO-OPTIC SHUTTERS 101 6.2.3
ACOUSTO-OPTIC SHUTTERS 103 6.2.4 PASSIVE SHUTTERS 103 6.3 Q-SWITCHING
THEORY 104 6.4 MODE-LOCKING 107 6.4.1 ACTIVE MODE LOCKING 111 6.4.2
PASSIVE MODE-LOCKING 112 6.5 LASER SPIKING 113 6.6 LAMB DIP 114 6.7
SUMMARY 115 APPENDIX 6A 116 PROBLEMS 116 7 BEAM CHARACTERISTICS 118 7.1
BEAM DIVERGENCE 118 7.2 MONOCHROMATICITY 121 7.3 BEAM COHERENCE 122
7.3.1 SPATIAL COHERENCE 122 7.3.2 TEMPORAL COHERENCE 125 7.4 INTENSITY
AND BRIGHTNESS 128 7.5 FREQUENCY STABILIZATION 128 7.6 BEAM SIZE 129 7.7
FOCUSING 130 7.8 RADIATION PRESSURE 131 7.9 SUMMARY 131 REFERENCES 132
APPENDIX 7A 132 PROBLEMS 133 X CONTENTS 8 TYPES OF LASERS 135 8.1
SOLID-STATE LASERS 136 8.1.1 THE RUBY LASER 136 8.1.2 NEODYMIUM LASERS
138 8.1.2.1 THE ND:YAG LASER 139 8.1.2.2 THE ND:GLASS LASER 139 8.2 GAS
LASERS 139 8.2.1 NEUTRAL ATOM LASERS 140 8.2.2 ION LASERS 142 8.2.3
METAL VAPOR LASERS 144 8.2.4 MOLECULAR GAS LASERS 146 8.2.4.1
VIBRATIONAL-ROTATIONAL LASERS 147 8.2.4.2 VIBRONIC LASERS 155 8.2.4.3
EXCIMER LASERS 156 8.3 DYE LASERS 158 8.4 SEMICONDUCTOR (DIODE) LASERS
160 8.4.1 SEMICONDUCTOR BACKGROUND 161 8.4.2 SEMICONDUCTOR LASERS 164
8.4.3 SEMICONDUCTOR LASER TYPES 170 8.4.3.1 HOMOJUNCTION LASERS 170
8.4.3.2 HETEROJUNCTION LASERS 170 8.4.3.3 QUANTUM WELL LASERS 172 8.4.4
LOW-POWER DIODE LASERS 172 8.4.5 HIGH-POWER DIODE LASERS 172 8.4.6
APPLICATIONS OF HIGH-POWER DIODE LASERS 174 8.5 FREE ELECTRON LASER 174
8.6 NEW DEVELOPMENTS IN INDUSTRIAL LASER TECHNOLOGY 176 8.6.1 SLAB
LASERS 176 8.6.2 DISK LASERS 177 8.6.3 ULTRAFAST (FEMTOSECOND) LASERS
178 8.6.4 FIBER LASERS 180 8.7 SUMMARY 182 REFERENCES 183 APPENDIX 8A
184 APPENDIX 8B 184 APPENDIX 8C 185 PROBLEMS 186 CONTENTS XI 9 BEAM
DELIVERY 188 9.1 THE ELECTROMAGNETIC SPECTRUM 188 9.2 REFLECTION AND
REFRACTION 189 9.2.1 REFLECTION 189 9.2.2 REFRACTION 190 9.3
BIREFRINGENCE 191 9.4 BREWSTER ANGLE 192 9.5 POLARIZATION 194 9.6
MIRRORS AND LENSES 200 9.7 BEAM EXPANDERS 202 9.8 BEAM SPLITTERS 204 9.9
BEAM DELIVERY SYSTEMS 205 9.9.1 CONVENTIONAL SYSTEMS 205 9.9.2 FIBER
OPTIC SYSTEMS 207 9.9.2.1 OPTICAL FIBER CHARACTERISTICS 208 9.9.2.2
WAVEGUIDE STRUCTURE 208 9.9.2.3 BACKGROUND 209 9.9.2.4 FIBER TYPES 210
9.9.2.5 BEAM DEGRADATION 212 9.9.2.6 APPLICATION OF OPTICAL FIBERS IN
HIGH-POWER LASER SYSTEMS 220 9.10 SUMMARY 221 REFERENCES 222 APPENDIX 9A
223 PROBLEMS 224 PART II ENGINEERING BACKGROUND 229 10 HEAT AND FLUID
FLOW 231 10.1 ENERGY BALANCE DURING PROCESSING 231 10.2 HEAT FLOW IN THE
WORKPIECE 232 10.2.1 TEMPERATURE DISTRIBUTION 232 10.2.1.1 THICK PLATE
WITH POINT HEAT SOURCE (THREE DIMENSIONAL) 236 10.2.1.2 THIN PLATE WITH
LINE HEAT SOURCE (TWO DIMENSIONAL) 238 XII CONTENTS 10.2.2 PEAK
TEMPERATURES 245 10.2.3 COOLING RATES 247 10.2.4 THERMAL CYCLES 252
10.2.5 GAUSSIAN HEAT SOURCE 253 10.2.6 THE TWO-TEMPERATURE MODEL 255
10.3 FLUID FLOW IN MOLTEN POOL 259 10.3.1 CONTINUITY EQUATION 260 10.3.2
NAVIER-STOKES EQUATIONS 261 10.3.3 SURFACE TENSION EFFECT 262 10.3.4
FREE SURFACE MODELING 265 10.4 SUMMARY 266 REFERENCES 267 APPENDIX 10A
269 APPENDIX 10B DERIVATION OF EQUATION (10.2A) 270 APPENDIX 10C MOVING
HEAT SOURCE 271 APPENDIX 10D 272 APPENDIX 10E 273 APPENDIX 10F 274
APPENDIX 10G 275 PROBLEMS 277 11 THE MICROSTRUCTURE 281 11.1 PROCESS
MICROSTRUCTURE 281 11.1.1 FUSION ZONE 282 11.1.1.1 INITIAL
SOLIDIFICATION 282 11.1.1.2 MICROSTRUCTURE 291 11.1.1.3 NUCLEATION AND
GRAIN REFINEMENT IN MOLTEN POOL 299 11.1.1.4 CORING 300 11.1.2 ZONE OF
PARTIAL MELTING 302 11.1.3 HEAT-AFFECTED ZONE 302 11.1.3.1 PURE METALS
303 11.1.3.2 PRECIPITATION-HARDENING AND NONFERROUS ALLOYS 305 11.1.3.3
STEELS 306 11.2 DISCONTINUITIES 311 11.2.1 POROSITY 312 11.2.2 CRACKING
314 CONTENTS XIII 11.2.2.1 HOT CRACKING 316 11.2.2.2 LIQUATION CRACKING
319 11.2.2.3 COLD CRACKING 319 11.2.2.4 REHEAT CRACKING 324 11.2.2.5
LAMELLAR TEARING 325 11.2.3 LACK OF FUSION 325 11.2.4 INCOMPLETE
PENETRATION 326 11.2.5 UNDERCUT 326 11.3 SUMMARY 327 REFERENCES 328
APPENDIX 11A 329 PROBLEMS 330 12 SOLIDIFICATION 334 12.1 SOLIDIFICATION
WITHOUT FLOW 334 12.1.1 SOLIDIFICATION OF A PURE METAL 334 12.1.2
SOLIDIFICATION OF A BINARY ALLOY 336 12.1.2.1 TEMPERATURE AND
CONCENTRATION VARIATION IN A SOLIDIFYING ALLOY 336 12.1.2.2 INTERFACE
STABILITY THEORIES 337 12.1.2.3 MUSHY ZONE 341 12.2 SOLIDIFICATION WITH
FLOW 344 12.2.1 MUSHY FLUID 346 12.2.2 COLUMNAR DENDRITIC STRUCTURE 348
12.3 RAPID SOLIDIFICATION 349 12.4 SUMMARY 351 REFERENCES 352 APPENDIX
12A 353 APPENDIX 12B CRITERION FOR SOLIDIFICATION OF AN ALLOY 354
PROBLEMS 360 13 RESIDUAL STRESSES AND DISTORTION 361 13.1 CAUSES OF
RESIDUAL STRESSES 361 13.1.1 THERMAL STRESSES 361 13.1.2 NONUNIFORM
PLASTIC DEFORMATION 366 13.2 BASIC STRESS ANALYSIS 368 13.2.1
EQUILIBRIUM CONDITIONS 370 13.2.2 STRAIN-DISPLACEMENT RELATIONS 371
CONTENTS 13.2.3 STRESS-STRAIN RELATIONS 372 13.2.3.1 LINEAR ELASTIC
BEHAVIOR 372 13.2.3.2 PLASTIC FLOW OF METALS 373 13.2.3.3
ELASTIC-PLASTIC CONDITIONS 374 13.2.4 PLANE STRESS AND PLANE STRAIN 375
13.2.4.1 PLANE STRESS 375 13.2.4.2 PLANE STRAIN 375 13.2.4.3 PLANE
STRESS/PLANE STRAIN EQUATIONS 377 13.2.4.4 COMPATIBILITY EQUATION 377
13.2.4.5 STRESS-STRAIN RELATIONS FOR PLANE STRESS/PLANE STRAIN 378
13.2.5 SOLUTION METHODS 378 13.3 EFFECTS OF RESIDUAL STRESSES 379 13.3.1
APPARENT CHANGE IN STRENGTH 380 13.3.2 DISTORTION 381 13.4 MEASUREMENT
OF RESIDUAL STRESSES 383 13.4.1 STRESS RELAXATION TECHNIQUES 383
13.4.1.1 SECTIONING TECHNIQUE 384 13.4.1.2 DRILLING TECHNIQUE 384
13.4.1.3 STRAIN ANALYSIS 384 13.4.2 X-RAY DIFFRACTION TECHNIQUE 389
13.4.2.1 PRINCIPLE OF THE X-RAY DIFFRACTION TECHNIQUE 389 13.4.2.2 THE
FILM TECHNIQUE 391 13.4.2.3 THE DIFFRACTOMETER TECHNIQUE 392 13.4.3
NEUTRON DIFFRACTION TECHNIQUE 392 13.4.4 RESIDUAL STRESS EQUILIBRIUM 394
13.5 RELIEF OF RESIDUAL STRESSES AND DISTORTION 395 13.5.1 THERMAL
TREATMENTS 396 13.5.1.1 PREHEATING 396 13.5.1.2 POSTHEATING 396 13.5.2
MECHANICAL TREATMENTS 396 13.5.2.1 PEENING 397 13.5.2.2 PROOF STRESSING
397 13.5.2.3 VIBRATORY STRESS RELIEF 397 13.6 SUMMARY 397 CONTENTS XV
REFERENCES 398 APPENDIX 13A 399 APPENDIX 13B 400 PROBLEMS 400 PART III
LASER MATERIALS PROCESSING 407 14 BACKGROUND ON LASER PROCESSING 409
14.1 SYSTEM-RELATED PARAMETERS 409 14.1.1 POWER AND POWER DENSITY 410
14.1.2 WAVELENGTH ANDFOCUSING 410 14.1.2.1 DETERMINING THE FOCAL
POSITION 412 14.1.2.2 DEPTH OF FOCUS 412 14.1.3 BEAM MODE 413 14.1.4
BEAM FORM 414 14.1.5 BEAM QUALITY 416 14.1.6 BEAM ABSORPTION 417
14.1.6.1 MEASUREMENT OF ABSORPTIVITY 420 14.1.6.2 BEAM-PLASMA
INTERACTION 421 14.1.7 BEAM ALIGNMENT 422 14.1.8 MOTION UNIT 424 14.2
PROCESS EFFICIENCY 424 14.3 DISTURBANCES THAT AFFECT PROCESS QUALITY 426
14.4 GENERAL ADVANTAGES AND DISADVANTAGES OF LASER PROCESSING 427 14.4.1
ADVANTAGES 427 14.4.2 DISADVANTAGES 427 14.5 SUMMARY 428 REFERENCES 429
APPENDIX 14A 429 PROBLEMS 430 15 LASER CUTTING AND DRILLING 431 15.1
LASER CUTTING 432 15.1.1 FORMS OF LASER CUTTING 432 15.1.1.1 FUSION
CUTTING 432 15.1.1.2 SUBLIMATION CUTTING 432 15.1.1.3 PHOTOCHEMICAL
ABLATION 433 XVI CONTENTS 15.1.2 COMPONENTS OF A LASER CUTTING SYSTEM
433 15.1.3 PROCESSING CONDITIONS 434 15.1.3.1 BEAM POWER 435 15.1.3.2
BEAM CHARACTERISTICS 435 15.1.3.3 TRAVERSE SPEED 437 15.1.3.4 ASSIST GAS
FUNCTIONS 438 15.1.3.5 EFFECT OF FOCAL POSITION 443 15.1.4 LASER CUTTING
PRINCIPLES 443 15.1.4.1 BEAM ABSORPTION DURING LASER CUTTING 444
15.1.4.2 PROCESS MODELING 447 15.1.5 QUALITY OF CUT PART 453 15.1.5.1
STRIATIONS OF THE CUT SURFACE 453 15.1.5.2 DROSS FORMATION 455 15.1.6
MATERIAL CONSIDERATIONS 456 15.1.6.1 METALS 457 15.1.6.2 NONMETALS 460
15.1.7 ADVANTAGES AND DISADVANTAGES OF LASER CUTTING 464 15.1.7.1
ADVANTAGES 464 15.1.7.2 DISADVANTAGES 464 15.1.8 SPECIFIC COMPARISON
WITH CONVENTIONAL PROCESSES 465 15.1.8.1 LASER, PLASMA ARC, AND
OXYACETYLENE (OXY-FUEL) CUTTING 465 15.1.8.2 LASER CUTTING AND
ELECTRICAL DISCHARGE MACHINING 466 15.1.8.3 LASER CUTTING AND ABRASIVE
WATERJET MACHINING 466 15.1.8.4 LASER CUTTING AND PUNCHING/NIBBLING 466
15.1.9 SPECIAL TECHNIQUES 467 15.2 LASER DRILLING 468 15.2.1 FORMS OF
LASER DRILLING 468 15.2.1.1 SINGLE-PULSE DRILLING 468 15.2.1.2
MULTIPULSE PERCUSSION DRILLING 469 15.2.1.3 TREPANNING 470 15.2.2
PROCESS PARAMETERS 470 15.2.2.1 BEAM CHARACTERISTICS 470 15.2.2.2
DRILLING CHARACTERISTICS 471 15.2.2.3 PROCESS DEFECTS 471 CONTENTS XVUE
15.2.3 ANALYSIS OF MATERIAL REMOVAL DURING DRILLING 472 15.2.3.1 BASIC
ANALYSIS 473 15.2.3.2 APPROXIMATE ANALYSIS 478 15.2.4 ADVANTAGES AND
DISADVANTAGES OF LASER DRILLING 483 15.2.4.1 ADVANTAGES 483 15.2.4.2
DISADVANTAGES 483 15.2.5 APPLICATIONS 484 15.3 NEW DEVELOPMENTS 484
15.3.1 MICROMACHINING 484 15.3.1.1 TRANSPARENT DIELECTRIC MATERIALS 485
15.3.1.2 METALS AND SEMICONDUCTORS 486 15.3.2 LASER-ASSISTED MACHINING
489 15.4 SUMMARY 492 REFERENCES 493 APPENDIX 15 A 498 PROBLEMS 499 LASER
WELDING 502 16.1 LASER WELDING PARAMETERS 502 16.1.1 BEAM POWER AND
TRAVERSE SPEED 503 16.1.2 EFFECT OF BEAM CHARACTERISTICS 505 16.1.2.1
BEAM MODE 505 16.1.2.2 BEAM STABILITY 505 16.1.2.3 BEAM POLARIZATION 505
16.1.2.4 PULSED BEAMS 505 16.1.3 PLASMA FORMATION, GAS SHIELDING, AND
EFFECT OF AMBIENT PRESSURE 506 16.1.3.1 PLASMA FORMATION 506 16.1.3.2
GAS SHIELDING 508 16.1.3.3 EFFECT OF AMBIENT PRESSURE 511 16.1.4 BEAM
SIZE AND FOCAL POINT LOCATION 511 16.1.5 JOINT CONFIGURATION 512 16.2
WELDING EFFICIENCY 514 16.3 MECHANISM OF LASER WELDING 515 16.3.1
CONDUCTION MODE WELDING 515 16.3.2 KEYHOLE WELDING 516 16.3.2.1 POWER
ABSORPTION IN THE KEYHOLE 519 16.3.2.2 KEYHOLE CHARACTERISTICS 521 XVIII
CONTENTS 16.4 MATERIAL CONSIDERATIONS 528 16.4.1 STEELS 529 16.4.2
NONFERROUS ALLOYS 529 16.4.3 CERAMIC MATERIALS 531 16.4.4 DISSIMILAR
METALS 532 16.5 WELDMENT DISCONTINUITIES 532 16.5.1 POROSITY 532 16.5.2
HUMPING 533 16.5.3 SPIKING 533 16.6 ADVANTAGES AND DISADVANTAGES OF
LASER WELDING 534 16.6.1 ADVANTAGES 534 16.6.2 DISADVANTAGES 535 16.7
SPECIAL TECHNIQUES 535 16.7.1 MULTIPLE-BEAM WELDING 535 16.7.1.1
MULTIPLE-BEAM PREHEATING AND POSTWELD HEAT TREATMENT 535 16.7.1.2
MULTIPLE-BEAM FLOW CONTROL 540 16.7.2 ARC-AUGMENTED LASER WELDING 545
16.8 SPECIFIC APPLICATIONS 547 16.8.1 MICROWELDING 547 16.8.2
LASER-WELDED TAILORED BLANKS 547 16.8.2.1 ADVANTAGES OF TAILORED BLANK
WELDING 548 16.8.2.2 DISADVANTAGES OF TAILORED BLANK WELDING 549
16.8.2.3 APPLICATIONS OF LASER-WELDED TAILORED BLANKS 550 16.8.2.4
FORMABILITY OF TAILOR-WELDED BLANKS 551 16.8.2.5 LIMITING THICKNESS OR
STRENGTH RATIO 556 16.9 SUMMARY 559 REFERENCES 560 APPENDIX 16A 563
PROBLEMS 565 17 LASER SURFACE MODIFICATION 568 17.1 LASER SURFACE HEAT
TREATMENT 568 17.1.1 IMPORTANT CRITERIA 570 17.1.2 KEY PROCESS
PARAMETERS 570 17.1.2.1 BEAM POWER, SIZE, SPEED, AND SHIELDING GAS 570
CONTENTS XIX 17.1.2.2 BEAM MODE 571 17.1.2.3 BEAM ABSORPTION 577
17.1.2.4 INITIAL WORKPIECE MICROSTRUCTURE 579 17.1.3 TEMPERATURE FIELD
580 17.1.4 MICROSTRUCTURAL CHANGES IN STEELS 581 17.1.4.1 PEARLITE
DISSOLUTION 581 17.1.4.2 AUSTENITE HOMOGENIZATION 585 17.1.4.3
TRANSFORMATION TO MARTENSITE 586 17.1.5 NONFERROUS ALLOYS 588 17.1.5.1
SOLUTION TREATMENT 589 17.1.5.2 AGING 589 17.1.6 HARDNESS VARIATION 589
17.1.7 RESIDUAL STRESSES 592 17.1.8 ADVANTAGES AND DISADVANTAGES OF
LASER SURFACE TREATMENT 592 17.1.8.1 ADVANTAGES 592 17.1.8.2
DISADVANTAGES 593 17.2 LASER SURFACE MELTING 594 17.3 LASER DIRECT METAL
DEPOSITION 595 17.3.1 PROCESSING PARAMETERS 596 17.3.2 METHODS FOR
APPLYING THE COATING MATERIAL 596 17.3.3 DILUTION 600 17.3.4 ADVANTAGES
AND DISADVANTAGES OF LASER CLADDING 601 17.3.4.1 ADVANTAGES 601 17.3.4.2
DISADVANTAGES 601 17.4 LASER PHYSICAL VAPOR DEPOSITION (LPVD) 601 17.5
LASER SHOCK PEENING 603 17.5.1 BACKGROUND ANALYSIS 605 17.5.2 ADVANTAGES
AND DISADVANTAGES OF LASER SHOCK PEENING 608 17.5.2.1 ADVANTAGES 608
17.5.2.2 DISADVANTAGES 608 17.6 SUMMARY 608 REFERENCES 609 APPENDIX 17A
612 APPENDIX 17B 613 PROBLEMS 614 XX CONTENTS 18 LASER FORMING 616 18.1
PRINCIPLE OF LASER FORMING 616 18.2 PROCESS PARAMETERS 618 18.3 LASER
FORMING MECHANISMS 619 18.3.1 TEMPERATURE GRADIENT MECHANISM 619 18.3.2
BUCKLING MECHANISM 620 18.3.3 UPSETTING MECHANISM 622 18.3.4 SUMMARY OF
THE FORMING MECHANISMS 623 18.4 PROCESS ANALYSIS 624 18.5 ADVANTAGES AND
DISADVANTAGES 629 18.5.1 ADVANTAGES 629 18.5.2 DISADVANTAGES 629 18.6
APPLICATIONS 629 18.7 SUMMARY 630 REFERENCES 630 APPENDIX 18A 631
PROBLEMS 632 19 RAPID PROTOTYPING 633 19.1 COMPUTER-AIDED DESIGN 633
19.1.1 GEOMETRIC TRANSFORMATION 634 19.1.1.1 TRANSLATION 635 19.1.1.2
SCALING 635 19.1.1.3 ROTATION 636 19.1.2 CURVE AND SURFACE DESIGN 637
19.1.2.1 SPLINES 637 19.1.2.2 BEZIER CURVES 639 19.1.2.3 SURFACE
REPRESENTATION 640 19.1.3 SOLID MODELING 642 19.1.3.1 CONSTRUCTIVE SOLID
GEOMETRY 642 19.1.3.2 BOUNDARY REPRESENTATION 644 19.1.4 RAPID
PROTOTYPING SOFTWARE FORMATS 644 19.1.4.1 THE STL (STEREOLITHOGRAPHY)
FORMAT 644 19.1.4.2 THE IGES FORMAT 646 19.1.5 SUPPORTS FOR PART
BUILDING 646 19.1.6 SLICING 647 CONTENTS XXI 19.2 PART BUILDING 648
19.2.1 LIQUID-BASED SYSTEMS 649 19.2.1.1 BEAM SCANNING 650 19.2.1.2
PARALLEL PROCESSING 654 19.2.2 POWDER-BASED SYSTEMS 655 19.2.2.1
SELECTIVE LASER SINTERING (SLS) 655 19.2.2.2 3D PRINTING 657 19.2.2.3
BALLISTIC PARTICLE MANUFACTURING 658 19.2.3 SOLID-BASED SYSTEMS 658
19.2.3.1 FUSED DEPOSITION MODELING 659 19.2.3.2 LAMINATED OBJECT
MANUFACTURING 659 19.2.4 QUALITATIVE COMPARISON OF SOME MAJOR SYSTEMS
661 19.3 POST-PROCESSING 662 19.4 APPLICATIONS 662 19.4.1 DESIGN 663
19.4.2 ENGINEERING, ANALYSIS, AND PLANNING 663 19.4.3 MANUFACTURING AND
TOOLING 663 19.5 SUMMARY 664 REFERENCES 665 APPENDIX 19A 665 PROBLEMS
666 MEDICAL AND NANOTECHNOLOGY APPLICATIONS OF LASERS 669 20.1 MEDICAL
APPLICATIONS 669 20.1.1 MEDICAL DEVICES 670 20.1.2 THERAPEUTIC
APPLICATIONS 672 20.1.2.1 SURGICAL PROCEDURES 673 20.1.2.2 OPHTHALMOLOGY
673 20.1.2.3 DERMATOLOGY 674 20.1.2.4 DENTISTRY 674 20.2 NANOTECHNOLOGY
APPLICATIONS 675 20.2.1 NANOHOLES AND GRATING 676 20.2.2 NANOBUMPS 677
20.2.3 TWO-PHOTON POLYMERIZATION 680 20.2.4 LASER-ASSISTED NANOIMPRINT
LITHOGRAPHY 686 20.3 SUMMARY 686 REFERENCES 687 XXUE CONTENTS 21 SENSORS
FOR PROCESS MONITORING 689 21.1 LASER BEAM MONITORING 689 21.1.1 BEAM
POWER 690 21.1.1.1 PYROELECTRIC OR THERMOPILE DETECTOR 690 21.1.1.2 BEAM
DUMP 690 21.1.2 BEAM MODE 691 21.1.2.1 LASER BEAM ANALYZERS 691 21.1.2.2
PLASTIC BURN ANALYSIS 696 21.1.3 BEAM SIZE 697 21.1.3.1 KAPTONFILM 697
21.1.3.2 OTHER METHODS 698 21.1.4 BEAM ALIGNMENT 698 21.2 PROCESS
MONITORING 699 21.2.1 ACOUSTIC EMISSION 699 21.2.1.1 AE DETECTION 701
21.2.1.2 BACKGROUND 703 21.2.1.3 AE TRANSMISSION 705 21.2.1.4
TRADITIONAL AE SIGNAL ANALYSIS 706 21.2.2 ACOUSTIC MIRROR 707 21.2.3
AUDIBLE SOUND EMISSION 709 21.2.4 INFRARED/ULTRAVIOLET (IR/UV) DETECTION
TECHNIQUES 711 21.2.4.1 INFRARED DETECTION 711 21.2.4.2 ULTRAVIOLET
DETECTION 718 21.2.5 OPTICAL (VISION) SENSING 719 21.2.5.1 OPTICAL
DETECTORS 719 21.2.5.2 DETECTOR SETUP 719 21.2.5.3 EDGE DETECTION
METHODOLOGY 720 21.3 SUMMARY 724 REFERENCES 724 APPENDIX 21A 727
PROBLEMS 728 22 PROCESSING OF SENSOR OUTPUTS 730 22.1 SIGNAL
TRANSFORMATION 730 22.1.1 THE FOURIER TRANSFORM 731 22.1.2 THE DISCRETE
FOURIER TRANSFORM (DFT) 732 22.1.3 PROPERTIES OF THE DISCRETE FOURIER
TRANSFORM 733 22.1.4 ADVANTAGES OF DIGITAL ANALYSIS 734 CONTENTS XXUL
22.1.5 PITFALLS OF DIGITAL ANALYSIS 734 22.1.6 THE SAMPLING THEOREM 736
22.1.7 ALIASING 736 22.1.8 LEAKAGE 737 22.1.9 WINDOW FUNCTIONS 739
22.1.9.1 RECTANGULAR WINDOW 739 22.1.9.2 TRIANGULAR WINDOW 739 22.1.9.3
HANNING WINDOW 740 22.1.9.4 HAMMING WINDOW 741 22.1.10 PICKET FENCE
EFFECT 741 22.1.11 SEGMENTAL AVERAGING 742 22.2 DATA REDUCTION 742
22.2.1 OPTIMUM TRANSFORM FOR DATA REDUCTION 742 22.2.2 VARIANCE
CRITERION 747 22.2.3 CLASS MEAN SCATTER CRITERION 747 22.3 PATTERN
CLASSIFICATION 749 22.3.1 PATTERN RECOGNITION 749 22.3.1.1 BAYES
DECISION THEORY 749 22.3.1.2 BAYES DECISION RULE FOR MINIMUM ERROR 750
22.3.1.3 DISCRIMINANT FUNCTION ANALYSIS 751 22.3.1.4 MINIMUM-DISTANCE
CLASSIFIER 752 22.3.1.5 GENERAL LINEAR DISCRIMINANT FUNCTION 755
22.3.1.6 QUADRATIC DISCRIMINANT FUNCTION 756 22.3.1.7 LEAST-SQUARES
MINIMUM DISTANCE CLASSIFICATION 756 22.3.1.8 SYSTEM TRAINING 759 22.3.2
NEURAL NETWORK ANALYSIS 760 22.3.3 SENSOR FUSION 763 22.3.4
TIME-FREQUENCY ANALYSIS 764 22.3.4.1 SHORT-TIME FOURIER TRANSFORM 764
22.3.4.2 WAVELET TRANSFORMS 766 22.3.4.3 TIME-FREQUENCY DISTRIBUTIONS
767 22.3.4.4 APPLICATIONS IN MANUFACTURING 769 22.4 SUMMARY 770
REFERENCES 771 APPENDIX 22A 773 PROBLEMS 774 XXIV CONTENTS 23 LASER
SAFETY 778 23.1 LASER HAZARDS 778 23.1.1 RADIATION-RELATED HAZARDS 778
23.1.1.1 MECHANISMS OF LASER DAMAGE 779 23.1.1.2 MAJOR HAZARDS 780
23.1.2 NONBEAM HAZARDS 782 23.1.2.1 ELECTRICAL HAZARDS 783 23.1.2.2
CHEMICAL HAZARDS 783 23.1.2.3 ENVIRONMENTAL HAZARDS 783 23.1.2.4 FIRE
HAZARDS 784 23.1.2.5 EXPLOSION HAZARDS AND COMPRESSED GASES 784 23.1.2.6
OTHER HAZARDS 784 23.2 LASER CLASSIFICATION 784 23.3 PREVENTING LASER
ACCIDENTS 785 23.3.1 LASER SAFETY OFFICER 785 23.3.2 ENGINEERING
CONTROLS 785 23.3.3 ADMINISTRATIVE AND PROCEDURAL CONTROLS 786 23.3.4
PROTECTIVE EQUIPMENT 786 23.3.4.1 PROTECTIVE EYEWEAR 786 23.3.4.2 OTHER
PROTECTIVE EQUIPMENT 790 23.3.5 WARNING SIGNS AND LABELS 792 23.4
SUMMARY 793 REFERENCES 794 APPENDIX 23A 795 PROBLEM 795 OVERALL LIST OF
SYMBOLS 797 INDEX 803
|
any_adam_object | 1 |
author | Kannatey-Asibu, Elijah |
author_facet | Kannatey-Asibu, Elijah |
author_role | aut |
author_sort | Kannatey-Asibu, Elijah |
author_variant | e k a eka |
building | Verbundindex |
bvnumber | BV023805523 |
callnumber-first | T - Technology |
callnumber-label | TA1675 |
callnumber-raw | TA1675 |
callnumber-search | TA1675 |
callnumber-sort | TA 41675 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UH 5750 |
ctrlnum | (OCoLC)230180435 (DE-599)BVBBV023805523 |
dewey-full | 621.36/6 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36/6 |
dewey-search | 621.36/6 |
dewey-sort | 3621.36 16 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01750nam a2200409zc 4500</leader><controlfield tag="001">BV023805523</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090701 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090423s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470177983</subfield><subfield code="9">978-0-470-17798-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)230180435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023805523</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1675</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5750</subfield><subfield code="0">(DE-625)145705:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kannatey-Asibu, Elijah</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of laser materials processing</subfield><subfield code="c">Elijah Kannatey-Asibu, Jr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 819 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series on processing of engineering materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lasers</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laserbearbeitung</subfield><subfield code="0">(DE-588)4139080-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Laserbearbeitung</subfield><subfield code="0">(DE-588)4139080-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017447698&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017447698&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017447698</subfield></datafield></record></collection> |
id | DE-604.BV023805523 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:37:12Z |
institution | BVB |
isbn | 9780470177983 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017447698 |
oclc_num | 230180435 |
open_access_boolean | |
owner | DE-634 DE-29T DE-703 DE-1050 |
owner_facet | DE-634 DE-29T DE-703 DE-1050 |
physical | XXVI, 819 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley |
record_format | marc |
series2 | Wiley series on processing of engineering materials |
spelling | Kannatey-Asibu, Elijah Verfasser aut Principles of laser materials processing Elijah Kannatey-Asibu, Jr. Hoboken, NJ Wiley 2009 XXVI, 819 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Wiley series on processing of engineering materials Lasers Industrial applications Materials science Laserbearbeitung (DE-588)4139080-5 gnd rswk-swf Werkstoff (DE-588)4065579-9 gnd rswk-swf Werkstoff (DE-588)4065579-9 s Laserbearbeitung (DE-588)4139080-5 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017447698&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017447698&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kannatey-Asibu, Elijah Principles of laser materials processing Lasers Industrial applications Materials science Laserbearbeitung (DE-588)4139080-5 gnd Werkstoff (DE-588)4065579-9 gnd |
subject_GND | (DE-588)4139080-5 (DE-588)4065579-9 |
title | Principles of laser materials processing |
title_auth | Principles of laser materials processing |
title_exact_search | Principles of laser materials processing |
title_full | Principles of laser materials processing Elijah Kannatey-Asibu, Jr. |
title_fullStr | Principles of laser materials processing Elijah Kannatey-Asibu, Jr. |
title_full_unstemmed | Principles of laser materials processing Elijah Kannatey-Asibu, Jr. |
title_short | Principles of laser materials processing |
title_sort | principles of laser materials processing |
topic | Lasers Industrial applications Materials science Laserbearbeitung (DE-588)4139080-5 gnd Werkstoff (DE-588)4065579-9 gnd |
topic_facet | Lasers Industrial applications Materials science Laserbearbeitung Werkstoff |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017447698&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017447698&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kannateyasibuelijah principlesoflasermaterialsprocessing |