Lie sphere geometry: with applications to submanifolds
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Springer
[2008]
|
Ausgabe: | Second edition |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource Illustrationen |
ISBN: | 9780387746562 |
DOI: | 10.1007/978-0-387-74656-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV023805085 | ||
003 | DE-604 | ||
005 | 20240212 | ||
007 | cr|uuu---uuuuu | ||
008 | 090225s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780387746562 |c Online |9 978-0-387-74656-2 | ||
024 | 7 | |a 10.1007/978-0-387-74656-2 |2 doi | |
035 | |a (ZDB-2-SMA)9780387746562 | ||
035 | |a (OCoLC)315754669 | ||
035 | |a (DE-599)BVBBV023805085 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-703 |a DE-29 |a DE-91 |a DE-384 |a DE-83 |a DE-739 | ||
082 | 0 | |a 516.36 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cecil, Thomas E. |d 1945- |e Verfasser |0 (DE-588)102959354X |4 aut | |
245 | 1 | 0 | |a Lie sphere geometry |b with applications to submanifolds |c Thomas E. Cecil |
250 | |a Second edition | ||
264 | 1 | |a New York |b Springer |c [2008] | |
264 | 4 | |c © 2008 | |
300 | |a 1 Online-Ressource |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 0 | 7 | |a Lie-Geometrie |0 (DE-588)4167647-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Geometrie |0 (DE-588)4167647-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-387-74655-5 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-387-74656-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-017447260 | ||
966 | e | |u https://doi.org/10.1007/978-0-387-74656-2 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-74656-2 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-74656-2 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-74656-2 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-74656-2 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-74656-2 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804139004605497344 |
---|---|
any_adam_object | |
author | Cecil, Thomas E. 1945- |
author_GND | (DE-588)102959354X |
author_facet | Cecil, Thomas E. 1945- |
author_role | aut |
author_sort | Cecil, Thomas E. 1945- |
author_variant | t e c te tec |
building | Verbundindex |
bvnumber | BV023805085 |
classification_rvk | SK 340 SK 370 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9780387746562 (OCoLC)315754669 (DE-599)BVBBV023805085 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-387-74656-2 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02368nmm a2200601zc 4500</leader><controlfield tag="001">BV023805085</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">090225s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387746562</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-74656-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-387-74656-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9780387746562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315754669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023805085</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cecil, Thomas E.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)102959354X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie sphere geometry</subfield><subfield code="b">with applications to submanifolds</subfield><subfield code="c">Thomas E. Cecil</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">[2008]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Geometrie</subfield><subfield code="0">(DE-588)4167647-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Geometrie</subfield><subfield code="0">(DE-588)4167647-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-387-74655-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-387-74656-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017447260</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-74656-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-74656-2</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-74656-2</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-74656-2</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-74656-2</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-74656-2</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV023805085 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:37:11Z |
institution | BVB |
isbn | 9780387746562 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017447260 |
oclc_num | 315754669 |
open_access_boolean | |
owner | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
owner_facet | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
physical | 1 Online-Ressource Illustrationen |
psigel | ZDB-2-SMA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Cecil, Thomas E. 1945- Verfasser (DE-588)102959354X aut Lie sphere geometry with applications to submanifolds Thomas E. Cecil Second edition New York Springer [2008] © 2008 1 Online-Ressource Illustrationen txt rdacontent c rdamedia cr rdacarrier Universitext Mathematik Geometry, algebraic Differential Geometry Algebraic Geometry Mathematics Global differential geometry Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Lie-Geometrie (DE-588)4167647-6 gnd rswk-swf Lie-Geometrie (DE-588)4167647-6 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-387-74655-5 https://doi.org/10.1007/978-0-387-74656-2 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Cecil, Thomas E. 1945- Lie sphere geometry with applications to submanifolds Mathematik Geometry, algebraic Differential Geometry Algebraic Geometry Mathematics Global differential geometry Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Lie-Geometrie (DE-588)4167647-6 gnd |
subject_GND | (DE-588)4167647-6 |
title | Lie sphere geometry with applications to submanifolds |
title_auth | Lie sphere geometry with applications to submanifolds |
title_exact_search | Lie sphere geometry with applications to submanifolds |
title_full | Lie sphere geometry with applications to submanifolds Thomas E. Cecil |
title_fullStr | Lie sphere geometry with applications to submanifolds Thomas E. Cecil |
title_full_unstemmed | Lie sphere geometry with applications to submanifolds Thomas E. Cecil |
title_short | Lie sphere geometry |
title_sort | lie sphere geometry with applications to submanifolds |
title_sub | with applications to submanifolds |
topic | Mathematik Geometry, algebraic Differential Geometry Algebraic Geometry Mathematics Global differential geometry Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Lie-Geometrie (DE-588)4167647-6 gnd |
topic_facet | Mathematik Geometry, algebraic Differential Geometry Algebraic Geometry Mathematics Global differential geometry Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Lie-Geometrie |
url | https://doi.org/10.1007/978-0-387-74656-2 |
work_keys_str_mv | AT cecilthomase liespheregeometrywithapplicationstosubmanifolds |