Discrete time Markov jump linear systems:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Springer
2005
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Probability and its applications
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 280 S. graph. Darst. |
ISBN: | 9781846280825 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023798099 | ||
003 | DE-604 | ||
005 | 20200107 | ||
007 | t | ||
008 | 051129s2005 d||| |||| 00||| eng d | ||
020 | |a 9781846280825 |9 978-1-84628-082-5 | ||
035 | |a (OCoLC)249239776 | ||
035 | |a (DE-599)BVBBV023798099 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 003.76 | |
100 | 1 | |a Costa, O. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Discrete time Markov jump linear systems |c O. L. Costa ; M. D. Fragoso ; R. P. Marques |
250 | |a 1. ed. | ||
264 | 1 | |a London |b Springer |c 2005 | |
300 | |a X, 280 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Probability and its applications | |
650 | 0 | 7 | |a Stochastische Kontrolltheorie |0 (DE-588)4263657-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sprungprozess |0 (DE-588)4427906-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Markov-Sprungprozess |0 (DE-588)4427907-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskreter Markov-Prozess |0 (DE-588)4150185-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Kontrolltheorie |0 (DE-588)4263657-7 |D s |
689 | 0 | 1 | |a Sprungprozess |0 (DE-588)4427906-1 |D s |
689 | 0 | 2 | |a Diskreter Markov-Prozess |0 (DE-588)4150185-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Markov-Sprungprozess |0 (DE-588)4427907-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Fragoso, M. D. |e Verfasser |4 aut | |
700 | 1 | |a Marques, R. P. |e Verfasser |4 aut | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017440301&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017440301 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138994962792448 |
---|---|
adam_text | CONTENTS 1 MARKOV JUMP LINEAR SYSTEMS ............................. 1
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 1 1.2 SOME EXAMPLES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3
PROBLEMS CONSIDERED IN THIS BOOK . . . . . . . . . . . . . . . . . . . .
. . . . . 8 1.4 SOME MOTIVATING REMARKS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 11 1.5 A FEW WORDS ON OUR APPROACH. . .
. . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 HISTORICAL
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 13 2 BACKGROUND MATERIAL
...................................... 15 2.1 SOME BASICS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 15 2.2 AUXILIARY RESULTS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 18 2.3 PROBABILISTIC SPACE . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4
LINEAR SYSTEM THEORY. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 21 2.4.1 STABILITY AND THE LYAPUNOV EQUATION . . . .
. . . . . . . . . . . . 21 2.4.2 CONTROLLABILITY AND OBSERVABILITY . . .
. . . . . . . . . . . . . . . . . 23 2.4.3 THE ALGEBRAIC RICCATI
EQUATION AND THE LINEAR- QUADRATIC REGULATOR . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 26 2.5 LINEAR MATRIX INEQUALITIES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 ON
STABILITY ............................................... 29 3.1 OUTLINE
OF THE CHAPTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 29 3.2 MAIN OPERATORS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 30 3.3 MSS: THE HOMOGENEOUS
CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1
MAIN RESULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 36 3.3.2 EXAMPLES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 37 3.3.3 PROOF OF THEOREM 3.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.4
EASY TO CHECK CONDITIONS FOR MEAN SQUARE STABILITY . . . 45 3.4 MSS: THE
NON-HOMOGENEOUS CASE . . . . . . . . . . . . . . . . . . . . . . . . .
48 3.4.1 MAIN RESULTS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 48 3.4.2 WIDE SENSE STATIONARY INPUT SEQUENCE .
. . . . . . . . . . . . . . 49 3.4.3 THE * 2 -DISTURBANCE CASE . . . . .
. . . . . . . . . . . . . . . . . . . . . . 55 VIII CONTENTS 3.5 MEAN
SQUARE STABILIZABILITY AND DETECTABILITY . . . . . . . . . . . . . . .
57 3.5.1 DEFINITIONS AND TESTS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 57 3.5.2 STABILIZABILITY WITH MARKOV PARAMETER
PARTIALLY KNOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 59 3.6 STABILITY WITH PROBABILITY ONE . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 63 3.6.1 MAIN RESULTS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6.2 AN
APPLICATION OF ALMOST SURE CONVERGENCE RESULTS . . . 66 3.7 HISTORICAL
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 69 4 OPTIMAL CONTROL
........................................... 71 4.1 OUTLINE OF THE
CHAPTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 71 4.2 THE FINITE HORIZON QUADRATIC OPTIMAL CONTROL PROBLEM. . . .
. . 72 4.2.1 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 72 4.2.2 THE OPTIMAL CONTROL LAW . . . . . . . . .
. . . . . . . . . . . . . . . . . 74 4.3 INFINITE HORIZON QUADRATIC
OPTIMAL CONTROL PROBLEMS . . . . . . . . 78 4.3.1 DEFINITION OF THE
PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.2
THE MARKOV JUMP LINEAR QUADRATIC REGULATOR PROBLEM . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 80 4.3.3 THE LONG RUN AVERAGE
COST . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 THE H 2
-CONTROL PROBLEM. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 82 4.4.1 PRELIMINARIES AND THE H 2 -NORM . . . . . . . . . .
. . . . . . . . . . . . 82 4.4.2 THE H 2 -NORM AND THE GRAMMIANS . . . .
. . . . . . . . . . . . . . . 83 4.4.3 AN ALTERNATIVE DEFINITION FOR THE
H 2 -CONTROL PROBLEM. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 86 4.4.4 CONNECTION BETWEEN THE CARE AND THE H 2 -CONTROL
PROBLEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 86 4.5 QUADRATIC CONTROL WITH STOCHASTIC * 2 -INPUT .
. . . . . . . . . . . . . . . . 90 4.5.1 PRELIMINARIES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5.2
AUXILIARY RESULT . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 91 4.5.3 THE OPTIMAL CONTROL LAW . . . . . . . . . . . . . .
. . . . . . . . . . . . 94 4.5.4 AN APPLICATION TO A FAILURE PRONE
MANUFACTURING SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 96 4.6 HISTORICAL REMARKS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5
FILTERING ................................................... 101 5.1
OUTLINE OF THE CHAPTER . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 101 5.2 FINITE HORIZON FILTERING WITH * ( K ) KNOWN
. . . . . . . . . . . . . . . . . . 102 5.3 INFINITE HORIZON FILTERING
WITH * ( K ) KNOWN . . . . . . . . . . . . . . . . . 109 5.4 OPTIMAL
LINEAR FILTER WITH * ( K ) UNKNOWN . . . . . . . . . . . . . . . . . .
113 5.4.1 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 113 5.4.2 OPTIMAL LINEAR FILTER . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 114 5.4.3 STATIONARY
LINEAR FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . .
117 5.5 ROBUST LINEAR FILTER WITH * ( K ) UNKNOWN . . . . . . . . . . .
. . . . . . . . 119 5.5.1 PRELIMINARIES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 119 5.5.2 PROBLEM FORMULATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 CONTENTS
IX 5.5.3 LMI FORMULATION OF THE FILTERING PROBLEM . . . . . . . . . . .
. 124 5.5.4 ROBUST FILTER . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 127 5.6 HISTORICAL REMARKS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6
QUADRATIC OPTIMAL CONTROL WITH PARTIAL INFORMATION ...... 131 6.1
OUTLINE OF THE CHAPTER . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 131 6.2 FINITE HORIZON CASE. . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 132 6.2.1
PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 132 6.2.2 A SEPARATION PRINCIPLE . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 133 6.3 INFINITE HORIZON CASE . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 136 6.3.2 DEFINITION OF THE H 2 -CONTROL PROBLEM.
. . . . . . . . . . . . . . . . 137 6.3.3 A SEPARATION PRINCIPLE FOR THE
H 2 -CONTROL OF MJLS . . . . 139 6.4 HISTORICAL REMARKS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7 H *
-CONTROL ............................................... 143 7.1 OUTLINE
OF THE CHAPTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 143 7.2 THE MJLS H * -LIKE CONTROL PROBLEM . . . . . . . . .
. . . . . . . . . . . . . . 144 7.2.1 THE GENERAL PROBLEM . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 144 7.2.2 H * MAIN RESULT
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3 PROOF OF THEOREM 7.3 . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 148 7.3.1 SUFFICIENT CONDITION. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 148 7.3.2 NECESSARY
CONDITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
151 7.4 RECURSIVE ALGORITHM FOR THE H * -CONTROL CARE . . . . . . . . .
. . . . 162 7.5 HISTORICAL REMARKS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 166 8 DESIGN TECHNIQUES AND
EXAMPLES .......................... 167 8.1 SOME APPLICATIONS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.1.1 OPTIMAL CONTROL FOR A SOLAR THERMAL RECEIVER . . . . . . . . 167
8.1.2 OPTIMAL POLICY FOR THE NATIONAL INCOME WITH A
MULTIPLIER*ACCELERATOR MODEL . . . . . . . . . . . . . . . . . . . . . .
. 169 8.1.3 ADDING NOISE TO THE SOLAR THERMAL RECEIVER PROBLEM . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.2 ROBUST
CONTROL VIA LMI APPROXIMATIONS . . . . . . . . . . . . . . . . . . . 173
8.2.1 ROBUST H 2 -CONTROL . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 174 8.2.2 ROBUST MIXED H 2 /H * -CONTROL . . . . . .
. . . . . . . . . . . . . . . . 182 8.2.3 ROBUST H * -CONTROL . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.3 ACHIEVING
OPTIMAL H * -CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 188 8.3.1 ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 188 8.3.2 H * -CONTROL FOR THE UARMII
MANIPULATOR . . . . . . . . . . . . . . 189 8.4 EXAMPLES OF LINEAR
FILTERING WITH * ( K ) UNKNOWN . . . . . . . . . . . . 197 8.4.1
STATIONARY LMMSE FILTER . . . . . . . . . . . . . . . . . . . . . . . .
. . 198 8.4.2 ROBUST LMMSE FILTER . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 199 8.5 HISTORICAL REMARKS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 201 X CONTENTS A
COUPLED ALGEBRAIC RICCATI EQUATIONS ...................... 203 A.1
DUALITY BETWEEN THE CONTROL AND FILTERING CARE . . . . . . . . . . . 203
A.2 MAXIMAL SOLUTION FOR THE CARE . . . . . . . . . . . . . . . . . . .
. . . . . . . 208 A.3 STABILIZING SOLUTION FOR THE CARE . . . . . . . .
. . . . . . . . . . . . . . . . . 216 A.3.1 CONNECTION BETWEEN MAXIMAL
AND STABILIZING SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 216 A.3.2 CONDITIONS FOR THE EXISTENCE OF A STABILIZING
SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
217 A.4 ASYMPTOTIC CONVERGENCE . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 226 B AUXILIARY RESULTS FOR THE LINEAR FILTERING
PROBLEM WITH * ( K ) UNKNOWN
............................................. 229 B.1 OPTIMAL LINEAR
FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 229 B.1.1 PROOF OF THEOREM 5.9 AND LEMMA 5.11 . . . . . . . . . .
. . . . . 229 B.1.2 STATIONARY FILTER . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 232 B.2 ROBUST FILTER . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
236 C AUXILIARY RESULTS FOR THE H 2 -CONTROL PROBLEM ............. 249
REFERENCES ..................................................... 257
NOTATION AND CONVENTIONS ..................................... 271 INDEX
.......................................................... 277
|
any_adam_object | 1 |
author | Costa, O. L. Fragoso, M. D. Marques, R. P. |
author_facet | Costa, O. L. Fragoso, M. D. Marques, R. P. |
author_role | aut aut aut |
author_sort | Costa, O. L. |
author_variant | o l c ol olc m d f md mdf r p m rp rpm |
building | Verbundindex |
bvnumber | BV023798099 |
ctrlnum | (OCoLC)249239776 (DE-599)BVBBV023798099 |
dewey-full | 003.76 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.76 |
dewey-search | 003.76 |
dewey-sort | 13.76 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01831nam a2200457zc 4500</leader><controlfield tag="001">BV023798099</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200107 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051129s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781846280825</subfield><subfield code="9">978-1-84628-082-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249239776</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023798099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.76</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Costa, O. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete time Markov jump linear systems</subfield><subfield code="c">O. L. Costa ; M. D. Fragoso ; R. P. Marques</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 280 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and its applications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Kontrolltheorie</subfield><subfield code="0">(DE-588)4263657-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sprungprozess</subfield><subfield code="0">(DE-588)4427906-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Sprungprozess</subfield><subfield code="0">(DE-588)4427907-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskreter Markov-Prozess</subfield><subfield code="0">(DE-588)4150185-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Kontrolltheorie</subfield><subfield code="0">(DE-588)4263657-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sprungprozess</subfield><subfield code="0">(DE-588)4427906-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Diskreter Markov-Prozess</subfield><subfield code="0">(DE-588)4150185-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Markov-Sprungprozess</subfield><subfield code="0">(DE-588)4427907-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fragoso, M. D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marques, R. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017440301&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017440301</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023798099 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:37:02Z |
institution | BVB |
isbn | 9781846280825 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017440301 |
oclc_num | 249239776 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | X, 280 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
series2 | Probability and its applications |
spelling | Costa, O. L. Verfasser aut Discrete time Markov jump linear systems O. L. Costa ; M. D. Fragoso ; R. P. Marques 1. ed. London Springer 2005 X, 280 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Probability and its applications Stochastische Kontrolltheorie (DE-588)4263657-7 gnd rswk-swf Sprungprozess (DE-588)4427906-1 gnd rswk-swf Markov-Sprungprozess (DE-588)4427907-3 gnd rswk-swf Diskreter Markov-Prozess (DE-588)4150185-8 gnd rswk-swf Stochastische Kontrolltheorie (DE-588)4263657-7 s Sprungprozess (DE-588)4427906-1 s Diskreter Markov-Prozess (DE-588)4150185-8 s DE-604 Markov-Sprungprozess (DE-588)4427907-3 s 1\p DE-604 Fragoso, M. D. Verfasser aut Marques, R. P. Verfasser aut SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017440301&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Costa, O. L. Fragoso, M. D. Marques, R. P. Discrete time Markov jump linear systems Stochastische Kontrolltheorie (DE-588)4263657-7 gnd Sprungprozess (DE-588)4427906-1 gnd Markov-Sprungprozess (DE-588)4427907-3 gnd Diskreter Markov-Prozess (DE-588)4150185-8 gnd |
subject_GND | (DE-588)4263657-7 (DE-588)4427906-1 (DE-588)4427907-3 (DE-588)4150185-8 |
title | Discrete time Markov jump linear systems |
title_auth | Discrete time Markov jump linear systems |
title_exact_search | Discrete time Markov jump linear systems |
title_full | Discrete time Markov jump linear systems O. L. Costa ; M. D. Fragoso ; R. P. Marques |
title_fullStr | Discrete time Markov jump linear systems O. L. Costa ; M. D. Fragoso ; R. P. Marques |
title_full_unstemmed | Discrete time Markov jump linear systems O. L. Costa ; M. D. Fragoso ; R. P. Marques |
title_short | Discrete time Markov jump linear systems |
title_sort | discrete time markov jump linear systems |
topic | Stochastische Kontrolltheorie (DE-588)4263657-7 gnd Sprungprozess (DE-588)4427906-1 gnd Markov-Sprungprozess (DE-588)4427907-3 gnd Diskreter Markov-Prozess (DE-588)4150185-8 gnd |
topic_facet | Stochastische Kontrolltheorie Sprungprozess Markov-Sprungprozess Diskreter Markov-Prozess |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017440301&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT costaol discretetimemarkovjumplinearsystems AT fragosomd discretetimemarkovjumplinearsystems AT marquesrp discretetimemarkovjumplinearsystems |