Mathematica by example:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier Acad. Press
2004
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 571 S. graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 0120415631 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023795787 | ||
003 | DE-604 | ||
005 | 20070315000000.0 | ||
007 | t | ||
008 | 040714s2004 d||| |||| 00||| eng d | ||
020 | |a 0120415631 |9 0-12-041563-1 | ||
035 | |a (OCoLC)636892245 | ||
035 | |a (DE-599)BVBBV023795787 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 510.285536 | |
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
100 | 1 | |a Abell, Martha L. |d 1962- |e Verfasser |0 (DE-588)130087025 |4 aut | |
245 | 1 | 0 | |a Mathematica by example |c Martha L. Abell and James P. Braselton |
250 | |a 3. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier Acad. Press |c 2004 | |
300 | |a XII, 571 S. |b graph. Darst. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017437992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017437992 |
Datensatz im Suchindex
_version_ | 1804138991721644032 |
---|---|
adam_text | Titel: Mathematica by example
Autor: Abell, Martha L
Jahr: 2004
Contents
Preface ix
1 Getting Started 1
1.1 Introduction to Mathematica ............................................1
A Note Regarding Different Versions of Mathematica................3
1.1.1 Getting Started with Mathematica..............................3
Preview......................................................................9
1.2 Loading Packages..........................................................10
A Word of Caution........................................................13
1.3 Getting Help from Mathematica..........................................14
Mathematica Help ........................................................18
The Mathematica Menu..................................................22
2 Basic Operations on Numbers, Expressions, and Functions 23
2.1 Numerical Calculations and Built-in Functions........................23
2.1.1 Numerical Calculations..........................................23
2.1.2 Built-in Constants........................ 26
2.1.3 Built-in Functions................................................27
A Word of Caution........................................................30
2.2 Expressions and Functions: Elementary Algebra......................31
2.2.1 Basic Algebraic Operations on Expressions....................31
2.2.2 Naming and Evaluating Expressions..........................37
Two Words of Caution............................................38
2.2.3 Defining and Evaluating Functions............................39
2.3 Graphing Functions, Expressions, and Equations......................45
Contents
2.3.1 Functions of a Single Variable ..................................45
2.3.2 Parametric and Polar Plots in Two Dimensions ..............58
2.3.3 Three-Dimensional and Contour Plots; Graphing Equations 65
2.3.4 Parametric Curves and Surfaces in Space......................75
2.4 Solving Equations.............................
2.4.1 Exact Solutions of Equations....................................SI
2.4.2 Approximate Solutions of Equations ..........................90
Calculus 97
3.1 Limits........................................................................97
3.1.1 Using Graphs and Tables to Predict Limits....................98
3.1.2 Computing Limits................................................99
3.1.3 One-Sided Limits..................................................102
3.2 Differential Calculus......................................................104
3.2.1 Definition of the Derivative......................................104
3.2.2 Calculating Derivatives..........................................107
3.2.3 Implicit Differentiation..........................................110
3.2.4 Tangent Lines......................................................Ill
3.2.5 The First Derivative Test and Second Derivative Test .... 123
3.2.6 Applied Max/Min Problems....................................128
3.2.7 Antidifferentiation................................................138
3.3 Integral Calculus..........................................................141
3.3.1 Area................................................................141
3.3.2 The Definite Integral..............................................147
3.3.3 Approximating Definite Integrals..............................153
3.3.4 Area................................................................156
3.3.5 Arc Length........................................................162
3.3.6 Solids of Revolution..............................................167
3.4 Series........................................................................173
3.4.1 Introduction to Sequences and Series..........................173
3.4.2 Convergence Tests................................................178
3.4.3 Alternating Series................................................182
3.4.4 Power Series......................................................184
3.4.5 Taylor and Maclaurin Series ....................................187
3.4.6 Taylor s Theorem..................................................192
3.4.7 Other Series........................................................196
3.5 Multi-Variable Calculus ..................................................198
3.5.1 Limits of Functions of Two Variables............. 198
3.5.2 Partial and Directional Derivatives .............. 201
3.5.3 Iterated Integrals......................... 218
Contents v/i
4 Introduction to Lists and Tables 229
4.1 Lists and List Operations..................................................229
4.1.1 Defining Lists......................................................229
4.1.2 Plotting Lists of Points............................................233
4.2 Manipulating Lists: More on Part and Map............................248
4.2.1 More on Graphing Lists; Graphing Lists of Points Using
Graphics Primitives..............................................258
4.2.2 Miscellaneous List Operations..................................267
4.3 Mathematics of Finance ..................................................267
4.3.1 Compound Interest..............................................268
4.3.2 Future Value......................................................270
4.3.3 Annuity Due......................................................271
4.3.4 Present Value......................................................273
4.3.5 Deferred Annuities................................................274
4.3.6 Amortization......................................................275
4.3.7 More on Financial Planning . ...................................280
4.4 Other Applications........................................................287
4.4.1 Approximating Lists with Functions ..........................287
4.4.2 Introduction to Fourier Series ..................................294
4.4.3 The Mandelbrot Set and Julia Sets..............................308
5 Matrices and Vectors 327
5.1 Nested Lists: Introduction to Matrices, Vectors, and
Matrix Operations..........................................................327
5.1.1 Defining Nested Lists, Matrices, and Vectors..................327
5.1.2 Extracting Elements of Matrices................................334
5.1.3 Basic Computations with Matrices..............................337
5.1.4 Basic Computations with Vectors ..............................342
5.2 Linear Systems of Equations..............................................349
5.2.1 Calculating Solutions of Linear Systems
of Equations ......................................................349
5.2.2 Gauss-Jordan Elimination ......................................355
5.3 Selected Topics from Linear Algebra....................................362
5.3.1 Fundamental Subspaces Associated with Matrices..........362
5.3.2 The Gram-Schmidt Process . ................................364
5.3.3 Linear Transformations..........................................370
5.3.4 Eigenvalues and Eigenvectors..................................373
5.3.5 Jordan Canonical Form..........................................377
5.3.6 The QR Method ..................................................381
5.4 Maxima and Minima Using Linear Programming ....................384
viii
Contents
5.4.1 The Standard Form of a Linear Programming
Problem............................................................3^
5.4.2 The Dual Problem................................................386
5.5 Selected Topics from Vector Calculus....................................393
5.5.1 Vector-Valued Functions ........................................393
5.5.2 Line Integrals......................................................402
5.5.3 Surface Integrals..................................................407
5.5.4 A Note on Nonorientability......................................414
6 Differential Equations 429
6.1 First-Order Differential Equations ......................................429
6.1.1 Separable Equations..............................................429
6.1.2 Linear Equations..................................................434
6.1.3 Nonlinear Equations..............................................444
6.1.4 Numerical Methods..............................................448
6.2 Second-Order Linear Equations..........................................454
6.2.1 Basic Theory......................................................454
6.2.2 Constant Coefficients............................................455
6.2.3 Undetermined Coefficients......................................462
6.2.4 Variation of Parameters..........................................467
6.3 Higher-Order Linear Equations..........................................470
6.3.1 Basic Theory......................................................470
6.3.2 Constant Coefficients............................................470
6.3.3 Undetermined Coefficients......................................473
6.3.4 Laplace Transform Methods....................................485
6.3.5 Nonlinear Higher-Order Equations............................498
6.4 Systems of Equations......................................................498
6.4.1 Linear Systems....................................................498
6.4.2 Nonhomogeneous Linear Systems..............................515
6.4.3 Nonlinear Systems................................................519
6.5 Some Partial Differential Equations......................................538
6.5.1 The One-Dimensional Wave Equation..........................538
6.5.2 The Two-Dimensional Wave Equation..........................544
6.5.3 Other Partial Differential Equations............................556
|
any_adam_object | 1 |
author | Abell, Martha L. 1962- |
author_GND | (DE-588)130087025 |
author_facet | Abell, Martha L. 1962- |
author_role | aut |
author_sort | Abell, Martha L. 1962- |
author_variant | m l a ml mla |
building | Verbundindex |
bvnumber | BV023795787 |
classification_rvk | ST 601 |
ctrlnum | (OCoLC)636892245 (DE-599)BVBBV023795787 |
dewey-full | 510.285536 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.285536 |
dewey-search | 510.285536 |
dewey-sort | 3510.285536 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01375nam a2200361zc 4500</leader><controlfield tag="001">BV023795787</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070315000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040714s2004 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0120415631</subfield><subfield code="9">0-12-041563-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)636892245</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023795787</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.285536</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abell, Martha L.</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130087025</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematica by example</subfield><subfield code="c">Martha L. Abell and James P. Braselton</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier Acad. Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 571 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017437992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017437992</subfield></datafield></record></collection> |
id | DE-604.BV023795787 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:36:59Z |
institution | BVB |
isbn | 0120415631 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017437992 |
oclc_num | 636892245 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | XII, 571 S. graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Elsevier Acad. Press |
record_format | marc |
spelling | Abell, Martha L. 1962- Verfasser (DE-588)130087025 aut Mathematica by example Martha L. Abell and James P. Braselton 3. ed. Amsterdam [u.a.] Elsevier Acad. Press 2004 XII, 571 S. graph. Darst. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Mathematik (DE-588)4037944-9 gnd rswk-swf Mathematica Programm (DE-588)4268208-3 gnd rswk-swf Mathematik (DE-588)4037944-9 s Mathematica Programm (DE-588)4268208-3 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017437992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Abell, Martha L. 1962- Mathematica by example Mathematik (DE-588)4037944-9 gnd Mathematica Programm (DE-588)4268208-3 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4268208-3 |
title | Mathematica by example |
title_auth | Mathematica by example |
title_exact_search | Mathematica by example |
title_full | Mathematica by example Martha L. Abell and James P. Braselton |
title_fullStr | Mathematica by example Martha L. Abell and James P. Braselton |
title_full_unstemmed | Mathematica by example Martha L. Abell and James P. Braselton |
title_short | Mathematica by example |
title_sort | mathematica by example |
topic | Mathematik (DE-588)4037944-9 gnd Mathematica Programm (DE-588)4268208-3 gnd |
topic_facet | Mathematik Mathematica Programm |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017437992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT abellmarthal mathematicabyexample |