Discrete mathematics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2002
|
Ausgabe: | 2. ed |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 425 S. graph. Darst. |
ISBN: | 0198507186 9780198507178 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023790367 | ||
003 | DE-604 | ||
005 | 20180202 | ||
007 | t | ||
008 | 021025s2002 d||| |||| 00||| eng d | ||
020 | |a 0198507186 |9 0-19-850718-6 | ||
020 | |a 9780198507178 |9 978-0-19-850717-8 | ||
035 | |a (OCoLC)265037122 | ||
035 | |a (DE-599)BVBBV023790367 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-83 |a DE-384 | ||
082 | 0 | |a 004.0151 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a ST 110 |0 (DE-625)143583: |2 rvk | ||
084 | |a 68Exx |2 msc | ||
084 | |a 68Qxx |2 msc | ||
084 | |a 11Axx |2 msc | ||
084 | |a 05Axx |2 msc | ||
100 | 1 | |a Biggs, Norman |d 1941- |e Verfasser |0 (DE-588)136105580 |4 aut | |
245 | 1 | 0 | |a Discrete mathematics |c Norman L. Biggs |
250 | |a 2. ed | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2002 | |
300 | |a XIV, 425 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017432574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017432574 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138984388952064 |
---|---|
adam_text | DISCRETE MATHEMATICS SECOND EDITION NORMAN L. BIGGS PROFESSOR OF
MATHEMATICS LONDON SCHOOL OF ECONOMICS UNIVERSITY OF LONDON OXFORD
UNIVERSITY PRESS CONTENTS PART I FOUNDATIONS STATEMENTS AND PROOFS . 1
SOME MATHEMATICAL STATEMENTS 3 .2 HOW TO DO MATHEMATICS 4 .3 COMPOUND
STATEMENTS 6 .4 EXISTENTIAL STATEMENTS 7 .5 UNIVERSAL STATEMENTS 8 .6
PROOF TECHNIQUES 10 .7 MISCELLANEOUS EXERCISES 11 2. SET NOTATION 2.1
SETS OF OBJECTS AND NUMBERS 12 2.2 SUBSETS 13 2.3 UNION AND INTERSECTION
14 2.4 MISCELLANEOUS EXERCISES 15 3. THE LOGICAL FRAMEWORK 3.1 THE BASIC
LOGICAL OPERATIONS: NOT, OR, AND 17 3.2 LOGICAL EQUIVALENCE 18 3.3
IF-THEN 19 3.4 THE CONVERSE STATEMENT 20 3.5 THE CONTRAPOSITIVE
STATEMENT 21 3.6 UNIVERSAL AND EXISTENTIAL QUANTIFIERS 22 3.7
MISCELLANEOUS EXERCISES 24 4. NATURAL NUMBERS 4.1 THE LAWS OF ALGEBRA
25 4.2 PUTTING THE NATURAL NUMBERS IN ORDER 26 4.3 THE PRINCIPLE OF
INDUCTION 28 4.4 SUMMATION FORMULAE 29 4.5 RECURSIVE DEFINITIONS 31 4.6
OTHER FORMS OF THE PRINCIPLE OF INDUCTION 32 4.7 GREATEST AND LEAST
MEMBERS 34 4.8 HOW A CONJECTURE BECOMES A THEOREM 35 4.9 MISCELLANEOUS
EXERCISES 38 X CONTENTS 5. FUNCTIONS 5.1 THE CONCEPT OF A FUNCTION 39
5.2 SURJECTIONS, INJECTIONS, BIJECTIONS 40 5.3 COMPOSITION OF FUNCTIONS
42 5.4 BIJECTIONS AND INVERSE FUNCTIONS 43 5.5 MISCELLANEOUS EXERCISES
45 6. HOW TO COUNT 6.1 COUNTING AS A BIJECTION 46 6.2 THE SIZE OF A SET
47 6.3 A COUNTING PROBLEM 49 6.4 SOME APPLICATIONS OF THE PIGEONHOLE
PRINCIPLE 50 6.5 INFINITE SETS 51 6.6 STRANGE PROPERTIES OF INFINITE
SETS 53 6.7 MISCELLANEOUS EXERCISES 55 7. INTEGERS 7.1 NEGATIVE NUMBERS
56 7.2 EQUIVALENCE RELATIONS 56 7.3 CLASSIFICATION 58 7.4 CONSTRUCTION
OF THE INTEGERS 60 7.5 PROPERTIES OF THE INTEGERS 61 7.6 BOUNDED SUBSETS
OF Z 63 7.7 MISCELLANEOUS EXERCISES 64 8. DIVISIBILITY AND PRIME NUMBERS
8.1 DIVISIBILITY 65 8.2 QUOTIENT AND REMAINDER 65 8.3 REPRESENTATION OF
INTEGERS 66 8.4 THE GREATEST COMMON DIVISOR 67 8.5 PRIME NUMBERS 70 8.6
EXISTENCE AND UNIQUENESS OF PRIME FACTORIZATION 71 8.7 MISCELLANEOUS
EXERCISES 73 9. FRACTIONS AND REAL NUMBERS 9.1 CONSTRUCTION AND
PROPERTIES OF RATIONAL NUMBERS 75 9.2 DENSITY OF FRACTIONS 76 9.3
DECIMAL REPRESENTATIONS OF FRACTIONS 78 9.4 REAL NUMBERS 80 9.5
APPROXIMATIONS FOR REAL NUMBERS 82 9.6 THE GREATEST LOWER BOUND PROPERTY
84 9.7 THE REAL NUMBERS ARE MORE PLENTIFUL THAN THE RATIONALS 85 9.8
MISCELLANEOUS EXERCISES 87 PART II TECHNIQUES 10. PRINCIPLES OF COUNTING
10.1 THE ADDITION PRINCIPLE 10.2 COUNTING SETS OF PAIRS 10.3 EULER S
FUNCTION 10.4 FUNCTIONS, WORDS, AND SELECTIONS 10.5 INJECTIONS AS
ORDERED SELECTIONS WITHOUT REPETITION 10.6 PERMUTATIONS 10.7
MISCELLANEOUS EXERCISES 11. SUBSETS AND DESIGNS 11.1 BINOMIAL NUMBERS
11.2 UNORDERED SELECTIONS WITH REPETITION 11.3 THE BINOMIAL THEOREM 11.4
THE SIEVE PRINCIPLE 11.5 SOME ARITHMETICAL APPLICATIONS 11.6 DESIGNS
11.7 F-DESIGNS 11.8 MISCELLANEOUS EXERCISES 12. PARTITION,
CLASSIFICATION, AND DISTRIBUTION 12.1 PARTITIONS OF A SET 12.2
CLASSIFICATION AND EQUIVALENCE RELATIONS 12.3 DISTRIBUTIONS AND THE
MULTINOMIAL NUMBERS 12.4 PARTITIONS OF A POSITIVE INTEGER 12.5
CLASSIFICATION OF PERMUTATIONS 12.6 EVEN AND ODD PERMUTATIONS 12.7
MISCELLANEOUS EXERCISES 13. MODULAR ARITHMETIC 13.1 CONGRUENCES 13.2 Z M
AND ITS ARITHMETIC 13.3 INVERTIBLE ELEMENTS OF Z M 13.4 CYCLIC
CONSTRUCTIONS FOR DESIGNS 13.5 LATIN SQUARES 13.6 MISCELLANEOUS
EXERCISES PART III ALGORITHMS AND GRAPHS 14. ALGORITHMS AND THEIR
EFFICIENCY 14.1 WHAT IS AN ALGORITHM? 14.2 THE LANGUAGE OF PROGRAMS 14.3
ALGORITHMS AND PROGRAMS 14.4 PROVING THAT AN ALGORITHM IS CORRECT XII
CONTENTS 14.5 14.6 14.7 14.8 14.9 EFFICIENCY OF ALGORITHMS GROWTH RATES:
THE O NOTATION COMPARISON OF ALGORITHMS INTRODUCTION TO SORTING
ALGORITHMS MISCELLANEOUS EXERCISES 15. GRAPHS 15.1 15.2 15.3 15.4 15.5
15.6 15.7 15.8 GRAPHS AND THEIR REPRESENTATION ISOMORPHISM OF GRAPHS
DEGREE PATHS AND CYCLES TREES COLOURING THE VERTICES OF A GRAPH THE
GREEDY ALGORITHM FOR VERTEX-COLOURING MISCELLANEOUS EXERCISES 168 170
171 173 176 178 179 181 183 185 187 188 191 16. TREES, SORTING, AND
SEARCHING 16.1 COUNTING THE LEAVES ON A ROOTED TREE 193 16.2 TREES AND
SORTING ALGORITHMS 196 16.3 SPANNING TREES AND THE MST PROBLEM 199 16.4
DEPTH-FIRST SEARCH 202 16.5 BREADTH-FIRST SEARCH 205 16.6 THE SHORTEST
PATH PROBLEM 206 16.7 MISCELLANEOUS EXERCISES 208 17. BIPARTITE GRAPHS
AND MATCHING PROBLEMS 17.1 RELATIONS AND BIPARTITE GRAPHS 210 17.2 EDGE
COLOURINGS OF GRAPHS 212 17.3 APPLICATION OF EDGE COLOURING TO LATIN
SQUARES 213 17.4 MATCHINGS 216 17.5 MAXIMUM MATCHINGS 219 17.6
TRANSVERSALS FOR FAMILIES OF FINITE SETS 221 17.7 MISCELLANEOUS
EXERCISES 223 18. DIGRAPHS, NETWORKS, AND FLOWS 18.1 DIGRAPHS 225 18.2
NETWORKS AND CRITICAL PATHS 227 18.3 FLOWS AND CUTS 229 18.4 THE
MAX-FLOW MIN-CUT THEOREM 232 18.5 THE LABELLING ALGORITHM FOR NETWORK
FLOWS 235 18.6 MISCELLANEOUS EXERCISES 239 19. RECURSIVE TECHNIQUES 19.1
GENERALITIES ABOUT RECURSION 240 19.2 LINEAR RECURSION 241 CONTENTS XIII
19.3 RECURSIVE BISECTION 243 19.4 RECURSIVE OPTIMIZATION 245 19.5 THE
FRAMEWORK OF DYNAMIC PROGRAMMING 248 19.6 EXAMPLES OF THE DYNAMIC
PROGRAMMING METHOD 250 19.7 MISCELLANEOUS EXERCISES 253 PART IV
ALGEBRAIC METHODS 20. GROUPS 20.1 THE AXIOMS FOR A GROUP 259 20.2
EXAMPLES OF GROUPS 260 20.3 BASIC ALGEBRA IN GROUPS 263 20.4 THE ORDER
OF A GROUP ELEMENT 265 20.5 ISOMORPHISM OF GROUPS 266 20.6 CYCLIC GROUPS
268 20.7 SUBGROUPS 270 20.8 COSETS AND LAGRANGE S THEOREM 273 20.9
CHARACTERIZATION OF CYCLIC GROUPS 277 20.10 MISCELLANEOUS EXERCISES 279
21. GROUPS OF PERMUTATIONS 21.1 DEFINITIONS AND EXAMPLES 281 21.2 ORBITS
AND STABILIZERS 283 21.3 THE SIZE OF AN ORBIT 285 21.4 THE NUMBER OF
ORBITS 288 21.5 REPRESENTATION OF GROUPS BY PERMUTATIONS 290 21.6
APPLICATIONS TO GROUP THEORY 292 21.7 MISCELLANEOUS EXERCISES 295 22.
RINGS, FIELDS, AND POLYNOMIALS 22.1 RINGS 296 22.2 INVERTIBLE ELEMENTS
OF A RING 297 22.3 FIELDS 299 22.4 POLYNOMIALS 301 22.5 THE DIVISION
ALGORITHM FOR POLYNOMIALS 304 22.6 THE EUCLIDEAN ALGORITHM FOR
POLYNOMIALS 306 22.7 FACTORIZATION OF POLYNOMIALS IN THEORY 309 22.8
FACTORIZATION OF POLYNOMIALS IN PRACTICE 310 22.9 MISCELLANEOUS
EXERCISES 313 23. FINITE FIELDS AND SOME APPLICATIONS 23.1 A FIELD WITH
NINE ELEMENTS 314 23.2 THE ORDER OF A FINITE FIELD 315 23.3 CONSTRUCTION
OF FINITE FIELDS 317 23.4 THE PRIMITIVE ELEMENT THEOREM 318 23.5 FINITE
FIELDS AND LATIN SQUARES 322 XIV CONTENTS 23.6 FINITE GEOMETRY AND
DESIGNS 324 23.7 PROJECTIVE PLANES 327 23.8 SQUARES IN FINITE FIELDS ,
330 23.9 EXISTENCE OF FINITE FIELDS 333 23.10 MISCELLANEOUS EXERCISES
336 24. ERROR-CORRECTING CODES 24.1 WORDS, CODES, AND ERRORS 338 24.2
LINEAR CODES 341 24.3 CONSTRUCTION OF LINEAR CODES 343 24.4 CORRECTING
ERRORS IN LINEAR CODES 345 24.5 CYCLIC CODES 349 24.6 CLASSIFICATION AND
PROPERTIES OF CYCLIC CODES 351 24.7 MISCELLANEOUS EXERCISES 355 25.
GENERATING FUNCTIONS 25.1 POWER SERIES AND THEIR ALGEBRAIC PROPERTIES
357 25.2 PARTIAL FRACTIONS 360 25.3 THE BINOMIAL THEOREM FOR NEGATIVE
EXPONENTS 364 25.4 GENERATING FUNCTIONS 367 25.5 THE HOMOGENEOUS LINEAR
RECURSION 369 25.6 NON-HOMOGENEOUS LINEAR RECURSIONS 372 25.7
MISCELLANEOUS EXERCISES 374 26. PARTITIONS OF A POSITIVE INTEGER 26.1
PARTITIONS AND DIAGRAMS 376 26.2 CONJUGATE PARTITIONS 378 26.3
PARTITIONS AND GENERATING FUNCTIONS 379 26.4 GENERATING FUNCTIONS FOR
RESTRICTED PARTITIONS 382 26.5 A MYSTERIOUS IDENTITY 384 26.6 THE
CALCULATION OF P(N) 387 26.7 MISCELLANEOUS EXERCISES 388 27. SYMMETRY
AND COUNTING 27.1 THE CYCLE INDEX OF A GROUP OF PERMUTATIONS 390 27.2
CYCLIC AND DIHEDRAL SYMMETRY 392 27.3 SYMMETRY IN THREE DIMENSIONS 395
27.4 THE NUMBER OF INEQUIVALENT COLOURINGS 397 27.5 SETS OF COLOURINGS
AND THEIR GENERATING FUNCTIONS 400 27.6 POLYA S THEOREM 402 27.7
MISCELLANEOUS EXERCISES 405 ANSWERS TO EXERCISES 407 INDEX 421
|
any_adam_object | 1 |
author | Biggs, Norman 1941- |
author_GND | (DE-588)136105580 |
author_facet | Biggs, Norman 1941- |
author_role | aut |
author_sort | Biggs, Norman 1941- |
author_variant | n b nb |
building | Verbundindex |
bvnumber | BV023790367 |
classification_rvk | SK 890 ST 110 |
ctrlnum | (OCoLC)265037122 (DE-599)BVBBV023790367 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
edition | 2. ed |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01731nam a2200457zc 4500</leader><controlfield tag="001">BV023790367</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180202 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">021025s2002 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198507186</subfield><subfield code="9">0-19-850718-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198507178</subfield><subfield code="9">978-0-19-850717-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)265037122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023790367</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 110</subfield><subfield code="0">(DE-625)143583:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68Exx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68Qxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11Axx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05Axx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biggs, Norman</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136105580</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete mathematics</subfield><subfield code="c">Norman L. Biggs</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 425 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017432574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017432574</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Einführung Aufgabensammlung |
id | DE-604.BV023790367 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:36:52Z |
institution | BVB |
isbn | 0198507186 9780198507178 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017432574 |
oclc_num | 265037122 |
open_access_boolean | |
owner | DE-634 DE-83 DE-384 |
owner_facet | DE-634 DE-83 DE-384 |
physical | XIV, 425 S. graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Biggs, Norman 1941- Verfasser (DE-588)136105580 aut Discrete mathematics Norman L. Biggs 2. ed Oxford [u.a.] Oxford Univ. Press 2002 XIV, 425 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Diskrete Mathematik (DE-588)4129143-8 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content Diskrete Mathematik (DE-588)4129143-8 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017432574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Biggs, Norman 1941- Discrete mathematics Diskrete Mathematik (DE-588)4129143-8 gnd |
subject_GND | (DE-588)4129143-8 (DE-588)4151278-9 (DE-588)4143389-0 |
title | Discrete mathematics |
title_auth | Discrete mathematics |
title_exact_search | Discrete mathematics |
title_full | Discrete mathematics Norman L. Biggs |
title_fullStr | Discrete mathematics Norman L. Biggs |
title_full_unstemmed | Discrete mathematics Norman L. Biggs |
title_short | Discrete mathematics |
title_sort | discrete mathematics |
topic | Diskrete Mathematik (DE-588)4129143-8 gnd |
topic_facet | Diskrete Mathematik Einführung Aufgabensammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017432574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT biggsnorman discretemathematics |