DIE FRAKTALE GEOMETRIE DER NATUR:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
BERLIN
AKAD.-VERL.
1987
|
Schlagworte: | |
Beschreibung: | EST: THE FRACTAL GEOMETRY OF NATURE <DT.> |
Beschreibung: | 491 S. |
ISBN: | 3055004736 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023651839 | ||
003 | DE-604 | ||
005 | 20110325 | ||
007 | t | ||
008 | 930920s1987 |||| 00||| und d | ||
020 | |a 3055004736 |9 3-05-500473-6 | ||
035 | |a (OCoLC)247438461 | ||
035 | |a (DE-599)BVBBV023651839 | ||
040 | |a DE-604 |b ger | ||
041 | |a und | ||
049 | |a DE-523 | ||
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
100 | 1 | |a Mandelbrot, Benoît B. |d 1924-2010 |e Verfasser |0 (DE-588)118974203 |4 aut | |
245 | 1 | 0 | |a DIE FRAKTALE GEOMETRIE DER NATUR |c BENOIT B. MANDELBROT |
264 | 1 | |a BERLIN |b AKAD.-VERL. |c 1987 | |
300 | |a 491 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a EST: THE FRACTAL GEOMETRY OF NATURE <DT.> | ||
650 | 0 | 7 | |a Chaostheorie |0 (DE-588)4009754-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ähnlichkeit |0 (DE-588)4202994-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Geometrie |0 (DE-588)4001867-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Natur |0 (DE-588)4041358-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 1 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 2 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 3 | 1 | |a Chaostheorie |0 (DE-588)4009754-7 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
689 | 4 | 0 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |D s |
689 | 4 | |8 3\p |5 DE-604 | |
689 | 5 | 0 | |a Natur |0 (DE-588)4041358-5 |D s |
689 | 5 | |8 4\p |5 DE-604 | |
689 | 6 | 0 | |a Analytische Geometrie |0 (DE-588)4001867-2 |D s |
689 | 6 | |8 5\p |5 DE-604 | |
689 | 7 | 0 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 7 | |8 6\p |5 DE-604 | |
689 | 8 | 0 | |a Ähnlichkeit |0 (DE-588)4202994-6 |D s |
689 | 8 | |8 7\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017248184 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138759283802112 |
---|---|
any_adam_object | |
author | Mandelbrot, Benoît B. 1924-2010 |
author_GND | (DE-588)118974203 |
author_facet | Mandelbrot, Benoît B. 1924-2010 |
author_role | aut |
author_sort | Mandelbrot, Benoît B. 1924-2010 |
author_variant | b b m bb bbm |
building | Verbundindex |
bvnumber | BV023651839 |
classification_rvk | UG 3900 |
ctrlnum | (OCoLC)247438461 (DE-599)BVBBV023651839 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02990nam a2200745zc 4500</leader><controlfield tag="001">BV023651839</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110325 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930920s1987 |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3055004736</subfield><subfield code="9">3-05-500473-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247438461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023651839</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-523</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mandelbrot, Benoît B.</subfield><subfield code="d">1924-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118974203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DIE FRAKTALE GEOMETRIE DER NATUR</subfield><subfield code="c">BENOIT B. MANDELBROT</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">BERLIN</subfield><subfield code="b">AKAD.-VERL.</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">491 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">EST: THE FRACTAL GEOMETRY OF NATURE <DT.></subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ähnlichkeit</subfield><subfield code="0">(DE-588)4202994-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Natur</subfield><subfield code="0">(DE-588)4041358-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Natur</subfield><subfield code="0">(DE-588)4041358-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="7" ind2="0"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="7" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="8" ind2="0"><subfield code="a">Ähnlichkeit</subfield><subfield code="0">(DE-588)4202994-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="8" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017248184</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023651839 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:33:17Z |
institution | BVB |
isbn | 3055004736 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017248184 |
oclc_num | 247438461 |
open_access_boolean | |
owner | DE-523 |
owner_facet | DE-523 |
physical | 491 S. |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | AKAD.-VERL. |
record_format | marc |
spelling | Mandelbrot, Benoît B. 1924-2010 Verfasser (DE-588)118974203 aut DIE FRAKTALE GEOMETRIE DER NATUR BENOIT B. MANDELBROT BERLIN AKAD.-VERL. 1987 491 S. txt rdacontent n rdamedia nc rdacarrier EST: THE FRACTAL GEOMETRY OF NATURE <DT.> Chaostheorie (DE-588)4009754-7 gnd rswk-swf Fraktalgeometrie (DE-588)4473576-5 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Ähnlichkeit (DE-588)4202994-6 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Natur (DE-588)4041358-5 gnd rswk-swf Fraktal (DE-588)4123220-3 s Geometrie (DE-588)4020236-7 s DE-604 Symmetrie (DE-588)4058724-1 s Stochastischer Prozess (DE-588)4057630-9 s 1\p DE-604 Chaostheorie (DE-588)4009754-7 s 2\p DE-604 Fraktalgeometrie (DE-588)4473576-5 s 3\p DE-604 Natur (DE-588)4041358-5 s 4\p DE-604 Analytische Geometrie (DE-588)4001867-2 s 5\p DE-604 Mathematisches Modell (DE-588)4114528-8 s 6\p DE-604 Ähnlichkeit (DE-588)4202994-6 s 7\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mandelbrot, Benoît B. 1924-2010 DIE FRAKTALE GEOMETRIE DER NATUR Chaostheorie (DE-588)4009754-7 gnd Fraktalgeometrie (DE-588)4473576-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Ähnlichkeit (DE-588)4202994-6 gnd Geometrie (DE-588)4020236-7 gnd Fraktal (DE-588)4123220-3 gnd Analytische Geometrie (DE-588)4001867-2 gnd Symmetrie (DE-588)4058724-1 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Natur (DE-588)4041358-5 gnd |
subject_GND | (DE-588)4009754-7 (DE-588)4473576-5 (DE-588)4114528-8 (DE-588)4202994-6 (DE-588)4020236-7 (DE-588)4123220-3 (DE-588)4001867-2 (DE-588)4058724-1 (DE-588)4057630-9 (DE-588)4041358-5 |
title | DIE FRAKTALE GEOMETRIE DER NATUR |
title_auth | DIE FRAKTALE GEOMETRIE DER NATUR |
title_exact_search | DIE FRAKTALE GEOMETRIE DER NATUR |
title_full | DIE FRAKTALE GEOMETRIE DER NATUR BENOIT B. MANDELBROT |
title_fullStr | DIE FRAKTALE GEOMETRIE DER NATUR BENOIT B. MANDELBROT |
title_full_unstemmed | DIE FRAKTALE GEOMETRIE DER NATUR BENOIT B. MANDELBROT |
title_short | DIE FRAKTALE GEOMETRIE DER NATUR |
title_sort | die fraktale geometrie der natur |
topic | Chaostheorie (DE-588)4009754-7 gnd Fraktalgeometrie (DE-588)4473576-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Ähnlichkeit (DE-588)4202994-6 gnd Geometrie (DE-588)4020236-7 gnd Fraktal (DE-588)4123220-3 gnd Analytische Geometrie (DE-588)4001867-2 gnd Symmetrie (DE-588)4058724-1 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Natur (DE-588)4041358-5 gnd |
topic_facet | Chaostheorie Fraktalgeometrie Mathematisches Modell Ähnlichkeit Geometrie Fraktal Analytische Geometrie Symmetrie Stochastischer Prozess Natur |
work_keys_str_mv | AT mandelbrotbenoitb diefraktalegeometriedernatur |