Bulk nanostructured materials:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XXVI, 710 S. Ill., graph. Darst |
ISBN: | 9783527315246 3527315241 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023481417 | ||
003 | DE-604 | ||
005 | 20090911 | ||
007 | t | ||
008 | 080807s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 07,N20,1030 |2 dnb | ||
016 | 7 | |a 983933650 |2 DE-101 | |
020 | |a 9783527315246 |c Gb. : ca. EUR 139.00 (freier Pr.), ca. sfr 220.00 (freier Pr.) |9 978-3-527-31524-6 | ||
020 | |a 3527315241 |c Gb. : ca. EUR 139.00 (freier Pr.), ca. sfr 220.00 (freier Pr.) |9 3-527-31524-1 | ||
024 | 3 | |a 9783527315246 | |
028 | 5 | 2 | |a 1131524 000 |
035 | |a (OCoLC)84151613 | ||
035 | |a (DE-599)DNB983933650 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-355 |a DE-19 |a DE-29T |a DE-20 |a DE-703 |a DE-634 |a DE-11 | ||
050 | 0 | |a TA418.9.N35 | |
082 | 0 | |a 620.5 |2 22 | |
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
084 | |a 540 |2 sdnb | ||
245 | 1 | 0 | |a Bulk nanostructured materials |c ed. by Michael J. Zehetbauer ... |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2009 | |
300 | |a XXVI, 710 S. |b Ill., graph. Darst | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Bulk solids | |
650 | 4 | |a Nanostructured materials | |
650 | 0 | 7 | |a Bulk |0 (DE-588)7649023-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Bulk |0 (DE-588)7649023-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zehetbauer, Michael J. |e Sonstige |0 (DE-588)128839457 |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2945693&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016663541&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016663541 |
Datensatz im Suchindex
_version_ | 1805090900943044608 |
---|---|
adam_text |
Contents
Preface XIX
List of Contributors
XXI
Part One Introduction and Overview
1
Nanostructured Materials: An Overview
3
Carl
С
Koch
1.1
Introduction
3
1.2
Processing
6
1.3
Characterization
11
1.4
Properties
12
1.4.1
Mechanical Properties
12
1.4.2
Magnetic and Other Properties
18
References
19
2
Bulk Nanostructured Materials by
SPD
Processing:
Techniques,
Microstructures
and Properties
21
Ruslan Z. Valiev and Airat A. Nazarov
2.1
Introduction
21
2.2
Developing
SPD
Techniques for Grain Refinement
22
2.2.1
The Principles of
SPD
Techniques
22
2.2.2
Continuous ECA Pressing
28
2.2.3
Combined
SPD
Processing
31
2.3
The New
SPD
Processing of Bulk Nanocrystalline Materials
33
2.3.1 SPD
Consolidation
33
2.3.2
SPD-induced Nanocrystallization
34
2.4
Structural Features and Enhanced Properties
in SPD-produced Nanomaterials
37
2.5
Using SPD-produced Nanostructured Metals
42
2.6
Conclusions
45
Acknowledgements
45
References
46
VI
I Contents
3
Nonmetallic Bulk Nanomaterials
49
Dieter Vollath
3.1
Introduction
49
3.2
Optical Properties
51
3.3
Metallic and Semiconducting Nanoparticles
in Transparent Matrices
62
3.4
Magnetic Properties of Bulk Nanomaterials
66
3.4.1
Superparamagnetic Nanocomposites
66
3.4.2
Magnetic Refrigeration
74
3.4.3
Exchange-coupled Magnetic Nanocomposites
75
3.5
Electrical Conductivity
81
References
84
Part Two Fundamentals
4
Deformation Mechanisms of Nanostructured Materials
89
Yuntian T. Zhu,
Bing
Q.
Han, and Enrique
J.
Lavernia
4.1
Introduction
89
4.2
Deformation Mechanisms of Nanostructured Materials
91
4.2.1
Slip of Full Dislocations
92
A.I.I Slip of Partial Dislocations and Deformation Twinning
93
4.2.2.1
MD Simulations and Experimental Observations
93
4.2.2.2
Analytical Dislocation Models
97
4.2.2.3
Wide Stacking Faults
102
4.2.2.4
Effect of Generalized Planar Fault Energy
102
4.2.3
Grain-boundary Sliding and Grain Rotations
104
4.3
Summary
105
References
106
5
Modeling of Strength and Strain Hardening
of Bulk Nanostructured Materials
109
Michael J. Zehetbauer and Yuri Estrin
5.1
Introduction
109
5.2
Modeling of Strength and Strain Hardening of Ultrafine-grained
and Nanocrystalline Materials
110
5.2.1
Modeling of Hardening of Equilibrated Nanostructures
110
5.2.2
Modeling of Strength and Structure Evolution during
Nanostructuring by Severe Plastic Deformation:
SPD
models
114
5.2.2.1
Constitutive Models for Strain Hardening at Large Strains
114
5.2.2.2
Application of Large-strain Models to
SPD
Processes
119
5.3
Summary and Outlook
134
References
135
Contents
VII
6
Finite-element Method Simulation
of Severe Plastic-deformation Methods
137
Hyoung Seop Kim
6.1
Introduction
137
6.2
Characteristics of ECAP and Main Factors Affecting
Plastic Deformation
139
6.3
Plasticity and Calculation Theories
141
6.4
Simulation Results
143
6.4.1
Two-dimensional vs. Three-dimensional Simulations
143
6.4.2
Benchmark Testing of ECAP Simulations
[81]
in NANOSPD3
144
6.4.3
Mesh-size Sensitivity
146
6.4.4
Influence of Die-channel Angle
147
6.4.5
Influence of Die-corner Angle
147
6.4.6
Effect of Friction
149
6.4.7
Effect of Backpressure
151
6.4.8
Effects of Material Properties: Strain Hardening
and Strain-rate Sensitivity
153
6.5
Multiscale Modeling: Dislocation-cell Modeling
[82] 156
6.6
HPT Simulation
[84] 158
6.7
Conclusions
160
Acknowledgements
160
References
161
7
MD Simulation of Deformation Mechanisms
in Nanocrystalline Materials
165
Dieter Wolf and Vesselin Ya
makov
7.1
Introduction
165
7.2
Dislocation Plasticity for Larger Grain Sizes
and the Existence of dc
167
7.2.1
Columnar Simulation Model for
Al
168
7.2.2
Length-scale Effects in the Nucleation of Dislocations
from the Grain Boundaries and the Existence of dc
169
7.2.3
Deformation Twinning in Nanocrystalline
Al
171
7.2.4
Experimental Validation of Key Predictions
174
7.3
Grain-boundary-based Deformation Mechanisms
for the Smallest Grain Sizes (d<dQ)
176
7.3.1
Simulation of Low-temperature Deformation
176
7.3.2
Simulation of Grain-boundary Diffusion Creep
180
7.3.3
Geometrically Necessary Coupling between Grain-boundary
Diffusion Creep and Grain-boundary Sliding
182
7.3.4
Discussion
183
7.4
Crossover from "Normal" to "Inverse" Hall-Petch Behavior
285
7.4.1
Grain Boundaries as Dislocation Sources
185
7.4.2
Crossover in the Mechanical Behavior
188
Vili
Contents
7.4.3
Effect
of the Stacking-fault Energy
192
7.5
Discussion and Conclusions
196
Acknowledgements
197
References
197
Part Three Processing
8
ECAP: Processing Fundamentals and Recent Progresses
203
Zenji
Horită
8.1
Principle of ECAP
203
8.2
Shearing Characteristic
204
8.3
Microstructural Evolution
205
8.4
Effect of Channel Angles on
Microstructures
207
8.4.1
The Effect of
Φ
207
8.4.2
The Effect of
Ψ
208
8.5
Pressing Speed
209
8.6
ECAP Temperature
210
8.7
Applied Load
212
8.8
Temperaturere Measurement during ECAP
212
8.9
Sample Size
214
References
215
9
High-pressure Torsion
-
Features and Applications
217
Reinhard
Pippan
9.1
Introduction
217
9.2
The Equivalent Strain in Torsion
217
9.2.1
Idealized and Real HPT
219
9.3
The Homogeneity of the Deformation
222
9.3.1
The Radial Distribution
222
9.3.2
The Axial Homogeneity
224
9.4
Advantages and Disadvantages of the HPT Process
226
9.5
Upscaling of the HPT Deformation and the Possibility
of Large-scale Industrial Production
228
9.6
Some General Remarks on the Evolution of
Microstructure
229
Acknowledgements
232
References
232
10
Fabrication of Bulk Nanostructured Materials
by Accumulative Roll Bonding
(ARB) 235
Nobuhiro Tsuji
10.1
Introduction
235
10.2 ARB
Process
235
10.3
Microstructure
of ARB-processed Materials
240
Contents
IX
10.4
Mechanical Properties of the ARB-processed Materials
243
10.5
Conclusions
252
Acknowledgement
252
References
252
ΊΊ
Bulk Nanomaterials from Friction Stir Processing:
Features and Properties
255
Rajiv S. Mishra
11.1
Introduction
255
11.2
Temperature Distribution
257
11.3
Microstructural
Evolution
259
11.3.1
Nugget Zone
260
11.3.2
Shape of Nugget Zone
260
11.3.3
Grain Size
260
11.3.4
Recrystallization Mechanisms
263
11.4
Superplasticity in FSP
Ultrafine
Grained Materials
264
11.5
FSP for Surface Composite Fabrication
and Microstructural Homogenization
266
11.5.1
Localized Surface Modification
266
11.5.2
Processing of Powder Metallurgy Alloys
267
Acknowledgement
269
References
270
12
Bulk Nanostructured Metals from Ball Milling and
Consolidatie
273
Bing
Q.
Han, Jichun Ye,
A. Piers Newbery, Yuntian
T. Zhu,
Julie M. Schoenung,
and Enrique
J. Lavernia
12.1
Introduction
273
12.2
Mechanisms of Nanostructure Formation
274
12.3
Ball Milling of Metal Matrix Composites
277
12.4
Consolidation of Ball-milled Powders
279
12.5
Mechanical Properties of Bulk Nanostructured Metallic Materials
282
12.6
Summary
288
Acknowledgements
289
References
289
13
Bulk Nanostructured Materials from Amorphous Solids
293
Gerhard Wilde
13.1
Introduction
293
13.2
Amorphization and Devitrification
296
13.3
Thermally Induced Nanocrystallization
299
13.3.1
Phase Separation of Glasses
302
13.4
BNM Formation by Plastic Deformation
304
X I Contents
13.5
Properties of BNM from Amorphous Precursors
-
Selected Examples
306
13.6
Summary and Outlook
308
Acknowledgements
308
References
309
14
Continuous
SPD
Techniques, and Post-SPD Processing
311
Igor V. Aiexandrov
14.1
Introduction
311
14.2
Continuous
SPD
Techniques
312
14.2.1
ECAP-Conform Process
312
14.2.2
Equal-channel Angular Drawing (ECAD) Process
313
14.2.3
Conshearing Process
314
14.2.4
Continuous Confined Strip Shearing (C2S2) Process
315
14.3
Post-SPD Processing
316
14.3.1
ECAP plus Forging or Cold Rolling
316
14.3.2
ECAP plus Additional Thermornechanical Treatment
321
14.4
Conclusions
323
References
323
Part Four Characterization
15
Transmission Electron Microscopy of Bulk Nanostructured Metals
327
Xiaozhou Liao and Xiaoxu Huang
15.1
Investigation of Deformation Mechanisms
of Nanostructured Metals
327
15.2
Nanostructured Metals Produced by Severe Plastic Deformation
334
15.2.1
Structural Morphology
334
15.2.2
Boundary Spacing
336
15.2.3
Boundary Misorientation
337
15.2.4
Interior Dislocation Density
340
15.2.5
Summary
340
Acknowledgment
340
References
341
16
Bulk Nanostructured Intermetallic Alloys Studied by Transmission
Electron Microscopy
343
Thomas Waitz, Christian Rentenberger, and H. Peter Karnthaler
16.1
Introduction
343
16.2
ТЕМ
Analysis of Lattice Defects in Nanostructured Materials:
Possible Pitfalls
344
16.3
Evolution of Nanostractures by
SPD 346
16.4
Local Phase Analysis
349
Contents
I XI
16.4.1
SPD-induced Order-Disorder Transition
349
16.4.2
Thermally Induced Crystalline-Crystalline Phase Transformation
in Nanograins
351
16.4.3
Amorphous-Crystalline Phase Transformation
352
16.5
Local Texture Analysis by SAED, HRTEM and Dark-field
Images
355
16.6
Summary
357
Acknowledgments
358
References
358
17
Microstructure
of Bulk Nanomaterials Determined
by
Х
-Ray Line-profile Analysis
361
Tamás
Ungar, Erhard Schafler, and Jena
Cubicza
17.1
Introduction
362
17.2
General Concept and the Basic Ideas
of X-ray Line-profile Analysis
361
17.3
Basic Principles of X-ray Line-profile Analysis
363
17.3.1
Strain Anisotropy
364
17.3.2
Breadth Methods
365
17.3.3
Whole-profile Fitting Methods
366
17.4
Interpretation of Crystallite Size in Bulk Materials in Terms
of
Subgrains
367
17.5
Dislocation Structure of Bulk Nanomaterials Determined
by X-ray Line-profile Analysis
369
17.5.1
Characteristic Parameters of the Dislocation Structure
from Line Profiles
369
17.5.2
Dislocation Structure in Cubic Nanomaterials
372
17.5.3
Dislocations in Hexagonal Nanomaterials
375
17.6
Vacancies and X-ray Line-profile Analysis
377
17.7
Stacking Faults and Twinning in Nanostructured Materials
Determined by X-ray Line-profile Analysis
383
17.8
Conclusions
382
Acknowledgements
382
References
383
18
Texture Evolution in Equal-channel Angular Extrusion
387
Irene J.
Beyerlein
and
László S. Tóth
18.1
Introduction
387
18.2
Background
388
18.2.1
Macroscopic Deformation in ECAE
388
18.2.1.1
Simple Shear Model
388
18.2.1.2
Finite-element Modeling
389
18.2.1.3
Analytical Flow Models
390
18.2.1.4
Multiple Passes
392
XII
I Contents
18.2.2
Crystal Plasticity and Polycrystal Modeling
393
18.2.2.1
Crystal Structure
393
18.2.2.2
Texture Measurement and Presentation
393
18.2.2.3
Texture Characterization
394
18.2.2.4
Polycrystal Modeling
399
18.2.2.5
Comparing Measurement and Prediction
400
18.3
Texture Results
400
18.3.1
Cubic Textures
400
18.3.1.1
Influence of Die Angle
Φ
400
18.3.1.2
Influence of Route and Pass Number
401
18.3.2
HCP Textures
403
18.3.3
Influence of Microstructure
405
18.3.3.1
Influence of Initial Texture
405
18.3.3.2
Stacking-fault Energy/Twinning in Cubic Materials
406
18.3.3.3
Influence of Deformation Mechanisms in hep Materials
407
18.3.3.4
ECAE of Single Crystals
409
18.3.4
Effect of Temperature
410
18.4
Model Performance
411
18.4.1
Macroscale
411
18.4.2
Mesoscale
412
18.4.3
Microscale
413
18.4.4
Factors Affecting Comparisons Between Experiment
and Prediction
414
18.5
Additional Features
414
18.5.1
Heterogeneity
414
18.5.2
Texture Strength
415
18.5.3
Influence on Grain Refinement
416
18.5.4
Influence on Mechanical Properties
416
References
417
Part Five Properties
19
19.1
19.2
19.3
19.4
19.5
19.6
19.6.1
19.6.2
19.6.3
19.6.4
Mechanical Properties of Bulk Nanostructured Metals
Yinmin
M.
Wang and Evan Ma
425
Introduction
425
Elastic Properties
426
Hardness and Strength
427
Strain-hardening Behavior
430
Strain-rate Sensitivity
431
Tensile Ductility
436
Bimodal and/or
Multimodal
Microstructures
440
Growth Twins
442
Deformation at Low Temperature and/or High Strain Rates
Taking Advantage of Elevated Strain-rate Sensitivity
445
444
Contents XIII
19.6.5
Other Possible Approaches
445
19.7
Temperature Dependence
446
19.8
Deformation Modes
447
19.9
Concluding Remarks
449
Acknowledgements
450
References
450
20
Superplasticity of Bulk Nanostructured Materials
455
Terence
C.
Langdon
20.1
Principles of Superplasticity
455
20.2
Achieving Superplasticity after
SPD
Processing
457
20.3
Achieving a Superplastic-forming Capability
461
20.4
Cavitation in Superplasticity after
SPD
Processing
463
20.5
Future Prospects for Superplasticity
in Nanostructured Materials
466
References
467
21
Fracture and Crack Growth in Bulk Nanostructured Materials
469
Ruth Schwaiger, Benedikt Moser,
and Timothy
Hanlon
21.1
Introduction
469
21.2
Fracture Toughness
470
21.3
Fracture Mechanisms
473
21.4
Fatigue Crack Growth
476
21.5
Conclusion
478
References
478
22
Fatigue Properties of Bulk Nanostructured Materials
481
Heinz-Werner Höppel, Hael
Mughrabi, and
Alexej Vinogradov
22.1
Introduction and Motivation and Motivation
481
22.2
Fatigue Life of UFG Materials
483
22.3
Cyclic Deformation Behavior and Damage Mechanisms
488
22.4
Modeling
494
22.5
Criteria for Optimizing the Cyclic Deformation Behavior
496
References
498
23
Diffusion in Nanocrystalline Metallic Materials
501
Wolfgang
Sprengel
and Roland
Würschum
23.1
Introduction
501
23.2
Modelling
502
23.3
Diffusion Measurements
503
23.3.1
Overview
503
23.3.2
Structural Relaxation and Grain Growth
506
23.3.3
Different Types of Interfaces
507
23.3.4
Intergranular Amorphous Phases
508
XIV
I Contents
23.3.5
Intergranular Melting
510
23.4
Atomistic Simulations
532
23.5
Comparison with Diffusion-mediated Processes of Deformation
and Induced Magnetic Anisotropy
512
References
515
24
Creep Behavior of Bulk Nanostructured Materials
-
Time-dependent Deformation and Deformation Kinetics
519
Wolfgang Blum, Philip Eisenlohr, and Vaclav
Sklenička
24.1
Introduction
539
24.2
Deformation Resistance in Creep
521
24.2.1
Nanocrystalline
Ni
523
24.2.2
Fine-grained
Al
522
24.2.3
Ultrafme-grained Cu
525
24.3
Creep Response to Changes in Deformation Conditions
526
24.3.1
Stress Changes
527
24.3.2
Temperature Changes
528
24.4
Creep Resistance at Saturation
530
24.5
Creep Life
532
24.6
Microstructural
Interpretation of Grain-size Effects
533
24.7
Conclusions
534
Acknowledgements
534
References
535
25
Structural Properties of Bulk Nanostructured Ceramics
539
Alia V. Sergueeva, Dongtao T. Jiang,
Katherine
E.
Thomson,
Dustin
M.
Hulbert, and Amiya K. Mukherjee
25.1
Introduction
539
25.2
Highly Creep Resistant Ceramics
539
25.2.1
Nano-nanoceramic Composites
543
25.2.2
Creep Resistance
543
25.3
Superplasticity in Ceramics
546
25.3.1
Low-temperature Superplasticity
547
25.3.2
Effect of the Processing Route
550
25.3.3
SPS Accelerated Superplasticity
553
25.4
Nanocomposites with Enhanced Fracture Toughness
552
25.4.1
Fiber Toughening
555
25.4.2
Ductile-phase Toughening
560
25.4.3
Transformation Toughening
560
25.4.4
Microcrack Toughening
562
25.4.5
Future Perspectives
562
25.5
Concluding Remarks
563
Acknowledgements
564
References
564
Contents
XV
Part Six Applications
26
Bulk Nanostructured Multiphase Ferrous and Nonferraus Alloys
571
Sergey
Dobatkin
and
Xavier
Sauvage
26.1
Introduction
571
26.2
Bulk Nanostructured Multiphase Ferrous Alloys
571
26.2.1
Introduction
571
26.2.2
Low-carbon Ferritic-Pearlitic Steels
572
26.2.2.1
Cold
SPD
Processing of Low-carbon Steels
572
Id.ll.l Warm
SPD
of Low-carbon Steels
576
26.2.2.3
Formation of Submicrocrystalline Structure by Conventional Pro¬
cesses
577
26.2.3
Low-carbon Martensitic and Ferritic-Martensitic Steels
577
26.2.3.1
Low-carbon Martensitic Steels
577
26.2.3.2
Low-carbon Ferritic-Martensitic Steels
578
26.2.4
High-carbon Pearlitic Steels
579
26.2.5
Austenitic and Austenitic-Ferritic Stainless Steels
581
26.2.5.1
Austenitic Stainless Steels
582
26.2.5.2
Austenitic-Ferritic Stainless Steels
584
26.2.6
Summary
584
26.3
Bulk Nanostructured Multiphase Nonferrous Alloys
584
26.3.1
Introduction
584
26.3.2
Cast and Wrought Alloys
585
26.3.2.1
Cast and Wrought Magnesium Alloys
585
26.3.2.2
Cast and Wrought Aluminum Alloys
587
26.3.2.3
Cast and Wrought Copper Alloys
589
26.3.3
Age-hardenable Alloys
589
26.3.3.1
Age-hardenable Magnesium Alloys
589
26.3.3.2
Age-hardenable Aluminum Alloys
590
26.3.3.3
Age-hardenable Copper Alloys
590
26.3.4
Eutectic and Eutectoid Alloys
592
26.3.5
Intermetallics
593
26.3.5.1
Ni-Ti Alloys
593
26.3.5.2
Ni-Al, Ti-Al and Cu-Au Ordered Alloys
595
26.3.6
Composite Materials
595
26.3.7
Final Remarks
596
26.4
Summary
596
References
597
27
Bulk Nanocrystalline and Amorphous Magnetic Materials
605
Roland
Cröss'mger
and Reiko Sato Turtelli
27.1
Introduction
605
27.2
Soft Magnetic Materials
606
27.2.1
Rapidly Solidified Crystalline Materials
606
XVI
I Contents
27.2.2
Amorphous Materials or Rapidly Quenched Glasses
607
27.2.3
Bulk Amorphous Alloys
608
27.2.4
Nanocrystalline Soft Magnetic Materials
609
273
Hard Magnetic Materials
612
27.3.1
Nanocrystalline Hard Magnetic Materials
612
27.3.1.1
Nanocomposite Magnets
614
27.3.1.2
Single-phase Nanocrystalline Magnets
621
27.3.2
Nd-(Fe,Co)-Al
-
a Hard Magnetic Amorphous System?
621
27.3.2.1
Magnetic Properties of Melt-spun NdeoFejoAljo
and NdGoFe2oCo10Al1o Alloys at
300
К
622
27.3.2.2
Temperature Dependence of Magnetic Properties of Melt-spun
Nd6oFe3oAl10 and Nd60Fe2oCo10Al10 Alloys
623
27.3.2.3
Temperature Dependence of the Magnetic After-effect
625
27.3.3
Industrial Nanocrystalline Hard Magnetic Material
625
27
A Magnetostrictive
Materials
626
27.5
Magnetoelectric Materials
627
27.5.1
Single-phase Materials
627
27.5.2
Magnetoelectric Composites
627
27.6
Summary
628
References
629
28
Niche Applications of Bulk Nanostructured Materials Processed
by Severe Plastic Deformation
635
Yuri Estrin and Michael J. Zehetbauer
28.1
Introduction
635
28.2
Downscaling of Severe Plastic Deformation
635
28.3
Enhanced Reaction Kinetics
638
28.3.1
Plasma Nitriding of Steels
638
28.3.2
Accelerated
Hydrogénation
Kinetics of Magnesium Alloys
638
28.4
Biomedical
Applications of Ultrafine-grained Materials
643
28.5
Corrosion/Biocorrosion in SPD-processed Materials
645
28.6
Summary
646
References
647
29
Bulk Materials with a Nanostructured Surface
and Coarse-grained Interior
649
Ke
Lu
and Leon Shaw
29.1
Introduction
649
29.2
Processing and Structure Characterization
651
29.2.1
Deformation Field
651
29.2.2
Residual Stresses
653
29.2.3
Surface Roughness
655
29.2.4
Grain Size and Grain-refinement Mechanism
655
29.3
Properties and Performance
660
Contents IxVII
29.3.1
Hardness and Strength
660
29.3.2
Fatigue Resistance
663
29.3.3
Wear and Friction
665
29.3.4
Diffusion and Surface Chemical Reaction
666
29.4
Perspectives
668
Acknowledgments
669
References
670
30
Commercializing Bulk Nanostructured Metals and Alloys
673
Terry C. Lowe
30.1
The Innovation Process
673
30.2
The Technology: Nanostructured Metals
676
30.3
Market drivers
677
30.4
Competition from Other Materials
679
30.4.1
Appropriability: Ability of Innovators to Capture Profit
679
30.5
Maturity of the Bulk Nanostructuring Metals Process
Design Paradigm
681
30.6
The Need for Complementary Assets
682
30.7
Impact on the Metals Industry
683
30.8
Conclusions
684
References
685
Suject Index
687 |
adam_txt |
Contents
Preface XIX
List of Contributors
XXI
Part One Introduction and Overview
1
Nanostructured Materials: An Overview
3
Carl
С
Koch
1.1
Introduction
3
1.2
Processing
6
1.3
Characterization
11
1.4
Properties
12
1.4.1
Mechanical Properties
12
1.4.2
Magnetic and Other Properties
18
References
19
2
Bulk Nanostructured Materials by
SPD
Processing:
Techniques,
Microstructures
and Properties
21
Ruslan Z. Valiev and Airat A. Nazarov
2.1
Introduction
21
2.2
Developing
SPD
Techniques for Grain Refinement
22
2.2.1
The Principles of
SPD
Techniques
22
2.2.2
Continuous ECA Pressing
28
2.2.3
Combined
SPD
Processing
31
2.3
The New
SPD
Processing of Bulk Nanocrystalline Materials
33
2.3.1 SPD
Consolidation
33
2.3.2
SPD-induced Nanocrystallization
34
2.4
Structural Features and Enhanced Properties
in SPD-produced Nanomaterials
37
2.5
Using SPD-produced Nanostructured Metals
42
2.6
Conclusions
45
Acknowledgements
45
References
46
VI
I Contents
3
Nonmetallic Bulk Nanomaterials
49
Dieter Vollath
3.1
Introduction
49
3.2
Optical Properties
51
3.3
Metallic and Semiconducting Nanoparticles
in Transparent Matrices
62
3.4
Magnetic Properties of Bulk Nanomaterials
66
3.4.1
Superparamagnetic Nanocomposites
66
3.4.2
Magnetic Refrigeration
74
3.4.3
Exchange-coupled Magnetic Nanocomposites
75
3.5
Electrical Conductivity
81
References
84
Part Two Fundamentals
4
Deformation Mechanisms of Nanostructured Materials
89
Yuntian T. Zhu,
Bing
Q.
Han, and Enrique
J.
Lavernia
4.1
Introduction
89
4.2
Deformation Mechanisms of Nanostructured Materials
91
4.2.1
Slip of Full Dislocations
92
A.I.I Slip of Partial Dislocations and Deformation Twinning
93
4.2.2.1
MD Simulations and Experimental Observations
93
4.2.2.2
Analytical Dislocation Models
97
4.2.2.3
Wide Stacking Faults
102
4.2.2.4
Effect of Generalized Planar Fault Energy
102
4.2.3
Grain-boundary Sliding and Grain Rotations
104
4.3
Summary
105
References
106
5
Modeling of Strength and Strain Hardening
of Bulk Nanostructured Materials
109
Michael J. Zehetbauer and Yuri Estrin
5.1
Introduction
109
5.2
Modeling of Strength and Strain Hardening of Ultrafine-grained
and Nanocrystalline Materials
110
5.2.1
Modeling of Hardening of Equilibrated Nanostructures
110
5.2.2
Modeling of Strength and Structure Evolution during
Nanostructuring by Severe Plastic Deformation:
SPD
models
114
5.2.2.1
Constitutive Models for Strain Hardening at Large Strains
114
5.2.2.2
Application of Large-strain Models to
SPD
Processes
119
5.3
Summary and Outlook
134
References
135
Contents
VII
6
Finite-element Method Simulation
of Severe Plastic-deformation Methods
137
Hyoung Seop Kim
6.1
Introduction
137
6.2
Characteristics of ECAP and Main Factors Affecting
Plastic Deformation
139
6.3
Plasticity and Calculation Theories
141
6.4
Simulation Results
143
6.4.1
Two-dimensional vs. Three-dimensional Simulations
143
6.4.2
Benchmark Testing of ECAP Simulations
[81]
in NANOSPD3
144
6.4.3
Mesh-size Sensitivity
146
6.4.4
Influence of Die-channel Angle
147
6.4.5
Influence of Die-corner Angle
147
6.4.6
Effect of Friction
149
6.4.7
Effect of Backpressure
151
6.4.8
Effects of Material Properties: Strain Hardening
and Strain-rate Sensitivity
153
6.5
Multiscale Modeling: Dislocation-cell Modeling
[82] 156
6.6
HPT Simulation
[84] 158
6.7
Conclusions
160
Acknowledgements
160
References
161
7
MD Simulation of Deformation Mechanisms
in Nanocrystalline Materials
165
Dieter Wolf and Vesselin Ya
makov
7.1
Introduction
165
7.2
Dislocation Plasticity for Larger Grain Sizes
and the Existence of dc
167
7.2.1
Columnar Simulation Model for
Al
168
7.2.2
Length-scale Effects in the Nucleation of Dislocations
from the Grain Boundaries and the Existence of dc
169
7.2.3
Deformation Twinning in Nanocrystalline
Al
171
7.2.4
Experimental Validation of Key Predictions
174
7.3
Grain-boundary-based Deformation Mechanisms
for the Smallest Grain Sizes (d<dQ)
176
7.3.1
Simulation of Low-temperature Deformation
176
7.3.2
Simulation of Grain-boundary Diffusion Creep
180
7.3.3
Geometrically Necessary Coupling between Grain-boundary
Diffusion Creep and Grain-boundary Sliding
182
7.3.4
Discussion
183
7.4
Crossover from "Normal" to "Inverse" Hall-Petch Behavior
285
7.4.1
Grain Boundaries as Dislocation Sources
185
7.4.2
Crossover in the Mechanical Behavior
188
Vili
Contents
7.4.3
Effect
of the Stacking-fault Energy
192
7.5
Discussion and Conclusions
196
Acknowledgements
197
References
197
Part Three Processing
8
ECAP: Processing Fundamentals and Recent Progresses
203
Zenji
Horită
8.1
Principle of ECAP
203
8.2
Shearing Characteristic
204
8.3
Microstructural Evolution
205
8.4
Effect of Channel Angles on
Microstructures
207
8.4.1
The Effect of
Φ
207
8.4.2
The Effect of
Ψ
208
8.5
Pressing Speed
209
8.6
ECAP Temperature
210
8.7
Applied Load
212
8.8
Temperaturere Measurement during ECAP
212
8.9
Sample Size
214
References
215
9
High-pressure Torsion
-
Features and Applications
217
Reinhard
Pippan
9.1
Introduction
217
9.2
The Equivalent Strain in Torsion
217
9.2.1
Idealized and Real HPT
219
9.3
The Homogeneity of the Deformation
222
9.3.1
The Radial Distribution
222
9.3.2
The Axial Homogeneity
224
9.4
Advantages and Disadvantages of the HPT Process
226
9.5
Upscaling of the HPT Deformation and the Possibility
of Large-scale Industrial Production
228
9.6
Some General Remarks on the Evolution of
Microstructure
229
Acknowledgements
232
References
232
10
Fabrication of Bulk Nanostructured Materials
by Accumulative Roll Bonding
(ARB) 235
Nobuhiro Tsuji
10.1
Introduction
235
10.2 ARB
Process
235
10.3
Microstructure
of ARB-processed Materials
240
Contents
IX
10.4
Mechanical Properties of the ARB-processed Materials
243
10.5
Conclusions
252
Acknowledgement
252
References
252
ΊΊ
Bulk Nanomaterials from Friction Stir Processing:
Features and Properties
255
Rajiv S. Mishra
11.1
Introduction
255
11.2
Temperature Distribution
257
11.3
Microstructural
Evolution
259
11.3.1
Nugget Zone
260
11.3.2
Shape of Nugget Zone
260
11.3.3
Grain Size
260
11.3.4
Recrystallization Mechanisms
263
11.4
Superplasticity in FSP
Ultrafine
Grained Materials
264
11.5
FSP for Surface Composite Fabrication
and Microstructural Homogenization
266
11.5.1
Localized Surface Modification
266
11.5.2
Processing of Powder Metallurgy Alloys
267
Acknowledgement
269
References
270
12
Bulk Nanostructured Metals from Ball Milling and
Consolidatie
273
Bing
Q.
Han, Jichun Ye,
A. Piers Newbery, Yuntian
T. Zhu,
Julie M. Schoenung,
and Enrique
J. Lavernia
12.1
Introduction
273
12.2
Mechanisms of Nanostructure Formation
274
12.3
Ball Milling of Metal Matrix Composites
277
12.4
Consolidation of Ball-milled Powders
279
12.5
Mechanical Properties of Bulk Nanostructured Metallic Materials
282
12.6
Summary
288
Acknowledgements
289
References
289
13
Bulk Nanostructured Materials from Amorphous Solids
293
Gerhard Wilde
13.1
Introduction
293
13.2
Amorphization and Devitrification
296
13.3
Thermally Induced Nanocrystallization
299
13.3.1
Phase Separation of Glasses
302
13.4
BNM Formation by Plastic Deformation
304
X I Contents
13.5
Properties of BNM from Amorphous Precursors
-
Selected Examples
306
13.6
Summary and Outlook
308
Acknowledgements
308
References
309
14
Continuous
SPD
Techniques, and Post-SPD Processing
311
Igor V. Aiexandrov
14.1
Introduction
311
14.2
Continuous
SPD
Techniques
312
14.2.1
ECAP-Conform Process
312
14.2.2
Equal-channel Angular Drawing (ECAD) Process
313
14.2.3
Conshearing Process
314
14.2.4
Continuous Confined Strip Shearing (C2S2) Process
315
14.3
Post-SPD Processing
316
14.3.1
ECAP plus Forging or Cold Rolling
316
14.3.2
ECAP plus Additional Thermornechanical Treatment
321
14.4
Conclusions
323
References
323
Part Four Characterization
15
Transmission Electron Microscopy of Bulk Nanostructured Metals
327
Xiaozhou Liao and Xiaoxu Huang
15.1
Investigation of Deformation Mechanisms
of Nanostructured Metals
327
15.2
Nanostructured Metals Produced by Severe Plastic Deformation
334
15.2.1
Structural Morphology
334
15.2.2
Boundary Spacing
336
15.2.3
Boundary Misorientation
337
15.2.4
Interior Dislocation Density
340
15.2.5
Summary
340
Acknowledgment
340
References
341
16
Bulk Nanostructured Intermetallic Alloys Studied by Transmission
Electron Microscopy
343
Thomas Waitz, Christian Rentenberger, and H. Peter Karnthaler
16.1
Introduction
343
16.2
ТЕМ
Analysis of Lattice Defects in Nanostructured Materials:
Possible Pitfalls
344
16.3
Evolution of Nanostractures by
SPD 346
16.4
Local Phase Analysis
349
Contents
I XI
16.4.1
SPD-induced Order-Disorder Transition
349
16.4.2
Thermally Induced Crystalline-Crystalline Phase Transformation
in Nanograins
351
16.4.3
Amorphous-Crystalline Phase Transformation
352
16.5
Local Texture Analysis by SAED, HRTEM and Dark-field
Images
355
16.6
Summary
357
Acknowledgments
358
References
358
17
Microstructure
of Bulk Nanomaterials Determined
by
Х
-Ray Line-profile Analysis
361
Tamás
Ungar, Erhard Schafler, and Jena
Cubicza
17.1
Introduction
362
17.2
General Concept and the Basic Ideas
of X-ray Line-profile Analysis
361
17.3
Basic Principles of X-ray Line-profile Analysis
363
17.3.1
Strain Anisotropy
364
17.3.2
Breadth Methods
365
17.3.3
Whole-profile Fitting Methods
366
17.4
Interpretation of Crystallite Size in Bulk Materials in Terms
of
Subgrains
367
17.5
Dislocation Structure of Bulk Nanomaterials Determined
by X-ray Line-profile Analysis
369
17.5.1
Characteristic Parameters of the Dislocation Structure
from Line Profiles
369
17.5.2
Dislocation Structure in Cubic Nanomaterials
372
17.5.3
Dislocations in Hexagonal Nanomaterials
375
17.6
Vacancies and X-ray Line-profile Analysis
377
17.7
Stacking Faults and Twinning in Nanostructured Materials
Determined by X-ray Line-profile Analysis
383
17.8
Conclusions
382
Acknowledgements
382
References
383
18
Texture Evolution in Equal-channel Angular Extrusion
387
Irene J.
Beyerlein
and
László S. Tóth
18.1
Introduction
387
18.2
Background
388
18.2.1
Macroscopic Deformation in ECAE
388
18.2.1.1
Simple Shear Model
388
18.2.1.2
Finite-element Modeling
389
18.2.1.3
Analytical Flow Models
390
18.2.1.4
Multiple Passes
392
XII
I Contents
18.2.2
Crystal Plasticity and Polycrystal Modeling
393
18.2.2.1
Crystal Structure
393
18.2.2.2
Texture Measurement and Presentation
393
18.2.2.3
Texture Characterization
394
18.2.2.4
Polycrystal Modeling
399
18.2.2.5
Comparing Measurement and Prediction
400
18.3
Texture Results
400
18.3.1
Cubic Textures
400
18.3.1.1
Influence of Die Angle
Φ
400
18.3.1.2
Influence of Route and Pass Number
401
18.3.2
HCP Textures
403
18.3.3
Influence of Microstructure
405
18.3.3.1
Influence of Initial Texture
405
18.3.3.2
Stacking-fault Energy/Twinning in Cubic Materials
406
18.3.3.3
Influence of Deformation Mechanisms in hep Materials
407
18.3.3.4
ECAE of Single Crystals
409
18.3.4
Effect of Temperature
410
18.4
Model Performance
411
18.4.1
Macroscale
411
18.4.2
Mesoscale
412
18.4.3
Microscale
413
18.4.4
Factors Affecting Comparisons Between Experiment
and Prediction
414
18.5
Additional Features
414
18.5.1
Heterogeneity
414
18.5.2
Texture Strength
415
18.5.3
Influence on Grain Refinement
416
18.5.4
Influence on Mechanical Properties
416
References
417
Part Five Properties
19
19.1
19.2
19.3
19.4
19.5
19.6
19.6.1
19.6.2
19.6.3
19.6.4
Mechanical Properties of Bulk Nanostructured Metals
Yinmin
M.
Wang and Evan Ma
425
Introduction
425
Elastic Properties
426
Hardness and Strength
427
Strain-hardening Behavior
430
Strain-rate Sensitivity
431
Tensile Ductility
436
Bimodal and/or
Multimodal
Microstructures
440
Growth Twins
442
Deformation at Low Temperature and/or High Strain Rates
Taking Advantage of Elevated Strain-rate Sensitivity
445
444
Contents XIII
19.6.5
Other Possible Approaches
445
19.7
Temperature Dependence
446
19.8
Deformation Modes
447
19.9
Concluding Remarks
449
Acknowledgements
450
References
450
20
Superplasticity of Bulk Nanostructured Materials
455
Terence
C.
Langdon
20.1
Principles of Superplasticity
455
20.2
Achieving Superplasticity after
SPD
Processing
457
20.3
Achieving a Superplastic-forming Capability
461
20.4
Cavitation in Superplasticity after
SPD
Processing
463
20.5
Future Prospects for Superplasticity
in Nanostructured Materials
466
References
467
21
Fracture and Crack Growth in Bulk Nanostructured Materials
469
Ruth Schwaiger, Benedikt Moser,
and Timothy
Hanlon
21.1
Introduction
469
21.2
Fracture Toughness
470
21.3
Fracture Mechanisms
473
21.4
Fatigue Crack Growth
476
21.5
Conclusion
478
References
478
22
Fatigue Properties of Bulk Nanostructured Materials
481
Heinz-Werner Höppel, Hael
Mughrabi, and
Alexej Vinogradov
22.1
Introduction and Motivation and Motivation
481
22.2
Fatigue Life of UFG Materials
483
22.3
Cyclic Deformation Behavior and Damage Mechanisms
488
22.4
Modeling
494
22.5
Criteria for Optimizing the Cyclic Deformation Behavior
496
References
498
23
Diffusion in Nanocrystalline Metallic Materials
501
Wolfgang
Sprengel
and Roland
Würschum
23.1
Introduction
501
23.2
Modelling
502
23.3
Diffusion Measurements
503
23.3.1
Overview
503
23.3.2
Structural Relaxation and Grain Growth
506
23.3.3
Different Types of Interfaces
507
23.3.4
Intergranular Amorphous Phases
508
XIV
I Contents
23.3.5
Intergranular Melting
510
23.4
Atomistic Simulations
532
23.5
Comparison with Diffusion-mediated Processes of Deformation
and Induced Magnetic Anisotropy
512
References
515
24
Creep Behavior of Bulk Nanostructured Materials
-
Time-dependent Deformation and Deformation Kinetics
519
Wolfgang Blum, Philip Eisenlohr, and Vaclav
Sklenička
24.1
Introduction
539
24.2
Deformation Resistance in Creep
521
24.2.1
Nanocrystalline
Ni
523
24.2.2
Fine-grained
Al
522
24.2.3
Ultrafme-grained Cu
525
24.3
Creep Response to Changes in Deformation Conditions
526
24.3.1
Stress Changes
527
24.3.2
Temperature Changes
528
24.4
Creep Resistance at Saturation
530
24.5
Creep Life
532
24.6
Microstructural
Interpretation of Grain-size Effects
533
24.7
Conclusions
534
Acknowledgements
534
References
535
25
Structural Properties of Bulk Nanostructured Ceramics
539
Alia V. Sergueeva, Dongtao T. Jiang,
Katherine
E.
Thomson,
Dustin
M.
Hulbert, and Amiya K. Mukherjee
25.1
Introduction
539
25.2
Highly Creep Resistant Ceramics
539
25.2.1
Nano-nanoceramic Composites
543
25.2.2
Creep Resistance
543
25.3
Superplasticity in Ceramics
546
25.3.1
Low-temperature Superplasticity
547
25.3.2
Effect of the Processing Route
550
25.3.3
SPS Accelerated Superplasticity
553
25.4
Nanocomposites with Enhanced Fracture Toughness
552
25.4.1
Fiber Toughening
555
25.4.2
Ductile-phase Toughening
560
25.4.3
Transformation Toughening
560
25.4.4
Microcrack Toughening
562
25.4.5
Future Perspectives
562
25.5
Concluding Remarks
563
Acknowledgements
564
References
564
Contents
XV
Part Six Applications
26
Bulk Nanostructured Multiphase Ferrous and Nonferraus Alloys
571
Sergey
Dobatkin
and
Xavier
Sauvage
26.1
Introduction
571
26.2
Bulk Nanostructured Multiphase Ferrous Alloys
571
26.2.1
Introduction
571
26.2.2
Low-carbon Ferritic-Pearlitic Steels
572
26.2.2.1
Cold
SPD
Processing of Low-carbon Steels
572
Id.ll.l Warm
SPD
of Low-carbon Steels
576
26.2.2.3
Formation of Submicrocrystalline Structure by Conventional Pro¬
cesses
577
26.2.3
Low-carbon Martensitic and Ferritic-Martensitic Steels
577
26.2.3.1
Low-carbon Martensitic Steels
577
26.2.3.2
Low-carbon Ferritic-Martensitic Steels
578
26.2.4
High-carbon Pearlitic Steels
579
26.2.5
Austenitic and Austenitic-Ferritic Stainless Steels
581
26.2.5.1
Austenitic Stainless Steels
582
26.2.5.2
Austenitic-Ferritic Stainless Steels
584
26.2.6
Summary
584
26.3
Bulk Nanostructured Multiphase Nonferrous Alloys
584
26.3.1
Introduction
584
26.3.2
Cast and Wrought Alloys
585
26.3.2.1
Cast and Wrought Magnesium Alloys
585
26.3.2.2
Cast and Wrought Aluminum Alloys
587
26.3.2.3
Cast and Wrought Copper Alloys
589
26.3.3
Age-hardenable Alloys
589
26.3.3.1
Age-hardenable Magnesium Alloys
589
26.3.3.2
Age-hardenable Aluminum Alloys
590
26.3.3.3
Age-hardenable Copper Alloys
590
26.3.4
Eutectic and Eutectoid Alloys
592
26.3.5
Intermetallics
593
26.3.5.1
Ni-Ti Alloys
593
26.3.5.2
Ni-Al, Ti-Al and Cu-Au Ordered Alloys
595
26.3.6
Composite Materials
595
26.3.7
Final Remarks
596
26.4
Summary
596
References
597
27
Bulk Nanocrystalline and Amorphous Magnetic Materials
605
Roland
Cröss'mger
and Reiko Sato Turtelli
27.1
Introduction
605
27.2
Soft Magnetic Materials
606
27.2.1
Rapidly Solidified Crystalline Materials
606
XVI
I Contents
27.2.2
Amorphous Materials or Rapidly Quenched Glasses
607
27.2.3
Bulk Amorphous Alloys
608
27.2.4
Nanocrystalline Soft Magnetic Materials
609
273
Hard Magnetic Materials
612
27.3.1
Nanocrystalline Hard Magnetic Materials
612
27.3.1.1
Nanocomposite Magnets
614
27.3.1.2
Single-phase Nanocrystalline Magnets
621
27.3.2
Nd-(Fe,Co)-Al
-
a Hard Magnetic Amorphous System?
621
27.3.2.1
Magnetic Properties of Melt-spun NdeoFejoAljo
and NdGoFe2oCo10Al1o Alloys at
300
К
622
27.3.2.2
Temperature Dependence of Magnetic Properties of Melt-spun
Nd6oFe3oAl10 and Nd60Fe2oCo10Al10 Alloys
623
27.3.2.3
Temperature Dependence of the Magnetic After-effect
625
27.3.3
Industrial Nanocrystalline Hard Magnetic Material
625
27
A Magnetostrictive
Materials
626
27.5
Magnetoelectric Materials
627
27.5.1
Single-phase Materials
627
27.5.2
Magnetoelectric Composites
627
27.6
Summary
628
References
629
28
Niche Applications of Bulk Nanostructured Materials Processed
by Severe Plastic Deformation
635
Yuri Estrin and Michael J. Zehetbauer
28.1
Introduction
635
28.2
Downscaling of Severe Plastic Deformation
635
28.3
Enhanced Reaction Kinetics
638
28.3.1
Plasma Nitriding of Steels
638
28.3.2
Accelerated
Hydrogénation
Kinetics of Magnesium Alloys
638
28.4
Biomedical
Applications of Ultrafine-grained Materials
643
28.5
Corrosion/Biocorrosion in SPD-processed Materials
645
28.6
Summary
646
References
647
29
Bulk Materials with a Nanostructured Surface
and Coarse-grained Interior
649
Ke
Lu
and Leon Shaw
29.1
Introduction
649
29.2
Processing and Structure Characterization
651
29.2.1
Deformation Field
651
29.2.2
Residual Stresses
653
29.2.3
Surface Roughness
655
29.2.4
Grain Size and Grain-refinement Mechanism
655
29.3
Properties and Performance
660
Contents IxVII
29.3.1
Hardness and Strength
660
29.3.2
Fatigue Resistance
663
29.3.3
Wear and Friction
665
29.3.4
Diffusion and Surface Chemical Reaction
666
29.4
Perspectives
668
Acknowledgments
669
References
670
30
Commercializing Bulk Nanostructured Metals and Alloys
673
Terry C. Lowe
30.1
The Innovation Process
673
30.2
The Technology: Nanostructured Metals
676
30.3
Market drivers
677
30.4
Competition from Other Materials
679
30.4.1
Appropriability: Ability of Innovators to Capture Profit
679
30.5
Maturity of the Bulk Nanostructuring Metals Process
Design Paradigm
681
30.6
The Need for Complementary Assets
682
30.7
Impact on the Metals Industry
683
30.8
Conclusions
684
References
685
Suject Index
687 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)128839457 |
building | Verbundindex |
bvnumber | BV023481417 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.N35 |
callnumber-search | TA418.9.N35 |
callnumber-sort | TA 3418.9 N35 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | VE 9850 ZN 3700 |
ctrlnum | (OCoLC)84151613 (DE-599)DNB983933650 |
dewey-full | 620.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.5 |
dewey-search | 620.5 |
dewey-sort | 3620.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023481417</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090911</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080807s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N20,1030</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">983933650</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527315246</subfield><subfield code="c">Gb. : ca. EUR 139.00 (freier Pr.), ca. sfr 220.00 (freier Pr.)</subfield><subfield code="9">978-3-527-31524-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527315241</subfield><subfield code="c">Gb. : ca. EUR 139.00 (freier Pr.), ca. sfr 220.00 (freier Pr.)</subfield><subfield code="9">3-527-31524-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527315246</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131524 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)84151613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB983933650</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bulk nanostructured materials</subfield><subfield code="c">ed. by Michael J. Zehetbauer ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 710 S.</subfield><subfield code="b">Ill., graph. Darst</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bulk solids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bulk</subfield><subfield code="0">(DE-588)7649023-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bulk</subfield><subfield code="0">(DE-588)7649023-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zehetbauer, Michael J.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)128839457</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2945693&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016663541&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016663541</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023481417 |
illustrated | Illustrated |
index_date | 2024-07-02T21:38:04Z |
indexdate | 2024-07-20T09:47:10Z |
institution | BVB |
isbn | 9783527315246 3527315241 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016663541 |
oclc_num | 84151613 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-29T DE-20 DE-703 DE-634 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-29T DE-20 DE-703 DE-634 DE-11 |
physical | XXVI, 710 S. Ill., graph. Darst |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Bulk nanostructured materials ed. by Michael J. Zehetbauer ... Weinheim WILEY-VCH 2009 XXVI, 710 S. Ill., graph. Darst txt rdacontent n rdamedia nc rdacarrier Bulk solids Nanostructured materials Bulk (DE-588)7649023-3 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Nanostrukturiertes Material (DE-588)4342626-8 s Bulk (DE-588)7649023-3 s DE-604 Zehetbauer, Michael J. Sonstige (DE-588)128839457 oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2945693&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016663541&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bulk nanostructured materials Bulk solids Nanostructured materials Bulk (DE-588)7649023-3 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
subject_GND | (DE-588)7649023-3 (DE-588)4342626-8 (DE-588)4143413-4 |
title | Bulk nanostructured materials |
title_auth | Bulk nanostructured materials |
title_exact_search | Bulk nanostructured materials |
title_exact_search_txtP | Bulk nanostructured materials |
title_full | Bulk nanostructured materials ed. by Michael J. Zehetbauer ... |
title_fullStr | Bulk nanostructured materials ed. by Michael J. Zehetbauer ... |
title_full_unstemmed | Bulk nanostructured materials ed. by Michael J. Zehetbauer ... |
title_short | Bulk nanostructured materials |
title_sort | bulk nanostructured materials |
topic | Bulk solids Nanostructured materials Bulk (DE-588)7649023-3 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
topic_facet | Bulk solids Nanostructured materials Bulk Nanostrukturiertes Material Aufsatzsammlung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2945693&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016663541&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zehetbauermichaelj bulknanostructuredmaterials |