Atomistic and continuum modeling of nanocrystalline materials: deformation mechanisms and scale transition
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2009
|
Schriftenreihe: | Springer series in materials science
112 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 387 S. graph. Darst. |
ISBN: | 9780387467658 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023481376 | ||
003 | DE-604 | ||
005 | 20090817 | ||
007 | t | ||
008 | 080807s2009 gw d||| |||| 00||| eng d | ||
015 | |a 06,N41,0461 |2 dnb | ||
016 | 7 | |a 981257828 |2 DE-101 | |
020 | |a 9780387467658 |c Gb. : ca. EUR 114.54 (freier Pr.), ca. sfr 181.00 (freier Pr.) |9 978-0-387-46765-8 | ||
024 | 3 | |a 9780387467658 | |
028 | 5 | 2 | |a 11823391 |
035 | |a (OCoLC)226280639 | ||
035 | |a (DE-599)BVBBV023481376 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 | ||
050 | 0 | |a TA418.9.N35 | |
082 | 0 | |a 620.5 |2 22 | |
084 | |a UQ 1100 |0 (DE-625)146473: |2 rvk | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Cherkaoui, Mohammed |e Verfasser |0 (DE-588)138235406 |4 aut | |
245 | 1 | 0 | |a Atomistic and continuum modeling of nanocrystalline materials |b deformation mechanisms and scale transition |c Mohammed Cherkaoui ; Laurent Capolungo |
264 | 1 | |a New York, NY |b Springer |c 2009 | |
300 | |a XXII, 387 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in materials science |v 112 | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Continuum mechanics |x Mathematical models | |
650 | 4 | |a Nanocrystals | |
650 | 4 | |a Nanostructured materials | |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Capolungo, Laurent |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-46771-9 |
830 | 0 | |a Springer series in materials science |v 112 |w (DE-604)BV000683335 |9 112 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016663505&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016663505 |
Datensatz im Suchindex
_version_ | 1804137907703775232 |
---|---|
adam_text | Contents
1
Fabrication Processes
..................................... 1
1.1
One-Step Processes
.................................. 3
1.1.1
Severe Plastic Deformation
...................... 3
1.1.2
Electrodeposition
.............................. 9
1.1.3
Crystallization from an Amorphous Glass
.......... 10
1.2
Two-Step Processes
................................. 12
1.2.1
Nanoparticle Synthesis
......................... 12
1.2.2
Powder Consolidation
.......................... 22
1.3
Summary
......................................... 25
References
.............................................. 25
2
Structure, Mechanical Properties, and Applications
of Nanocrystalline Materials
............................... 29
2.1
Structure
.......................................... 29
2.1.1
Crystallites
................................... 30
2.1.2
Grain Boundaries
............................. 33
2.1.3
Triple Junctions
............................... 37
2.2
Mechanical Properties
............................... 37
2.2.1
Elastic Properties
.............................. 39
2.2.2
Inelastic Response
............................. 42
2.3
Summary
......................................... 50
References
.............................................. 51
3
Bridging the Scales from the Atomistic to the Continuum
......... 53
3.1
Introduction
....................................... 53
3.2
Viscoplastic Behavior of NC Materials
.................. 54
3.3
Bridging the Scales from the Atomistic to the Continuum
in NC: Challenging Problems
.......................... 58
3.3.1
Mesoscopic Studies
............................ 59
3.3.2
Continuum Micromechanics Modeling
............. 65
References
.............................................. 75
Contents
Predictive Capabilities and Limitations of Molecular
Simulations
............................................. 81
4.1
Equations of Motion
................................ 82
4.2
Interatomic Potentials
............................... 85
4.2.1
Lennard Jones Potential
........................ 86
4.2.2
Embedded Atom Method
....................... 87
4.2.3
Finnis-Sinclair Potential
........................ 89
4.3
Relation to Statistical Mechanics
....................... 90
4.3.1
Introduction to Statistical Mechanics
.............. 91
4.3.2
The Microcanonical Ensemble (NVE)
............. 93
4.3.3
The Canonical Ensemble (NVT)
.................. 95
4.3.4
The Isobaric Isothermal Ensemble (NPT)
........... 97
4.4
Molecular Dynamics Methods
......................... 97
4.4.1
Nose Hoover Molecular Dynamics Method
......... 97
4.4.2
Melchionna Molecular Dynamics Method
.......... 100
4.5
Measurable Properties and Boundary Conditions
.......... 101
4.5.1
Pressure: Virial Stress
.......................... 101
4.5.2
Order: Centro-Symmetry
........................ 102
4.5.3
Boundaries Conditions
......................... 102
4.6
Numerical Algorithms
............................... 105
4.6.1
Velocity
Verlet
and Leapfrog Algorithms
........... 105
4.6.2
Predictor-Corrector
............................ 106
4.7
Applications
....................................... 108
4.7.1
Grain Boundary Construction
................... 108
4.7.2
Grain Growth
................................ 110
4.7.3
Dislocation in NC Materials
..................... 112
4.8
Summary
......................................... 115
References
.............................................. 116
Grain Boundary Modeling
................................. 117
5.1
Simple Grain Boundaries
............................. 118
5.2
Energy Measures and Numerical Predictions
............. 119
5.3
Structure Energy Correlation
.......................... 121
5.3.1
Low-Angle Grain Boundaries: Dislocation
Model
....................................... 122
5.3.2
Large-Angle Grain Boundaries
................... 126
5.4
Applications
....................................... 138
5.4.1
Elastic Deformation: Molecular Simulations
and the Structural Unit Model
................... 138
5.4.2
Plastic Deformation: Disclination Model
and Dislocation Emission
....................... 139
5.5
Summary
......................................... 141
References
.............................................. 142
Contents ix
6 Deformation
Mechanisms
in Nanocrystalline Materials........... 143
6.1
Experimental Insight................................
143
6.2 Deformation Map.................................. 145
6.3
Dislocation Activity.................................
147
6.4
Grain Boundary Dislocation Emission
.................. 151
6.4.1
Dislocation Geometry
.......................... 153
6.4.2
Atomistic Considerations
....................... 154
6.4.3
Activation Process
............................. 155
6.4.4
Stability
..................................... 157
6.5
Deformation Twinning
............................... 157
6.6
Diffusion Mechanisms
............................... 159
6.6.1
Nabarro-Herring Creep
......................... 161
6.6.2
Coble Creep
.................................. 162
6.6.3
Triple Junction Creep
.......................... 163
6.7
Grain Boundary Sliding
.............................. 163
6.7.1
Steady State Sliding
............................ 163
6.7.2
Grain Boundary Sliding in NC Materials
........... 165
6.8
Summary
......................................... 167
References
.............................................. 167
7
Predictive Capabilities and Limitations of Continuum
Micromechanics
......................................... 169
7.1
Introduction
....................................... 169
7.2
Continuum Micromechanics: Definitions
and Hypothesis
..................................... 170
7.2.1
Definition of the
RVE:
Basic Principles
............ 171
7.2.2
Field Equations and Averaging Procedures
......... 175
7.2.3
Concluding Remarks
........................... 182
7.3
Mean Field Theories and Eshelby s Solution
.............. 183
7.3.1
Eshelby s Inclusion Solution
..................... 184
7.3.2
Inhomogeneous Eshelby s Inclusion: Constraint
Hill s Tensor
................................. 186
7.3.3
Eshelby s Problem with Uniform Boundary
Conditions
................................... 188
7.3.4
Basic Equations Resulting from Averaging
Procedures
................................... 190
7.4
Effective Elastic Moduli for Dilute Matrix-Inclusion
Composites
........................................ 193
7.4.1
Method Using Equivalent Inclusion
............... 193
7.4.2
Analytical Results for Spherical Inhomogeneities
and
Isotropie
Materials
......................... 196
7.4.3
Direct Method Using Green s Functions
........... 199
7.5
Mean Field Theories for Nondilute Inclusion-Matrix
Composites
........................................ 201
Contents
7.5.1
The Self-Consistent Scheme
..................... 202
7.5.2
Interpretation of the Self-Consistent
............... 206
7.5.3
Mori-Tanaka Mean Field Theory
................. 208
7.6
Multinclusion Approaches
............................ 215
7.6.1
The Composite Sphere Assemblage Model
.......... 215
7.6.2
The Generalized Self-Consistent Model
of Christensen and
Lo
.......................... 216
7.6.3
Then
+ 1
Phases
Modelof
Hervé
and Zaoui
........ 219
7.7
Variational Principles in Linear Elasticity
................ 220
7.7.1
Variational Formulation: General Principals
........ 221
7.7.2
Hashin-Shtrikman Variational Principles
........... 230
7.7.3
Application: Hashin-Shtrikman Bounds for Linear
Elastic Effective Properties
...................... 237
7.8
On Possible Extensions of Linear Micromechanics
to Nonlinear Problems
............................... 243
7.8.1
The Secant Formulation
........................ 246
7.8.2
The Tangent Formulation
....................... 256
7.9
Illustrations in the Case of Nanocrystalline Materials
....... 272
7.9.1
Volume Fractions of Grain and Grain-Boundary
Phases
...................................... 273
7.9.2
Linear Comparison Composite Material Model
...... 273
7.9.3
Constitutive Equations of the Grains and Grain
Boundary Phase
............................... 277
7.9.4
Application to a Nanocystalline Copper
............ 278
References
.............................................. 282
8
Innovative Combinations of Atomistic and Continuum:
Mechanical Properties of Nanostructured Materials
............. 285
8.1
Introduction
....................................... 285
8.2
Surface;Interface Structures
........................... 289
8.2.1
What Is a Surface?
............................. 289
8.2.2
Dispersion, the Other A V Relation
............... 289
8.2.3
What Is an Interface?
........................... 290
8.2.4
Different Surface and Interface Scenarios
........... 290
8.3
Surface/Interface Physics
............................. 293
8.3.1
Surface Energy
................................ 294
8.3.2
Surface Tension and Liquids
..................... 295
8.3.3
Surface Tension and Solids
...................... 299
8.4
Elastic Description of Free Surfaces and Interfaces
......... 300
8.4.1
Definition of
Interfacial
Excess Energy
............. 301
8.4.2
Surface Elasticity
.............................. 301
8.4.3
Surface Stress and Surface Strain
................. 302
8.5
Surface
Interfacial
Excess Quantities Computation
........ 302
8.6
On Eshelby^s Nano-Inhomogeneities Problems
............ 303
8.7
Background in Nano-Inclusion Problem
................. 304
Contents xi
8.7.1
The Work of Sharma
et al.......................
304
8.7.2
The Work by
Lim
et al..........................
305
8.7.3
The Work by Yang
............................ 307
8.7.4
The Work by Sharma and Ganti
.................. 310
8.7.5
The Work of Sharma and Wheeler
................ 313
8.7.6
The Work by Duan
et al.........................
315
8.7.7
The Work by Huang and Sun
.................... 318
8.7.8
Other Works
................................. 319
8.8
General Solution of Eshelby s Nano-Inhomogeneities
Problem
.......................................... 320
8.8.1
Atomistic and Continuum Description
of the
Interphase
.............................. 320
8.8.2
Micromechanical Framework for Coating-
Inhomogeneity Problem
........................ 328
8.8.3
Numerical Simulations and Discussions
............ 336
Appendix
1:
Ύ
Stress Decomposition
....................... 344
Appendix
2:
Atomic Level Description
....................... 346
Appendix
3:
Strain Concentration Tensors: Spherical
Isotropie
Configuration
................................ 347
References
.............................................. 349
9
Innovative Combinations of Atomistic and Continuum: Plastic
Deformation of Nanocrystalline Materials
..................... 353
9.1
Quasi-continuum Methods
............................ 354
9.2
Thermal Activation-Based Modeling
................... 358
9.3
Higher-Order Finite Elements
......................... 361
9.3.1
Crystal Plasticity
.............................. 363
9.3.2
Application via the Finite Element Method
......... 366
9.4
Micromechanics
.................................... 370
9.5
Summary
......................................... 377
References
.............................................. 377
Subject Index
............................................... 379
|
adam_txt |
Contents
1
Fabrication Processes
. 1
1.1
One-Step Processes
. 3
1.1.1
Severe Plastic Deformation
. 3
1.1.2
Electrodeposition
. 9
1.1.3
Crystallization from an Amorphous Glass
. 10
1.2
Two-Step Processes
. 12
1.2.1
Nanoparticle Synthesis
. 12
1.2.2
Powder Consolidation
. 22
1.3
Summary
. 25
References
. 25
2
Structure, Mechanical Properties, and Applications
of Nanocrystalline Materials
. 29
2.1
Structure
. 29
2.1.1
Crystallites
. 30
2.1.2
Grain Boundaries
. 33
2.1.3
Triple Junctions
. 37
2.2
Mechanical Properties
. 37
2.2.1
Elastic Properties
. 39
2.2.2
Inelastic Response
. 42
2.3
Summary
. 50
References
. 51
3
Bridging the Scales from the Atomistic to the Continuum
. 53
3.1
Introduction
. 53
3.2
Viscoplastic Behavior of NC Materials
. 54
3.3
Bridging the Scales from the Atomistic to the Continuum
in NC: Challenging Problems
. 58
3.3.1
Mesoscopic Studies
. 59
3.3.2
Continuum Micromechanics Modeling
. 65
References
. 75
Contents
Predictive Capabilities and Limitations of Molecular
Simulations
. 81
4.1
Equations of Motion
. 82
4.2
Interatomic Potentials
. 85
4.2.1
Lennard Jones Potential
. 86
4.2.2
Embedded Atom Method
. 87
4.2.3
Finnis-Sinclair Potential
. 89
4.3
Relation to Statistical Mechanics
. 90
4.3.1
Introduction to Statistical Mechanics
. 91
4.3.2
The Microcanonical Ensemble (NVE)
. 93
4.3.3
The Canonical Ensemble (NVT)
. 95
4.3.4
The Isobaric Isothermal Ensemble (NPT)
. 97
4.4
Molecular Dynamics Methods
. 97
4.4.1
Nose Hoover Molecular Dynamics Method
. 97
4.4.2
Melchionna Molecular Dynamics Method
. 100
4.5
Measurable Properties and Boundary Conditions
. 101
4.5.1
Pressure: Virial Stress
. 101
4.5.2
Order: Centro-Symmetry
. 102
4.5.3
Boundaries Conditions
. 102
4.6
Numerical Algorithms
. 105
4.6.1
Velocity
Verlet
and Leapfrog Algorithms
. 105
4.6.2
Predictor-Corrector
. 106
4.7
Applications
. 108
4.7.1
Grain Boundary Construction
. 108
4.7.2
Grain Growth
. 110
4.7.3
Dislocation in NC Materials
. 112
4.8
Summary
. 115
References
. 116
Grain Boundary Modeling
. 117
5.1
Simple Grain Boundaries
. 118
5.2
Energy Measures and Numerical Predictions
. 119
5.3
Structure Energy Correlation
. 121
5.3.1
Low-Angle Grain Boundaries: Dislocation
Model
. 122
5.3.2
Large-Angle Grain Boundaries
. 126
5.4
Applications
. 138
5.4.1
Elastic Deformation: Molecular Simulations
and the Structural Unit Model
. 138
5.4.2
Plastic Deformation: Disclination Model
and Dislocation Emission
. 139
5.5
Summary
. 141
References
. 142
Contents ix
6 Deformation
Mechanisms
in Nanocrystalline Materials. 143
6.1
Experimental Insight.
143
6.2 Deformation Map. 145
6.3
Dislocation Activity.
147
6.4
Grain Boundary Dislocation Emission
. 151
6.4.1
Dislocation Geometry
. 153
6.4.2
Atomistic Considerations
. 154
6.4.3
Activation Process
. 155
6.4.4
Stability
. 157
6.5
Deformation Twinning
. 157
6.6
Diffusion Mechanisms
. 159
6.6.1
Nabarro-Herring Creep
. 161
6.6.2
Coble Creep
. 162
6.6.3
Triple Junction Creep
. 163
6.7
Grain Boundary Sliding
. 163
6.7.1
Steady State Sliding
. 163
6.7.2
Grain Boundary Sliding in NC Materials
. 165
6.8
Summary
. 167
References
. 167
7
Predictive Capabilities and Limitations of Continuum
Micromechanics
. 169
7.1
Introduction
. 169
7.2
Continuum Micromechanics: Definitions
and Hypothesis
. 170
7.2.1
Definition of the
RVE:
Basic Principles
. 171
7.2.2
Field Equations and Averaging Procedures
. 175
7.2.3
Concluding Remarks
. 182
7.3
Mean Field Theories and Eshelby's Solution
. 183
7.3.1
Eshelby's Inclusion Solution
. 184
7.3.2
Inhomogeneous Eshelby's Inclusion: "Constraint"
Hill's Tensor
. 186
7.3.3
Eshelby's Problem with Uniform Boundary
Conditions
. 188
7.3.4
Basic Equations Resulting from Averaging
Procedures
. 190
7.4
Effective Elastic Moduli for Dilute Matrix-Inclusion
Composites
. 193
7.4.1
Method Using Equivalent Inclusion
. 193
7.4.2
Analytical Results for Spherical Inhomogeneities
and
Isotropie
Materials
. 196
7.4.3
Direct Method Using Green's Functions
. 199
7.5
Mean Field Theories for Nondilute Inclusion-Matrix
Composites
. 201
Contents
7.5.1
The Self-Consistent Scheme
. 202
7.5.2
Interpretation of the Self-Consistent
. 206
7.5.3
Mori-Tanaka Mean Field Theory
. 208
7.6
Multinclusion Approaches
. 215
7.6.1
The Composite Sphere Assemblage Model
. 215
7.6.2
The Generalized Self-Consistent Model
of Christensen and
Lo
. 216
7.6.3
Then
+ 1
Phases
Modelof
Hervé
and Zaoui
. 219
7.7
Variational Principles in Linear Elasticity
. 220
7.7.1
Variational Formulation: General Principals
. 221
7.7.2
Hashin-Shtrikman Variational Principles
. 230
7.7.3
Application: Hashin-Shtrikman Bounds for Linear
Elastic Effective Properties
. 237
7.8
On Possible Extensions of Linear Micromechanics
to Nonlinear Problems
. 243
7.8.1
The Secant Formulation
. 246
7.8.2
The Tangent Formulation
. 256
7.9
Illustrations in the Case of Nanocrystalline Materials
. 272
7.9.1
Volume Fractions of Grain and Grain-Boundary
Phases
. 273
7.9.2
Linear Comparison Composite Material Model
. 273
7.9.3
Constitutive Equations of the Grains and Grain
Boundary Phase
. 277
7.9.4
Application to a Nanocystalline Copper
. 278
References
. 282
8
Innovative Combinations of Atomistic and Continuum:
Mechanical Properties of Nanostructured Materials
. 285
8.1
Introduction
. 285
8.2
Surface;Interface Structures
. 289
8.2.1
What Is a Surface?
. 289
8.2.2
Dispersion, the Other A V Relation
. 289
8.2.3
What Is an Interface?
. 290
8.2.4
Different Surface and Interface Scenarios
. 290
8.3
Surface/Interface Physics
. 293
8.3.1
Surface Energy
. 294
8.3.2
Surface Tension and Liquids
. 295
8.3.3
Surface Tension and Solids
. 299
8.4
Elastic Description of Free Surfaces and Interfaces
. 300
8.4.1
Definition of
Interfacial
Excess Energy
. 301
8.4.2
Surface Elasticity
. 301
8.4.3
Surface Stress and Surface Strain
. 302
8.5
Surface
Interfacial
Excess Quantities Computation
. 302
8.6
On Eshelby^s Nano-Inhomogeneities Problems
. 303
8.7
Background in Nano-Inclusion Problem
. 304
Contents xi
8.7.1
The Work of Sharma
et al.
304
8.7.2
The Work by
Lim
et al.
305
8.7.3
The Work by Yang
. 307
8.7.4
The Work by Sharma and Ganti
. 310
8.7.5
The Work of Sharma and Wheeler
. 313
8.7.6
The Work by Duan
et al.
315
8.7.7
The Work by Huang and Sun
. 318
8.7.8
Other Works
. 319
8.8
General Solution of Eshelby's Nano-Inhomogeneities
Problem
. 320
8.8.1
Atomistic and Continuum Description
of the
Interphase
. 320
8.8.2
Micromechanical Framework for Coating-
Inhomogeneity Problem
. 328
8.8.3
Numerical Simulations and Discussions
. 336
Appendix
1:
"Ύ"
Stress Decomposition
. 344
Appendix
2:
Atomic Level Description
. 346
Appendix
3:
Strain Concentration Tensors: Spherical
Isotropie
Configuration
. 347
References
. 349
9
Innovative Combinations of Atomistic and Continuum: Plastic
Deformation of Nanocrystalline Materials
. 353
9.1
Quasi-continuum Methods
. 354
9.2
Thermal Activation-Based Modeling
. 358
9.3
Higher-Order Finite Elements
. 361
9.3.1
Crystal Plasticity
. 363
9.3.2
Application via the Finite Element Method
. 366
9.4
Micromechanics
. 370
9.5
Summary
. 377
References
. 377
Subject Index
. 379 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cherkaoui, Mohammed Capolungo, Laurent |
author_GND | (DE-588)138235406 |
author_facet | Cherkaoui, Mohammed Capolungo, Laurent |
author_role | aut aut |
author_sort | Cherkaoui, Mohammed |
author_variant | m c mc l c lc |
building | Verbundindex |
bvnumber | BV023481376 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.N35 |
callnumber-search | TA418.9.N35 |
callnumber-sort | TA 3418.9 N35 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UQ 1100 VE 9850 |
ctrlnum | (OCoLC)226280639 (DE-599)BVBBV023481376 |
dewey-full | 620.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.5 |
dewey-search | 620.5 |
dewey-sort | 3620.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Maschinenbau / Maschinenwesen Physik |
discipline_str_mv | Chemie / Pharmazie Maschinenbau / Maschinenwesen Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02078nam a2200517 cb4500</leader><controlfield tag="001">BV023481376</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090817 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080807s2009 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N41,0461</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">981257828</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387467658</subfield><subfield code="c">Gb. : ca. EUR 114.54 (freier Pr.), ca. sfr 181.00 (freier Pr.)</subfield><subfield code="9">978-0-387-46765-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387467658</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11823391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)226280639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023481376</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 1100</subfield><subfield code="0">(DE-625)146473:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cherkaoui, Mohammed</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138235406</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomistic and continuum modeling of nanocrystalline materials</subfield><subfield code="b">deformation mechanisms and scale transition</subfield><subfield code="c">Mohammed Cherkaoui ; Laurent Capolungo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 387 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in materials science</subfield><subfield code="v">112</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocrystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Capolungo, Laurent</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-46771-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in materials science</subfield><subfield code="v">112</subfield><subfield code="w">(DE-604)BV000683335</subfield><subfield code="9">112</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016663505&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016663505</subfield></datafield></record></collection> |
id | DE-604.BV023481376 |
illustrated | Illustrated |
index_date | 2024-07-02T21:38:04Z |
indexdate | 2024-07-09T21:19:45Z |
institution | BVB |
isbn | 9780387467658 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016663505 |
oclc_num | 226280639 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | XXII, 387 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
series | Springer series in materials science |
series2 | Springer series in materials science |
spelling | Cherkaoui, Mohammed Verfasser (DE-588)138235406 aut Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition Mohammed Cherkaoui ; Laurent Capolungo New York, NY Springer 2009 XXII, 387 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in materials science 112 Mathematisches Modell Continuum mechanics Mathematical models Nanocrystals Nanostructured materials Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 s DE-604 Capolungo, Laurent Verfasser aut Erscheint auch als Online-Ausgabe 978-0-387-46771-9 Springer series in materials science 112 (DE-604)BV000683335 112 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016663505&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cherkaoui, Mohammed Capolungo, Laurent Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition Springer series in materials science Mathematisches Modell Continuum mechanics Mathematical models Nanocrystals Nanostructured materials Nanostrukturiertes Material (DE-588)4342626-8 gnd |
subject_GND | (DE-588)4342626-8 |
title | Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition |
title_auth | Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition |
title_exact_search | Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition |
title_exact_search_txtP | Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition |
title_full | Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition Mohammed Cherkaoui ; Laurent Capolungo |
title_fullStr | Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition Mohammed Cherkaoui ; Laurent Capolungo |
title_full_unstemmed | Atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition Mohammed Cherkaoui ; Laurent Capolungo |
title_short | Atomistic and continuum modeling of nanocrystalline materials |
title_sort | atomistic and continuum modeling of nanocrystalline materials deformation mechanisms and scale transition |
title_sub | deformation mechanisms and scale transition |
topic | Mathematisches Modell Continuum mechanics Mathematical models Nanocrystals Nanostructured materials Nanostrukturiertes Material (DE-588)4342626-8 gnd |
topic_facet | Mathematisches Modell Continuum mechanics Mathematical models Nanocrystals Nanostructured materials Nanostrukturiertes Material |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016663505&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000683335 |
work_keys_str_mv | AT cherkaouimohammed atomisticandcontinuummodelingofnanocrystallinematerialsdeformationmechanismsandscaletransition AT capolungolaurent atomisticandcontinuummodelingofnanocrystallinematerialsdeformationmechanismsandscaletransition |