Optimization and control of bilinear systems: theory, algorithms, and applications
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Schriftenreihe: | Springer optimization and its applications
11 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVI, 370 S. Ill., graph. Darst. 235 mm x 155 mm |
ISBN: | 9780387736686 0387736689 9780387736693 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023479714 | ||
003 | DE-604 | ||
005 | 20090519 | ||
007 | t | ||
008 | 080806s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 07,N28,1181 |2 dnb | ||
016 | 7 | |a 984633138 |2 DE-101 | |
020 | |a 9780387736686 |c Gb. : ca. EUR 65.91 (freier Pr.), ca. sfr 101.00 (freier Pr.) |9 978-0-387-73668-6 | ||
020 | |a 0387736689 |c Gb. : ca. EUR 65.91 (freier Pr.), ca. sfr 101.00 (freier Pr.) |9 0-387-73668-9 | ||
020 | |a 9780387736693 |9 978-0-387-73669-3 | ||
024 | 3 | |a 9780387736686 | |
028 | 5 | 2 | |a 11851820 |
035 | |a (OCoLC)173718700 | ||
035 | |a (DE-599)DNB984633138 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-824 |a DE-11 | ||
050 | 0 | |a QA402 | |
082 | 0 | |a 003.75 |2 22 | |
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Pardalos, Panos M. |d 1954- |e Verfasser |0 (DE-588)115385827 |4 aut | |
245 | 1 | 0 | |a Optimization and control of bilinear systems |b theory, algorithms, and applications |c by Panos M. Pardalos ; Vitaliy Yatsenko |
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XXVI, 370 S. |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer optimization and its applications |v 11 | |
650 | 4 | |a Bilinear forms | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Nonlinear systems | |
650 | 0 | 7 | |a Bilineares System |0 (DE-588)4145511-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bilineares System |0 (DE-588)4145511-3 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Jacenko, Vitalij A. |e Verfasser |4 aut | |
830 | 0 | |a Springer optimization and its applications |v 11 |w (DE-604)BV021746093 |9 11 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016661897&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016661897 |
Datensatz im Suchindex
_version_ | 1804137906152931328 |
---|---|
adam_text | OPTIMIZATION AND CONTROL OF BILINEAR SYSTEMS THEORY, ALGORITHMS, AND
APPLICATIONS BY PANOS M. PARDALOS UNIVERSITY OF FLORIDA, GAINESVILLE, FL
VITALIY YATSENKO SPACE RESEARCH INSTITUTE OF NASU-NASU, KYIV, UKRAINE
SPRI RINGER CONTENTS PREFACE XIII ACKNOWLEDGMENTS XVII FOREWORD XIX
NOTATION XXI INTRODUCTION XXIII 1. SYSTEM-THEORETICAL DESCRIPTION OF
OPEN PHYSICAL PROCESSES 1 1 REDUCTION OF NONLINEAR CONTROL SYSTEMS TO
BILINEAR REALIZATION 3 1.1 EQUIVALENCE OF CONTROL SYSTEMS 3 1.2 LIE
ALGEBRAS, LIE GROUPS, AND REPRESENTATIONS 4 1.3 SELECTION OF
MATHEMATICAL MODELS 6 1.4 BILINEAR LOGIC-DYNAMICAL REALIZATION OF
NONLINEAR CONTROL SYSTEMS 10 2 GLOBAL BILINEARIZATION OF NONLINEAR
SYSTEMS 12 3 IDENTIFICATION OF BILINEAR CONTROL SYSTEMS 19 4 BILINEAR
AND NONLINEAR REALIZATIONS OF INPUT-OUTPUT MAPS 20 4.1 SYSTEMS ON LIE
GROUPS 20 4.2 BILINEAR REALIZATION OF NONLINEAR SYSTEMS 22 4.3
APPROXIMATION OF NONLINEAR SYSTEMS BY BILINEAR SYSTEMS 23 5
CONTROLLABILITY OF BILINEAR SYSTEMS 25 6 OBSERVABILITY OF SYSTEMS ON LIE
GROUPS 27 6.1 OBSERVABILITY AND LIE GROUPS 27 6.2 ALGORITHMS OF
OBSERVABILITY 33 VII VLLL CONTENTS 6.3 EXAMPLES 36 6.4 DECOUPLING
PROBLEMS 38 7 INVERTIBILITY OF CONTROL SYSTEMS 40 7.1 RIGHT-INVARIANT
CONTROL SYSTEMS 40 7.2 INVERTIBILITY OF RIGHT-INVARIANT SYSTEMS 43 7.3
LEFT-INVERSES FOR BILINEAR SYSTEMS 49 8 INVERTIBILITY OF DISCRETE
BILINEAR SYSTEMS 56 8.1 DISCRETE BILINEAR SYSTEMS AND INVERTABILITY 56
8.2 CONSTRUCTION OF INVERSE SYSTEMS 57 8.3 CONTROLLABILITY OF INVERSE
SYSTEMS 58 9 VERSAL MODELS AND BILINEAR SYSTEMS 59 9.1 GENERAL
CHARACTERISTICS OF VERSAL MODELS 59 9.2 ALGORITHMS 60 10 NOTES AND
SOURCES 64 2. CONTROL OF BILINEAR SYSTEMS 65 1 OPTIMAL CONTROL OF
BILINEAR SYSTEMS 66 1.1 OPTIMAL CONTROL PROBLEM 66 1.2 REDUCTION OF
CONTROL PROBLEM TO EQUIVALENT PROBLEM FOR BILINEAR SYSTEMS 67 1.3
OPTIMAL CONTROL OF BILINEAR SYSTEMS 70 1.4 ON THE SOLUTION OF THE
EULER-LAGRANGE EQUATION 72 2 STABILITY OF BILINEAR SYSTEMS 74 2.1 NORMED
VECTOR SPACE 75 2.2 CONTINUOUS BILINEAR SYSTEMS 77 2.3 DISCRETE BILINEAR
SYSTEMS 79 3 ADAPTIVE CONTROL OF BILINEAR SYSTEMS 82 3.1 CONTROL OF
FIXED POINTS 82 3.2 CONTROL OF LIMIT CYCLES 88 3.3 VARIATIONS IN THE
CONTROL DYNAMICS 89 4 NOTES AND SOURCES 91 3. BILINEAR SYSTEMS AND
NONLINEAR ESTIMATION THEORY 93 1 NONLINEAR DYNAMICAL SYSTEMS AND
ADAPTIVE FILTERS 94 1.1 FILTRATION PROBLEMS 94 1.2 PROBLEM STATEMENT 97
1.3 PRELIMINARIES ON NONLINEAR AND BILINEAR LATTICE MODELS 98 CONTENTS
IX 1.4 ADAPTIVE FILTER FOR LATTICE SYSTEMS 100 1.5 IDENTIFICATION OF
BILINEAR LATTICE MODELS 103 1.6 A GENERALIZATION FOR NONLINEAR LATTICE
MODELS 109 1.7 ESTIMATION OF THE STATE VECTOR OF * A3 REGION 111 1.8
DETECTION AND PREDICTION OF EPILEPTIC SEIZURES 115 2 OPTIMAL ESTIMATION
OF SIGNAL PARAMETERS USING BILINEAR OBSERVATIONS 118 2.1 ESTIMATION
PROBLEM 118 2.2 INVERTIBILITY OF CONTINUOUS MS AND ESTIMATION OF SIGNAL
PARAMETERS 119 2.3 ESTIMATION OF PARAMETERS OF AN ALMOST PERIODIC SIGNAL
UNDER DISCRETE MEASUREMENTS 124 2.4 NEURAL NETWORK ESTIMATION OF SIGNAL
PARAMETERS 127 2.5 FINITE-DIMENSIONAL BILINEAR ADAPTIVE ESTIMATION 129
2.6 EXAMPLE 130 3 BILINEAR LATTICES AND NONLINEAR ESTIMATION THEORY 131
3.1 LATTICE SYSTEMS AND DMZ EQUATIONS 131 3.2 STRUCTURE OF ESTIMATION
ALGEBRA 135 4 NOTES AND SOURCES 138 4. CONTROL OF DYNAMICAL PROCESSES
AND GEOMETRICAL STRUCTURES 139 1 GEOMETRIC STRUCTURES 141 1.1 METRIC
SPACES 142 1.2 OPTIMAL CONTROL 143 1.3 IDENTIFICATION OF NONLINEAR
AGENTS AND YANG-MILLS FIELDS 145 1.4 THE ESTIMATION ALGEBRA OF NONLINEAR
FILTERING SYSTEMS 146 1.5 ESTIMATION ALGEBRA AND IDENTIFICATION PROBLEMS
147 2 LIE GROUPS AND YANG-MILLS FIELDS 149 3 CONTROL OF MULTIAGENT
SYSTEMS AND YANG-MILLS REPRESENTATION 152 4 DYNAMIC SYSTEMS,
INFORMATION, AND FIBER BUNDLES 154 5 FIBER BUNDLES, MULTIPLE AGENTS, AND
OBSERVABILITY 164 5.1 SMOOTH NONLINEAR SYSTEMS 166 5.2 MINIMALITY AND
OBSERVABILITY 168 6 NOTES AND SOURCES 176 CONTENTS SUPERCONDUCTING
LEVITATION AND BILINEAR SYSTEMS 177 1 INTRODUCTION 177 2 STABILITY AND
LEVITATION 179 3 DYNAMICS OF MAGNETICALLY LEVITATED SYSTEMS 182 4
CONTROLLED LEVITATION AND BILINEAR DYNAMICS 191 4.1 STATEMENT OF THE
PROBLEM 191 4.2 OPTIMAL SYNTHESIS OF CHAOTIC DYNAMICS 193 4.3 CHAOTIC
DYNAMICS OF LEVITATED PROBES 195 4.4 ASYMPTOTIC STABILITY OF
MEASUREMENTS 196 4.5 SYNTHESIZING THE ADAPTIVE FILTER 198 4.6 ESTIMATION
OF GRAVITATIONAL SIGNALS 200 4.7 NUMERICAL ANALYSIS OF THE ESTIMATION
MODEL 200 4.8 CONSTRUCTION OF THE SENSOR 202 5 NONLINEAR DYNAMICS AND
CHAOS 203 6 NOTES AND SOURCES 205 OPTIMIZATION AND CONTROL OF
QUANTUM-MECHANICAL PROCESSES 207 1 CONTROL OF QUANTUM SYSTEMS 210 1.1
EVOLUTION OF QUANTUM SYSTEMS 210 1.2 FINITE CONTROL OF QUANTUM SYSTEMS
214 1.3 AMPLITUDE-FREQUENCY CONTROL 216 1.4 RESONANCE CONTROL OF A
THREE-LEVEL SYSTEM 218 2 SIMULATION OF QUANTUM CONTROL SYSTEMS 219 2.1
MATHEMATICAL MODELS OF QUANTUM OBJECTS 220 2.2 DYNAMICS OF QUANTUM
SYSTEMS AND CONTROL 221 2.3 PHYSICAL CONSTRAINTS 223 2.4 HIERARCHY OF
TIME SCALES 224 3 REPRESENTATION OF THE INTERACTION 226 3.1
APPROXIMATION OF THE MODEL 228 3.2 QUANTUM BILINEAR DYNAMICS 229 3.3
HAMILTONIAN DYNAMICS 232 4 THE BELLMAN PRINCIPLE AND QUANTUM SYSTEMS 233
4.1 DETERMINISTIC OPTIMAL CONTROL 234 4.2 THE BELLMAN-HAMILTON-JACOBI
THEORY AND DIFFERENTIAL FORMS 236 4.3 STOCHASTIC OPTIMAL CONTROL AND
SCHROEDINGER EQUATIONS 239 CONTENTS XI 5 CLASSICAL AND QUANTUM CONTROLLED
LATTICES: SELF-ORGANIZATION, OPTIMIZATION AND BIOMEDICAL APPLICATIONS
241 5.1 HAMILTONIAN MODELS OF CELLULAR DYNAMATONS 243 5.2
SELF-ORGANIZATION OF NEURAL NETWORKS 247 5.3 BILINEAR LATTICES AND
EPILEPTIC SEIZURES 252 5.4 QUANTUM MODEL OF NEURAL NETWORKS 257 6 NOTES
AND SOURCES 259 7. MODELING AND GLOBAL OPTIMIZATION IN BIOMOLECULAR
SYSTEMS 261 1 CONTROL DYNAMICS AND PHOTOSYNTHETIC CENTERS 262 1.1
MATHEMATICAL MODELS 262 1.2 KOLMOGOROV EQUATIONS AND BILINEAR DYNAMICAL
SYSTEMS 264 1.3 MODELING AND EXPERIMENTAL RESULTS 273 2 BILINEAR MODELS
OF BIOLOGICAL MEMBRANES 278 2.1 CONTROLLED MODEL OF THE CHANNEL 280 2.2
GENERALIZED EQUATION OF DIFFUSION 287 2.3 STRUCTURE OF A FUNCTIONING
CHANNEL 290 3 INTELLIGENT BIOSENSORS 296 3.1 ECOLOGICAL MONITORING AND
LIVING OBJECTS 296 3.2 EXPERIMENTAL RESULTS 297 3.3 IDENTIFICATION OF A
BILINEAR SENSITIVE ELEMENT 303 3.4 SEPARATION OF POLLUTANT
CHARACTERISTICS BY NEURAL CHIPS 307 4 NOTES AND SOURCES * 312 8.
MODELING AND ANALYSIS OF BILINEAR SYSTEMS 313 1 GLOBAL RECONSTRUCTING OF
MODELS 314 1.1 MODELING WITHOUT HIDDEN VARIABLES 314 1.2 MODELING WITH
HIDDEN VARIABLES 316 1.3 CONTROLLING CHAOS 322 2 NONLINEAR DYNAMICS OF
SEA CLUTTER AND DETECTION OF SMALL TARGETS 324 2.1 NON-GAUSSIAN SIGNALS
AND BACKSCATTERING PROCESS 324 2.2 SEA CLUTTER ATTRACTOR 325 2.3
MATHEMATICAL MODEL OF SEA CLUTTER 327 3 GLOBAL RECONSTRUCTION AND
BIOMEDICAL APPLICATIONS 328 3.1 NONPARAMETRIC MODELS FOR EPILEPSY DATA
328 XN CONTENTS 3.2 RECONSTRUCTION OF THE PARAMETER SPACES OF THE HUMAN
BRAIN 329 4 GLOBAL OPTIMIZATION APPROACHES TO RECONSTRUCTION OF
DYNAMICAL SYSTEMS RELATED TO EPILEPTIC SEIZURES 338 4.1 NONLINEAR
DYNAMICS AND EPILEPSY 338 4.2 RECONSTRUCTING EQUATIONS OF THE EPILEPTIC
BRAIN FROM EXPERIMENTAL DATA 339 4.3 QUADRATIC PROGRAMMING PROBLEM 341 5
STOCHASTIC AND DETERMINISTIC DYNAMICS IN ELECTROETINOGRAMS 343 5.1
EXPERIMENTAL DATA 343 5.2 METHODS FOR THE ANALYSIS OF TIME SERIES 345
5.3 NUMERICAL RESULTS 348 6 NOTES AND SOURCES 351 REFERENCES 353 INDEX
369
|
adam_txt |
OPTIMIZATION AND CONTROL OF BILINEAR SYSTEMS THEORY, ALGORITHMS, AND
APPLICATIONS BY PANOS M. PARDALOS UNIVERSITY OF FLORIDA, GAINESVILLE, FL
VITALIY YATSENKO SPACE RESEARCH INSTITUTE OF NASU-NASU, KYIV, UKRAINE
SPRI RINGER CONTENTS PREFACE XIII ACKNOWLEDGMENTS XVII FOREWORD XIX
NOTATION XXI INTRODUCTION XXIII 1. SYSTEM-THEORETICAL DESCRIPTION OF
OPEN PHYSICAL PROCESSES 1 1 REDUCTION OF NONLINEAR CONTROL SYSTEMS TO
BILINEAR REALIZATION 3 1.1 EQUIVALENCE OF CONTROL SYSTEMS 3 1.2 LIE
ALGEBRAS, LIE GROUPS, AND REPRESENTATIONS 4 1.3 SELECTION OF
MATHEMATICAL MODELS 6 1.4 BILINEAR LOGIC-DYNAMICAL REALIZATION OF
NONLINEAR CONTROL SYSTEMS 10 2 GLOBAL BILINEARIZATION OF NONLINEAR
SYSTEMS 12 3 IDENTIFICATION OF BILINEAR CONTROL SYSTEMS 19 4 BILINEAR
AND NONLINEAR REALIZATIONS OF INPUT-OUTPUT MAPS 20 4.1 SYSTEMS ON LIE
GROUPS 20 4.2 BILINEAR REALIZATION OF NONLINEAR SYSTEMS 22 4.3
APPROXIMATION OF NONLINEAR SYSTEMS BY BILINEAR SYSTEMS 23 5
CONTROLLABILITY OF BILINEAR SYSTEMS 25 6 OBSERVABILITY OF SYSTEMS ON LIE
GROUPS 27 6.1 OBSERVABILITY AND LIE GROUPS 27 6.2 ALGORITHMS OF
OBSERVABILITY 33 VII VLLL CONTENTS 6.3 EXAMPLES 36 6.4 DECOUPLING
PROBLEMS 38 7 INVERTIBILITY OF CONTROL SYSTEMS 40 7.1 RIGHT-INVARIANT
CONTROL SYSTEMS 40 7.2 INVERTIBILITY OF RIGHT-INVARIANT SYSTEMS 43 7.3
LEFT-INVERSES FOR BILINEAR SYSTEMS 49 8 INVERTIBILITY OF DISCRETE
BILINEAR SYSTEMS 56 8.1 DISCRETE BILINEAR SYSTEMS AND INVERTABILITY 56
8.2 CONSTRUCTION OF INVERSE SYSTEMS 57 8.3 CONTROLLABILITY OF INVERSE
SYSTEMS 58 9 VERSAL MODELS AND BILINEAR SYSTEMS 59 9.1 GENERAL
CHARACTERISTICS OF VERSAL MODELS 59 9.2 ALGORITHMS 60 10 NOTES AND
SOURCES 64 2. CONTROL OF BILINEAR SYSTEMS 65 1 OPTIMAL CONTROL OF
BILINEAR SYSTEMS 66 1.1 OPTIMAL CONTROL PROBLEM 66 1.2 REDUCTION OF
CONTROL PROBLEM'TO EQUIVALENT PROBLEM FOR BILINEAR SYSTEMS 67 1.3
OPTIMAL CONTROL OF BILINEAR SYSTEMS 70 1.4 ON THE SOLUTION OF THE
EULER-LAGRANGE EQUATION 72 2 STABILITY OF BILINEAR SYSTEMS 74 2.1 NORMED
VECTOR SPACE 75 2.2 CONTINUOUS BILINEAR SYSTEMS 77 2.3 DISCRETE BILINEAR
SYSTEMS 79 3 ADAPTIVE CONTROL OF BILINEAR SYSTEMS 82 3.1 CONTROL OF
FIXED POINTS 82 3.2 CONTROL OF LIMIT CYCLES 88 3.3 VARIATIONS IN THE
CONTROL DYNAMICS 89 4 NOTES AND SOURCES 91 3. BILINEAR SYSTEMS AND
NONLINEAR ESTIMATION THEORY 93 1 NONLINEAR DYNAMICAL SYSTEMS AND
ADAPTIVE FILTERS 94 1.1 FILTRATION PROBLEMS 94 1.2 PROBLEM STATEMENT 97
1.3 PRELIMINARIES ON NONLINEAR AND BILINEAR LATTICE MODELS 98 CONTENTS
IX 1.4 ADAPTIVE FILTER FOR LATTICE SYSTEMS 100 1.5 IDENTIFICATION OF
BILINEAR LATTICE MODELS 103 1.6 A GENERALIZATION FOR NONLINEAR LATTICE
MODELS 109 1.7 ESTIMATION OF THE STATE VECTOR OF * A3 REGION 111 1.8
DETECTION AND PREDICTION OF EPILEPTIC SEIZURES 115 2 OPTIMAL ESTIMATION
OF SIGNAL PARAMETERS USING BILINEAR OBSERVATIONS 118 2.1 ESTIMATION
PROBLEM 118 2.2 INVERTIBILITY OF CONTINUOUS MS AND ESTIMATION OF SIGNAL
PARAMETERS 119 2.3 ESTIMATION OF PARAMETERS OF AN ALMOST PERIODIC SIGNAL
UNDER DISCRETE MEASUREMENTS 124 2.4 NEURAL NETWORK ESTIMATION OF SIGNAL
PARAMETERS 127 2.5 FINITE-DIMENSIONAL BILINEAR ADAPTIVE ESTIMATION 129
2.6 EXAMPLE 130 3 BILINEAR LATTICES AND NONLINEAR ESTIMATION THEORY 131
3.1 LATTICE SYSTEMS AND DMZ EQUATIONS 131 3.2 STRUCTURE OF ESTIMATION
ALGEBRA 135 4 NOTES AND SOURCES 138 4. CONTROL OF DYNAMICAL PROCESSES
AND GEOMETRICAL STRUCTURES 139 1 GEOMETRIC STRUCTURES 141 1.1 METRIC
SPACES 142 1.2 OPTIMAL CONTROL 143 1.3 IDENTIFICATION OF NONLINEAR
AGENTS AND YANG-MILLS FIELDS 145 1.4 THE ESTIMATION ALGEBRA OF NONLINEAR
FILTERING SYSTEMS 146 1.5 ESTIMATION ALGEBRA AND IDENTIFICATION PROBLEMS
147 2 LIE GROUPS AND YANG-MILLS FIELDS 149 3 CONTROL OF MULTIAGENT
SYSTEMS AND YANG-MILLS REPRESENTATION 152 4 DYNAMIC SYSTEMS,
INFORMATION, AND FIBER BUNDLES 154 5 FIBER BUNDLES, MULTIPLE AGENTS, AND
OBSERVABILITY 164 5.1 SMOOTH NONLINEAR SYSTEMS 166 5.2 MINIMALITY AND
OBSERVABILITY 168 6 NOTES AND SOURCES 176 CONTENTS SUPERCONDUCTING
LEVITATION AND BILINEAR SYSTEMS 177 1 INTRODUCTION 177 2 STABILITY AND
LEVITATION 179 3 DYNAMICS OF MAGNETICALLY LEVITATED SYSTEMS 182 4
CONTROLLED LEVITATION AND BILINEAR DYNAMICS 191 4.1 STATEMENT OF THE
PROBLEM 191 4.2 OPTIMAL SYNTHESIS OF CHAOTIC DYNAMICS 193 4.3 CHAOTIC
DYNAMICS OF LEVITATED PROBES 195 4.4 ASYMPTOTIC STABILITY OF
MEASUREMENTS 196 4.5 SYNTHESIZING THE ADAPTIVE FILTER 198 4.6 ESTIMATION
OF GRAVITATIONAL SIGNALS 200 4.7 NUMERICAL ANALYSIS OF THE ESTIMATION
MODEL 200 4.8 CONSTRUCTION OF THE SENSOR 202 5 NONLINEAR DYNAMICS AND
CHAOS 203 6 NOTES AND SOURCES 205 OPTIMIZATION AND CONTROL OF
QUANTUM-MECHANICAL PROCESSES 207 1 CONTROL OF QUANTUM SYSTEMS 210 1.1
EVOLUTION OF QUANTUM SYSTEMS 210 1.2 FINITE CONTROL OF QUANTUM SYSTEMS
214 1.3 AMPLITUDE-FREQUENCY CONTROL 216 1.4 RESONANCE CONTROL OF A
THREE-LEVEL SYSTEM 218 2 SIMULATION OF QUANTUM CONTROL SYSTEMS 219 2.1
MATHEMATICAL MODELS OF QUANTUM OBJECTS 220 2.2 DYNAMICS OF QUANTUM
SYSTEMS AND CONTROL 221 2.3 PHYSICAL CONSTRAINTS 223 2.4 HIERARCHY OF
TIME SCALES 224 3 REPRESENTATION OF THE INTERACTION 226 3.1
APPROXIMATION OF THE MODEL 228 3.2 QUANTUM BILINEAR DYNAMICS 229 3.3
HAMILTONIAN DYNAMICS 232 4 THE BELLMAN PRINCIPLE AND QUANTUM SYSTEMS 233
4.1 DETERMINISTIC OPTIMAL CONTROL 234 4.2 THE BELLMAN-HAMILTON-JACOBI
THEORY AND DIFFERENTIAL FORMS 236 4.3 STOCHASTIC OPTIMAL CONTROL AND
SCHROEDINGER EQUATIONS 239 CONTENTS XI 5 CLASSICAL AND QUANTUM CONTROLLED
LATTICES: SELF-ORGANIZATION, OPTIMIZATION AND BIOMEDICAL APPLICATIONS
241 5.1 HAMILTONIAN MODELS OF CELLULAR DYNAMATONS 243 5.2
SELF-ORGANIZATION OF NEURAL NETWORKS 247 5.3 BILINEAR LATTICES AND
EPILEPTIC SEIZURES 252 5.4 QUANTUM MODEL OF NEURAL NETWORKS 257 6 NOTES
AND SOURCES 259 7. MODELING AND GLOBAL OPTIMIZATION IN BIOMOLECULAR
SYSTEMS 261 1 CONTROL DYNAMICS AND PHOTOSYNTHETIC CENTERS 262 1.1
MATHEMATICAL MODELS 262 1.2 KOLMOGOROV EQUATIONS AND BILINEAR DYNAMICAL
SYSTEMS 264 1.3 MODELING AND EXPERIMENTAL RESULTS 273 2 BILINEAR MODELS
OF BIOLOGICAL MEMBRANES 278 2.1 CONTROLLED MODEL OF THE CHANNEL 280 2.2
GENERALIZED EQUATION OF DIFFUSION 287 2.3 STRUCTURE OF A FUNCTIONING
CHANNEL 290 3 INTELLIGENT BIOSENSORS 296 3.1 ECOLOGICAL MONITORING AND
LIVING OBJECTS 296 3.2 EXPERIMENTAL RESULTS 297 3.3 IDENTIFICATION OF A
BILINEAR SENSITIVE ELEMENT 303 3.4 SEPARATION OF POLLUTANT
CHARACTERISTICS BY NEURAL CHIPS 307 4 NOTES AND SOURCES * 312 8.
MODELING AND ANALYSIS OF BILINEAR SYSTEMS 313 1 GLOBAL RECONSTRUCTING OF
MODELS 314 1.1 MODELING WITHOUT HIDDEN VARIABLES 314 1.2 MODELING WITH
HIDDEN VARIABLES 316 1.3 CONTROLLING CHAOS 322 2 NONLINEAR DYNAMICS OF
SEA CLUTTER AND DETECTION OF SMALL TARGETS 324 2.1 NON-GAUSSIAN SIGNALS
AND BACKSCATTERING PROCESS 324 2.2 SEA CLUTTER ATTRACTOR 325 2.3
MATHEMATICAL MODEL OF SEA CLUTTER 327 3 GLOBAL RECONSTRUCTION AND
BIOMEDICAL APPLICATIONS 328 3.1 NONPARAMETRIC MODELS FOR EPILEPSY DATA
328 XN CONTENTS 3.2 RECONSTRUCTION OF THE PARAMETER SPACES OF THE HUMAN
BRAIN 329 4 GLOBAL OPTIMIZATION APPROACHES TO RECONSTRUCTION OF
DYNAMICAL SYSTEMS RELATED TO EPILEPTIC SEIZURES 338 4.1 NONLINEAR
DYNAMICS AND EPILEPSY 338 4.2 RECONSTRUCTING EQUATIONS OF THE EPILEPTIC
BRAIN FROM EXPERIMENTAL DATA 339 4.3 QUADRATIC PROGRAMMING PROBLEM 341 5
STOCHASTIC AND DETERMINISTIC DYNAMICS IN ELECTROETINOGRAMS 343 5.1
EXPERIMENTAL DATA 343 5.2 METHODS FOR THE ANALYSIS OF TIME SERIES 345
5.3 NUMERICAL RESULTS 348 6 NOTES AND SOURCES 351 REFERENCES 353 INDEX
369 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Pardalos, Panos M. 1954- Jacenko, Vitalij A. |
author_GND | (DE-588)115385827 |
author_facet | Pardalos, Panos M. 1954- Jacenko, Vitalij A. |
author_role | aut aut |
author_sort | Pardalos, Panos M. 1954- |
author_variant | p m p pm pmp v a j va vaj |
building | Verbundindex |
bvnumber | BV023479714 |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402 |
callnumber-search | QA402 |
callnumber-sort | QA 3402 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 870 |
ctrlnum | (OCoLC)173718700 (DE-599)DNB984633138 |
dewey-full | 003.75 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.75 |
dewey-search | 003.75 |
dewey-sort | 13.75 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02145nam a2200529 cb4500</leader><controlfield tag="001">BV023479714</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090519 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080806s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N28,1181</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984633138</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387736686</subfield><subfield code="c">Gb. : ca. EUR 65.91 (freier Pr.), ca. sfr 101.00 (freier Pr.)</subfield><subfield code="9">978-0-387-73668-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387736689</subfield><subfield code="c">Gb. : ca. EUR 65.91 (freier Pr.), ca. sfr 101.00 (freier Pr.)</subfield><subfield code="9">0-387-73668-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387736693</subfield><subfield code="9">978-0-387-73669-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387736686</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11851820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)173718700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984633138</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.75</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pardalos, Panos M.</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115385827</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization and control of bilinear systems</subfield><subfield code="b">theory, algorithms, and applications</subfield><subfield code="c">by Panos M. Pardalos ; Vitaliy Yatsenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 370 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer optimization and its applications</subfield><subfield code="v">11</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bilinear forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bilineares System</subfield><subfield code="0">(DE-588)4145511-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bilineares System</subfield><subfield code="0">(DE-588)4145511-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jacenko, Vitalij A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer optimization and its applications</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV021746093</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016661897&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016661897</subfield></datafield></record></collection> |
id | DE-604.BV023479714 |
illustrated | Illustrated |
index_date | 2024-07-02T21:37:30Z |
indexdate | 2024-07-09T21:19:43Z |
institution | BVB |
isbn | 9780387736686 0387736689 9780387736693 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016661897 |
oclc_num | 173718700 |
open_access_boolean | |
owner | DE-824 DE-11 |
owner_facet | DE-824 DE-11 |
physical | XXVI, 370 S. Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Springer optimization and its applications |
series2 | Springer optimization and its applications |
spelling | Pardalos, Panos M. 1954- Verfasser (DE-588)115385827 aut Optimization and control of bilinear systems theory, algorithms, and applications by Panos M. Pardalos ; Vitaliy Yatsenko New York, NY Springer 2008 XXVI, 370 S. Ill., graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Springer optimization and its applications 11 Bilinear forms Mathematical optimization Nonlinear systems Bilineares System (DE-588)4145511-3 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Bilineares System (DE-588)4145511-3 s Optimierung (DE-588)4043664-0 s DE-604 Jacenko, Vitalij A. Verfasser aut Springer optimization and its applications 11 (DE-604)BV021746093 11 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016661897&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pardalos, Panos M. 1954- Jacenko, Vitalij A. Optimization and control of bilinear systems theory, algorithms, and applications Springer optimization and its applications Bilinear forms Mathematical optimization Nonlinear systems Bilineares System (DE-588)4145511-3 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4145511-3 (DE-588)4043664-0 |
title | Optimization and control of bilinear systems theory, algorithms, and applications |
title_auth | Optimization and control of bilinear systems theory, algorithms, and applications |
title_exact_search | Optimization and control of bilinear systems theory, algorithms, and applications |
title_exact_search_txtP | Optimization and control of bilinear systems theory, algorithms, and applications |
title_full | Optimization and control of bilinear systems theory, algorithms, and applications by Panos M. Pardalos ; Vitaliy Yatsenko |
title_fullStr | Optimization and control of bilinear systems theory, algorithms, and applications by Panos M. Pardalos ; Vitaliy Yatsenko |
title_full_unstemmed | Optimization and control of bilinear systems theory, algorithms, and applications by Panos M. Pardalos ; Vitaliy Yatsenko |
title_short | Optimization and control of bilinear systems |
title_sort | optimization and control of bilinear systems theory algorithms and applications |
title_sub | theory, algorithms, and applications |
topic | Bilinear forms Mathematical optimization Nonlinear systems Bilineares System (DE-588)4145511-3 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Bilinear forms Mathematical optimization Nonlinear systems Bilineares System Optimierung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016661897&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021746093 |
work_keys_str_mv | AT pardalospanosm optimizationandcontrolofbilinearsystemstheoryalgorithmsandapplications AT jacenkovitalija optimizationandcontrolofbilinearsystemstheoryalgorithmsandapplications |