Finite element analysis and programming: an introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Alpha Science Internat.
2010
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Getr. Zähl. graph. Darst. |
ISBN: | 9781842653685 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023475714 | ||
003 | DE-604 | ||
005 | 20120130 | ||
007 | t | ||
008 | 080805s2010 d||| |||| 00||| eng d | ||
015 | |a GBA857652 |2 dnb | ||
020 | |a 9781842653685 |9 978-1-84265-368-5 | ||
035 | |a (OCoLC)225452162 | ||
035 | |a (DE-599)GBV528175807 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-20 |a DE-83 |a DE-824 | ||
082 | 0 | |a 620.00151825 |2 22 | |
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
100 | 1 | |a Shivaswamy, Shashishekar |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite element analysis and programming |b an introduction |c Shashishekar Shivaswamy |
264 | 1 | |a Oxford |b Alpha Science Internat. |c 2010 | |
300 | |a Getr. Zähl. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Finite element method / Data processing | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Finite element method |x Data processing | |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016657958&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016657958 |
Datensatz im Suchindex
_version_ | 1804137899610865664 |
---|---|
adam_text | TABLE
OF
CONTENTS
Preface
„j
List of Abbreviations and Symbols jx
CHAPTER
1.
WHAT
Б
FEA?
1.1
1.0
Introduction
1.1
1.1
FEA
procedure
1.
l
1.2
How to use this book
1.2
CHAPTER
2.
BASIC CONCEPTS
ES FEA
2.1
2.0
Introduction
2.1
2.1
Stress
2.1
2.2
Strain
2.2
2.3
Stress-strain relationship in
3
dimensions
2.4
2.4
Stress-strain relationships in
2
dimensions
2.5
2.4.1
Plane stress condition
2.6
2.4.2
Plane strain condition
2.6
2.4.3
Axisymmetric condition
2.7
2.5
Stress-strain relationship in
1
dimension
2.8
2.6
Principal stresses and
von
Mises
stress
2.9
2.7
Strain energy
2.9
2.8
Potential energy
2.10
2.9
Rayleigh-Ritz method
2.11
2.10
Principle of minimum potential energy
2.12
2.11
Principle of virtual work
2.13
2.12
Weak formulation
2.14
2.13
Exercises
2.20
CHAPTER
3.
BASIC STEPS IN
FEA
3.1
3.0
Introduction
3.1
3.1
Formation of element stiffness matrix
3.1
3.1.1
Gauss-Legendre numerical integration
3.3
32
Global stiffness matrix assembly
3.10
3.3
Application of geometric boundary conditions
3.14
3.4
Formation of the consistent load vector
3.22
xjv Table of
Contents
3.5
Solving for displacement
3.24
3.5.1
Pivoting in Gaussian elimination
3.26
3.6
Calculation of derived parameters
3.29
3.7
Exercises
3.30
CHAPTER
4.
DISPLACEMENT FUNCTION BASED FORMULATION
4.1
4.0
Introduction
4.1
4.1
Displacement based finite element formulation
4.1
4.1.1
Compatibility
4.1
4.1.2
Representation of rigid body modes
4.2
4.1.3
No preferred directions
4.2
4.1.4
Ability to produce constant stress when subjected to state of constant strain
4.3
4.1.5
Convergence
4.3
4.2
Displacement field for one dimensional elements
4.4
4.3
Displacement fields for two dimensional membrane elements
4.5
4.4
Displacement fields for three dimensional solid elements
4.7
4.5
Displacement field for plate elements
4.9
4.6
Exercises
4.9
CHAPTERS. SHAPE FUNCTIONS
5.1
5.0
Introduction
5.1
5.1
One dimensional
Lagrange
shape functions
5.1
5.2
Two dimensional shape functions
5.3
5.2.1
Triangle elements
5.3
5.2.1
.a Linear shape functions over a three noded triangle
5.3
5.2.1.
b
Quadratic shape functions over a six noded triangle
5.7
5.2.2
Quadrilateral elements
5.8
5.2.2.a Four noded quadrilateral element
5.9
5.2.2.b Higher order serendipity quadrilateral elements
5.10
5.2.2.C
Lagrange
quadrilateral elements
5.13
5.2.2.d Hermitian quadrilateral element
5.16
5.3
Three dimensional shape functions
5.18
5.3.1
Tetrahedron element
5.18
5.3.2
Prism elements
5.20
5.3.3
Hexahedron elements
5.21
5.4
Concept of Jacobian matrix
5.22
5.5
Exercises
5.24
CHAPTER
6.
BAR ELEMENTS
6.1
6.0
Introduction
6.1
6.1
Linear bar element
6.1
6.2
Higher order bar element
6.3
6.3
Bar element spreadsheet program
6.13
6.4
Exercises
6.19
Table
of
Contents xv
CHAPTER?. TRUSS
ELEMENTS 7.1
7.0
Introduction j
1.1
Two dimensional truss
η
7.2
Three dimensional truss
73
7.3
Truss element spreadsheet program 7.II
7.4
Exercises
714
CHAPTER
8.
BEAM ELEMENTS
8.1
8.0
Introduction
g j
8.1
Euler
beam
g
1
8.2
Euler
beam element spreadsheet program
8.10
8.3
Transverse shear deformation in beams
8.12
8.4
Timoshenko beam spreadsheet program
8.23
8.5
Axial deformation in beams
8.26
8.6
Torsionai
deformation in beams
8.26
8.7
Out of plane bending in beams
8.26
8.8
Two and three dimensional beam elements
8.27
8.9
Offset beam element
8.29
8.10
Exercises
8.29
CHAPTER
9.
FRAME ELEMENT 9.I
9.0
Introduction
9.1
9.1
Two dimensional frame
9.
l
9.2
Two dimensional frame spreadsheet program
9.11
9.3
Three dimensional frame
9.14
9.4
Three dimensional rigid element
9.16
9.5
Exercises
9.16
CHAPTER
10.
STRAIN-DISPLACEMENT MATRIX FOR 2D AND
3D
ELEMENTS
10.1
10.0
Introduction
10.
1
10.1
Displacement function based approach
10.1
10.2
Isoparametric formulation
10.3
CHAPTER
11.
TRIANGLE MEMBRANE ELEMENTS
11.1
11.0
Introduction
11.1
11.1
Three noded triangle membrane element (TRIA3M)
11.1
11.2
CST element spreadsheet program
11.6
11.3
Six noded triangle membrane element (TRIA6M)
11.9
11.4
TRIA6M element in fracture mechanics
1123
11.5
Exercises
11.23
CHAPTER
12.
QUADRILATERAL MEMBRANE ELEMENTS
12.1
12.0
Introduction
12:1
12.1
Displacement function based formulation
12.1
12.2
Four noded quadrilateral membrane element (QUAD4M)
12.6
12.3
QUAD4M element spreadsheet program
12.21
xv¡
Table of
Contents
12.4
Eight noded quadrilateral membrane element (QUAD8M)
12.25
12.5
Order of integration
12.27
12.6
Parasitic shear due to bending
12.34
12.7
Connecting a membrane element to a 2D beam element
12.36
12.8
Exercises
12.36
CHAPTER
13.
AXISYMMETRIC ELEMENTS
13.1
13.0
Introduction
13.1
13.1
Three noded triangle axisymmetric element (TRIA3A)
13.1
13.2
Four noded quadrilateral axisymmetric element (QUAD4A)
13.3
13.3
Consistent load vector
13.4
13.4
Exercises
13.20
CHAPTER
14.
TETRAHEDRON ELEMENTS
14.1
14.0
Introduction
14.1
14.1
Four noded tetrahedron element (TET4)
14.1
14.2
Ten noded tetrahedron element
(TET
10) 14.22
14.3
Exercises
14.24
CHAPTER
15.
PRISM ELEMENT
15.1
15.0
Introduction
15.1
15.1
Six noded prism element (PRISM6)
15.1
15.2
Exercises
15.21
CHAPTER
16.
HEXAHEDRON ELEMENT
16.1
16.0
Introduction
16.1
16.1
Eight noded hexahedron element (HEXA8)
16.1
16.2
Exercises
16.19
CHAPTER
17.
PLATE ELEMENTS
17.1
17.0
Introduction
17.1
17.1
Thin and thick plates
17.1
17.2
Basic plate equations
17.1
17.3
Strain energy
17.4
17.4
Continuity requirements
17.5
17.5
FE formulation of thin plates
17.5
17.5.1
Displacement function based formulation of a three noded triangle plate
17.5
element (TRIA3P)
17.5.2
Displacement function based formulation of a
4
noded rectangle plate element
17.10
17.6
Reissner-Mindlin plate theory
17.12
17.6.1
Four noded isoparametric thick plate element
17.14
17.7
Flat shell element
17.32
17.8
Exercises
17.33
CHAPTER
18.
COMPOSITE LAMINATES
18.1
18.0
Introduction jg
1
18.1
Orthotropic material stress-strain relationship about principal axes
18.1
Table
of
Contents
xv¡¡
18.2 General
stress-strain relationship of an orthotropic lamina
18.2
18.3
Laminate plate
18 3
18.4
Classical laminate plate theory (CLPT) I8.5
18.5
First order shear deformation laminate plate theory (FSDT)
18.6
18.6
Finite element formulation of CLPT
] 8.7
18.7
Finite element formulation of FSDT
18.8
18.8
Exercises
18.32
CHAPTER
19.
DYNAMIC ANALYSIS
19.1
19.0
Introduction
191
19.1 Lagrange
s
equation
19 1
19.2
Eigenvalue problem I93
19.3
Properties of eigenvectors
19,5
19.4
Lagrange s equation for non-conservative systems
19.7
19.5
Numerical integration of equations of motion
19.17
19.5.1
Runge-Kutta fourth order method
19.17
19.5.2
Crank-Nicolson method
19.18
19.5.3
Wilson
θ
method
19.19
19.5.4
Newmark method
19.20
19.6
Application of Lagrange s equation in
FEA
19.30
19.6.1
Case
(і)
19.30
19.6.1.a Two noded bar element
19.32
19.6.1.
b
Truss element
19.32
19.6.1.C Triangle membrane element
19.33
19.6.1.
d
Rectangle and quadrilateral membrane element
19.33
19.6.1.
e
Tetrahedron element
19.34
19.6.1.
f
Prism element
19.35
19.6.1.
g
Hexahedron elements
19.36
19.6.2
Case (ii)
19.37
19.6.2.a Beam and frame element based on
Euler
theory
19.37
19.6.2.b Plate elements based on Kirchoff-Love theory
19.38
19.6.3
Case
(iii)
19.39
19.6.3.a Timoshenko beam element
19.39
19.6.3.b Reissner-Mindlin plate element
19.40
19.7
Application of boundary conditions in dynamic
FEA
19.44
19.8
Exercises
19.67
CHAPTER
20.
FEAOFPARTIALDIFFERTIALEQUATIONS
20.1
20.0
Introduction
20.1
20.1
Elliptical system
20.1
20.1.1
Elliptical system
- 1
D
20.1
20.1.2
Elliptical system
-
2D
20.14
20.1.2.a Inviscid incompressible fluid flow
20.19
20.1.2.b
Torsionai
deformation of a prismatic bar
20.20
20.1.2.C Helmoltz equation
20.40
20.1.3
Elliptical system
- 3D 20.40
xv¡¡¡
Table of Contents
20.2
Parabolic system
20.42
20.2.1
Parabolic system-ID
20.42
20.3
Hyperbolic system
20.48
20.3.1
Hyperbolic system-ID
20.48
20.4
Exercises
20.54
APPENDIX A. METHODS FOR SOLVING A SYSTEM OF EQUATIONS A.1
A.O Introduction A.
1
A.I
LU
factorization A.I
A.2 Cholesky s method A.5
APPENDIX B. METHODS FOR SOIVING EIGENVALUE PROBLEMS B.I
B.O Introduction B.I
B.I Eigenvalue problem in standard form B.I
B.I.I Power method B.I
B.I.
2
Shifted iteration B.2
B.1.3 Shifted inverse iteration B.2
B.1.4 Deflation technique B.2
B.1.5 Jacobi transformation B.3
B.I.
6
Givens
method B.4
B.2 Eigenvalue problem in general form B.5
B.2.1 Power method B.6
B.2.2 Rayleigh quotient B.6
B.2.3 Generalized Jacobi method B.6
APPENDIX
С
PROGRAMMINGGUIDE
TO
MATHCAD 2001
Cl
CO
Introduction Cl
Cl
Other
versions
of
MATHCAD C.9
APPENDIX
D.
UNIT CONVERSIONS D.I
References R.
1
Subject Index S.
1
|
adam_txt |
TABLE
OF
CONTENTS
Preface
„j
List of Abbreviations and Symbols jx
CHAPTER
1.
WHAT
Б
FEA?
1.1
1.0
Introduction
1.1
1.1
FEA
procedure
1.
l
1.2
How to use this book
1.2
CHAPTER
2.
BASIC CONCEPTS
ES FEA
2.1
2.0
Introduction
2.1
2.1
Stress
2.1
2.2
Strain
2.2
2.3
Stress-strain relationship in
3
dimensions
2.4
2.4
Stress-strain relationships in
2
dimensions
2.5
2.4.1
Plane stress condition
2.6
2.4.2
Plane strain condition
2.6
2.4.3
Axisymmetric condition
2.7
2.5
Stress-strain relationship in
1
dimension
2.8
2.6
Principal stresses and
von
Mises
stress
2.9
2.7
Strain energy
2.9
2.8
Potential energy
2.10
2.9
Rayleigh-Ritz method
2.11
2.10
Principle of minimum potential energy
2.12
2.11
Principle of virtual work
2.13
2.12
Weak formulation
2.14
2.13
Exercises
2.20
CHAPTER
3.
BASIC STEPS IN
FEA
3.1
3.0
Introduction
3.1
3.1
Formation of element stiffness matrix
3.1
3.1.1
Gauss-Legendre numerical integration
3.3
32
Global stiffness matrix assembly
3.10
3.3
Application of geometric boundary conditions
3.14
3.4
Formation of the consistent load vector
3.22
xjv Table of
Contents
3.5
Solving for displacement
3.24
3.5.1
Pivoting in Gaussian elimination
3.26
3.6
Calculation of derived parameters
3.29
3.7
Exercises
3.30
CHAPTER
4.
DISPLACEMENT FUNCTION BASED FORMULATION
4.1
4.0
Introduction
4.1
4.1
Displacement based finite element formulation
4.1
4.1.1
Compatibility
4.1
4.1.2
Representation of rigid body modes
4.2
4.1.3
No preferred directions
4.2
4.1.4
Ability to produce constant stress when subjected to state of constant strain
4.3
4.1.5
Convergence
4.3
4.2
Displacement field for one dimensional elements
4.4
4.3
Displacement fields for two dimensional membrane elements
4.5
4.4
Displacement fields for three dimensional solid elements
4.7
4.5
Displacement field for plate elements
4.9
4.6
Exercises
4.9
CHAPTERS. SHAPE FUNCTIONS
5.1
5.0
Introduction
5.1
5.1
One dimensional
Lagrange
shape functions
5.1
5.2
Two dimensional shape functions
5.3
5.2.1
Triangle elements
5.3
5.2.1
.a Linear shape functions over a three noded triangle
5.3
5.2.1.
b
Quadratic shape functions over a six noded triangle
5.7
5.2.2
Quadrilateral elements
5.8
5.2.2.a Four noded quadrilateral element
5.9
5.2.2.b Higher order serendipity quadrilateral elements
5.10
5.2.2.C
Lagrange
quadrilateral elements
5.13
5.2.2.d Hermitian quadrilateral element
5.16
5.3
Three dimensional shape functions
5.18
5.3.1
Tetrahedron element
5.18
5.3.2
Prism elements
5.20
5.3.3
Hexahedron elements
5.21
5.4
Concept of Jacobian matrix
5.22
5.5
Exercises
5.24
CHAPTER
6.
BAR ELEMENTS
6.1
6.0
Introduction
6.1
6.1
Linear bar element
6.1
6.2
Higher order bar element
6.3
6.3
Bar element spreadsheet program
6.13
6.4
Exercises
6.19
Table
of
Contents xv
CHAPTER?. TRUSS
ELEMENTS 7.1
7.0
Introduction j\
1.1
Two dimensional truss
η \
7.2
Three dimensional truss
73
7.3
Truss element spreadsheet program 7.II
7.4
Exercises
714
CHAPTER
8.
BEAM ELEMENTS
8.1
8.0
Introduction
g j
8.1
Euler
beam
g
1
8.2
Euler
beam element spreadsheet program
8.10
8.3
Transverse shear deformation in beams
8.12
8.4
Timoshenko beam spreadsheet program
8.23
8.5
Axial deformation in beams
8.26
8.6
Torsionai
deformation in beams
8.26
8.7
Out of plane bending in beams
8.26
8.8
Two and three dimensional beam elements
8.27
8.9
Offset beam element
8.29
8.10
Exercises
8.29
CHAPTER
9.
FRAME ELEMENT 9.I
9.0
Introduction
9.1
9.1
Two dimensional frame
9.
l
9.2
Two dimensional frame spreadsheet program
9.11
9.3
Three dimensional frame
9.14
9.4
Three dimensional rigid element
9.16
9.5
Exercises
9.16
CHAPTER
10.
STRAIN-DISPLACEMENT MATRIX FOR 2D AND
3D
ELEMENTS
10.1
10.0
Introduction
10.
1
10.1
Displacement function based approach
10.1
10.2
Isoparametric formulation
10.3
CHAPTER
11.
TRIANGLE MEMBRANE ELEMENTS
11.1
11.0
Introduction
11.1
11.1
Three noded triangle membrane element (TRIA3M)
11.1
11.2
CST element spreadsheet program
11.6
11.3
Six noded triangle membrane element (TRIA6M)
11.9
11.4
TRIA6M element in fracture mechanics
1123
11.5
Exercises
11.23
CHAPTER
12.
QUADRILATERAL MEMBRANE ELEMENTS
12.1
12.0
Introduction
12:1
12.1
Displacement function based formulation
12.1
12.2
Four noded quadrilateral membrane element (QUAD4M)
12.6
12.3
QUAD4M element spreadsheet program
12.21
xv¡
Table of
Contents
12.4
Eight noded quadrilateral membrane element (QUAD8M)
12.25
12.5
Order of integration
12.27
12.6
Parasitic shear due to bending
12.34
12.7
Connecting a membrane element to a 2D beam element
12.36
12.8
Exercises
12.36
CHAPTER
13.
AXISYMMETRIC ELEMENTS
13.1
13.0
Introduction
13.1
13.1
Three noded triangle axisymmetric element (TRIA3A)
13.1
13.2
Four noded quadrilateral axisymmetric element (QUAD4A)
13.3
13.3
Consistent load vector
13.4
13.4
Exercises
13.20
CHAPTER
14.
TETRAHEDRON ELEMENTS
14.1
14.0
Introduction
14.1
14.1
Four noded tetrahedron element (TET4)
14.1
14.2
Ten noded tetrahedron element
(TET
10) 14.22
14.3
Exercises
14.24
CHAPTER
15.
PRISM ELEMENT
15.1
15.0
Introduction
15.1
15.1
Six noded prism element (PRISM6)
15.1
15.2
Exercises
15.21
CHAPTER
16.
HEXAHEDRON ELEMENT
16.1
16.0
Introduction
16.1
16.1
Eight noded hexahedron element (HEXA8)
16.1
16.2
Exercises
16.19
CHAPTER
17.
PLATE ELEMENTS
17.1
17.0
Introduction
17.1
17.1
Thin and thick plates
17.1
17.2
Basic plate equations
17.1
17.3
Strain energy
17.4
17.4
Continuity requirements
17.5
17.5
FE formulation of thin plates
17.5
17.5.1
Displacement function based formulation of a three noded triangle plate
17.5
element (TRIA3P)
17.5.2
Displacement function based formulation of a
4
noded rectangle plate element
17.10
17.6
Reissner-Mindlin plate theory
17.12
17.6.1
Four noded isoparametric thick plate element
17.14
17.7
Flat shell element
17.32
17.8
Exercises
17.33
CHAPTER
18.
COMPOSITE LAMINATES
18.1
18.0
Introduction jg
1
18.1
Orthotropic material stress-strain relationship about principal axes
18.1
Table
of
Contents
xv¡¡
18.2 General
stress-strain relationship of an orthotropic lamina
18.2
18.3
Laminate plate
18 3
18.4
Classical laminate plate theory (CLPT) I8.5
18.5
First order shear deformation laminate plate theory (FSDT)
18.6
18.6
Finite element formulation of CLPT
] 8.7
18.7
Finite element formulation of FSDT
18.8
18.8
Exercises
18.32
CHAPTER
19.
DYNAMIC ANALYSIS
19.1
19.0
Introduction
191
19.1 Lagrange'
s
equation
19 1
19.2
Eigenvalue problem I93
19.3
Properties of eigenvectors
19,5
19.4
Lagrange's equation for non-conservative systems
19.7
19.5
Numerical integration of equations of motion
19.17
19.5.1
Runge-Kutta fourth order method
19.17
19.5.2
Crank-Nicolson method
19.18
19.5.3
Wilson
θ
method
19.19
19.5.4
Newmark method
19.20
19.6
Application of Lagrange's equation in
FEA
19.30
19.6.1
Case
(і)
19.30
19.6.1.a Two noded bar element
19.32
19.6.1.
b
Truss element
19.32
19.6.1.C Triangle membrane element
19.33
19.6.1.
d
Rectangle and quadrilateral membrane element
19.33
19.6.1.
e
Tetrahedron element
19.34
19.6.1.
f
Prism element
19.35
19.6.1.
g
Hexahedron elements
19.36
19.6.2
Case (ii)
19.37
19.6.2.a Beam and frame element based on
Euler
theory
19.37
19.6.2.b Plate elements based on Kirchoff-Love theory
19.38
19.6.3
Case
(iii)
19.39
19.6.3.a Timoshenko beam element
19.39
19.6.3.b Reissner-Mindlin plate element
19.40
19.7
Application of boundary conditions in dynamic
FEA
19.44
19.8
Exercises
19.67
CHAPTER
20.
FEAOFPARTIALDIFFERTIALEQUATIONS
20.1
20.0
Introduction
20.1
20.1
Elliptical system
20.1
20.1.1
Elliptical system
- 1
D
20.1
20.1.2
Elliptical system
-
2D
20.14
20.1.2.a Inviscid incompressible fluid flow
20.19
20.1.2.b
Torsionai
deformation of a prismatic bar
20.20
20.1.2.C Helmoltz'equation
20.40
20.1.3
Elliptical system
- 3D 20.40
xv¡¡¡
Table of Contents
20.2
Parabolic system
20.42
20.2.1
Parabolic system-ID
20.42
20.3
Hyperbolic system
20.48
20.3.1
Hyperbolic system-ID
20.48
20.4
Exercises
20.54
APPENDIX A. METHODS FOR SOLVING A SYSTEM OF EQUATIONS A.1
A.O Introduction A.
1
A.I
LU
factorization A.I
A.2 Cholesky's method A.5
APPENDIX B. METHODS FOR SOIVING EIGENVALUE PROBLEMS B.I
B.O Introduction B.I
B.I Eigenvalue problem in standard form B.I
B.I.I Power method B.I
B.I.
2
Shifted iteration B.2
B.1.3 Shifted inverse iteration B.2
B.1.4 Deflation technique B.2
B.1.5 Jacobi transformation B.3
B.I.
6
Givens
method B.4
B.2 Eigenvalue problem in general form B.5
B.2.1 Power method B.6
B.2.2 Rayleigh quotient B.6
B.2.3 Generalized Jacobi method B.6
APPENDIX
С
PROGRAMMINGGUIDE
TO
MATHCAD 2001
Cl
CO
Introduction Cl
Cl
Other
versions
of
MATHCAD C.9
APPENDIX
D.
UNIT CONVERSIONS D.I
References R.
1
Subject Index S.
1 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Shivaswamy, Shashishekar |
author_facet | Shivaswamy, Shashishekar |
author_role | aut |
author_sort | Shivaswamy, Shashishekar |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV023475714 |
classification_rvk | SK 910 |
ctrlnum | (OCoLC)225452162 (DE-599)GBV528175807 |
dewey-full | 620.00151825 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.00151825 |
dewey-search | 620.00151825 |
dewey-sort | 3620.00151825 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01448nam a2200373 c 4500</leader><controlfield tag="001">BV023475714</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080805s2010 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA857652</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781842653685</subfield><subfield code="9">978-1-84265-368-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)225452162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV528175807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.00151825</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shivaswamy, Shashishekar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite element analysis and programming</subfield><subfield code="b">an introduction</subfield><subfield code="c">Shashishekar Shivaswamy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Alpha Science Internat.</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Getr. Zähl.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016657958&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016657958</subfield></datafield></record></collection> |
id | DE-604.BV023475714 |
illustrated | Illustrated |
index_date | 2024-07-02T21:36:04Z |
indexdate | 2024-07-09T21:19:38Z |
institution | BVB |
isbn | 9781842653685 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016657958 |
oclc_num | 225452162 |
open_access_boolean | |
owner | DE-703 DE-20 DE-83 DE-824 |
owner_facet | DE-703 DE-20 DE-83 DE-824 |
physical | Getr. Zähl. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Alpha Science Internat. |
record_format | marc |
spelling | Shivaswamy, Shashishekar Verfasser aut Finite element analysis and programming an introduction Shashishekar Shivaswamy Oxford Alpha Science Internat. 2010 Getr. Zähl. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Finite element method / Data processing Datenverarbeitung Finite element method Data processing Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016657958&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Shivaswamy, Shashishekar Finite element analysis and programming an introduction Finite element method / Data processing Datenverarbeitung Finite element method Data processing Finite-Elemente-Methode (DE-588)4017233-8 gnd |
subject_GND | (DE-588)4017233-8 |
title | Finite element analysis and programming an introduction |
title_auth | Finite element analysis and programming an introduction |
title_exact_search | Finite element analysis and programming an introduction |
title_exact_search_txtP | Finite element analysis and programming an introduction |
title_full | Finite element analysis and programming an introduction Shashishekar Shivaswamy |
title_fullStr | Finite element analysis and programming an introduction Shashishekar Shivaswamy |
title_full_unstemmed | Finite element analysis and programming an introduction Shashishekar Shivaswamy |
title_short | Finite element analysis and programming |
title_sort | finite element analysis and programming an introduction |
title_sub | an introduction |
topic | Finite element method / Data processing Datenverarbeitung Finite element method Data processing Finite-Elemente-Methode (DE-588)4017233-8 gnd |
topic_facet | Finite element method / Data processing Datenverarbeitung Finite element method Data processing Finite-Elemente-Methode |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016657958&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT shivaswamyshashishekar finiteelementanalysisandprogramminganintroduction |