Complex analysis with applications in science and engineering:
Gespeichert in:
Vorheriger Titel: | Cohen, Harold Fundamentals and applications of complex analysis |
---|---|
1. Verfasser: | |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2007
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 477 S. graph. Darst. |
ISBN: | 9780387730578 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023413301 | ||
003 | DE-604 | ||
005 | 20080903 | ||
007 | t | ||
008 | 080724s2007 d||| |||| 00||| eng d | ||
015 | |a 07,N27,0852 |2 dnb | ||
020 | |a 9780387730578 |9 978-0-387-73057-8 | ||
024 | 3 | |a 9780387730578 | |
028 | 5 | 2 | |a 12048861 |
035 | |a (OCoLC)166357948 | ||
035 | |a (DE-599)HBZHT015357724 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-20 | ||
050 | 0 | |a QA331.7 | |
082 | 0 | |a 515/.9 |2 23 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Cohen, Harold |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex analysis with applications in science and engineering |c Harold Cohen |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Springer |c 2007 | |
300 | |a XXIII, 477 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Analyse mathématique | |
650 | 4 | |a Fonctions d'une variable complexe | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |5 DE-604 | |
780 | 0 | 0 | |i 1. Auflage |a Cohen, Harold |t Fundamentals and applications of complex analysis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016595881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016595881 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137802343907328 |
---|---|
adam_text | Contents
Preface
..........................................................................................................xv
Example
.......................................................................................................xix
1
INTRODUCTION
...................................................................................1
1.1
A Brief History
.................................................................................1
Real numbers
....................................................................................1
Complex numbers
.............................................................................2
Argand diagram
.................................................................................3
2
COMPLEX NUMBERS
.........................................................................5
2.
ł
Conjugation, Modulus, Argument and
Arithmetic
.........................................................................................5
Complex conjugation
........................................................................5
Modulus
............................................................................................7
Argument
..........................................................................................7
Addition and subtraction
...................................................................7
Multiplication
....................................................................................9
Division
...........................................................................................10
Equality
...........................................................................................10
2.2
Cartesian, Trigonometric and Polar Forms
.....................................11
deMoivre s theorem
........................................................................15
Exponential representations of trigonometric functions
.................17
Hyperbolic functions
.......................................................................18
2.3
Roots of Unity
................................................................................19
Roots of
1........................................................................................19
Roots of
-1......................................................................................22
Contents
2.4
Complex
Numbers and AC Circuits
...............................................23
DC circuits with resistors
................................................................24
AC circuits with resistors, capacitors and inductors
......................26
Problems
.................................................................................................30
COMPLEX VARIABLES
.....................................................................37
3.1
Derivatives, Cauchy-Riemann Conditions and
Analyticity
.......................................................................................37
Derivatives and the Cauchy-Riemann conditions
...........................37
Analyticity
.......................................................................................40
Laplace s equation for an analytic function
....................................44
Determination of an analytic function
.............................................45
3.2
Integrals of Analytic Functions
.......................................................48
3.3
Pole Singularities
............................................................................52
Removable and nonremovable singularities
...................................52
Pole singularities
.............................................................................54
3.4
Cauchy s Residue Theorem
...........................................................57
Cauchy s residue theorem for one simple pole
...............................57
Cauchy s residue theorem for more than one simple pole
..............64
Cauchy s residue theorem for high order poles
..............................67
Integrands with more than one high order pole
...............................69
Problems
.................................................................................................71
SERIES, LIMITS AND RESIDUES
.....................................................77
4.1
Taylor Series for Analytic Functions
.............................................77
Convergence of the Taylor series
...................................................79
4.2
Laurent Series for a Singular Function
..........................................82
Laurent series for an analytic function
...........................................85
Laurent series for a function with a pole of order
M
......................86
4.3
Radius of Convergence and The Cauchy Ratio
..............................88
4.4
Limits and Series
............................................................................92
Limit in the form
0/0.......................................................................93
Limit in the form
«>/«.....................................................................95
4.5
Arithmetic Combinations of Power Series
....................................96
Addition and subtraction
.................................................................96
Multiplication
.................................................................................98
Division
.........................................................................................100
4.6
Residues
.......................................................................................104
Contour integral of a function with a pole of order
M
.................104
Three methods for determining the residue
..................................107
Problems
..............................................................................................115
Contents xi
5 EVALUATION
OF
INTEGRALS.......................................................127
5.1 Integrals
Along The Entire Real Axis
...........................................127
Functions with inverse power asymptotic behavior
......................130
Fourier exponential integrals
........................................................132
Fourier sine/cosine integrals
.........................................................135
5.2
Integrals of Functions of
sino
and
coso
......................................137
5.3
Cauchy s Principal Value Integral and The
Dirac
б
Symbol
.............................................................................139
Displacement of the pole and the Dirac
б
-symbol
........................
143
The Dirac
б
-symbol
as a function
................................................149
5.4
Miscellaneous Integrals
................................................................150
Problems
..............................................................................................158
6
MULTIVALUED FUNCTIONS, BRANCH POINTS AND
CUTS
...................................................................................................165
6.1
Non-Integer Power, Logarithm Functions
....................................166
Hth power function
........................................................................166
General fractional root function
....................................................167
Irrational power function
...............................................................169
Logarithm function
........................................................................169
6.2
Riemann Sheets, Branch Points and Cuts
.....................................170
Branch point
..................................................................................171
Branch cut
.....................................................................................172
Construction of a physical model of a multisheeted complex
plane
...........................................................................................173
Discontinuity across the cut
..........................................................174
6.3
Branch Structure
............................................................................175
Points on different sheets
..............................................................177
Cut structure for the fractional root function
................................179
Cut structure for the logarithm function
........................................183
6.4
Multiple Branch Points
..................................................................186
Functions with two branch points
.................................................186
6.5
Evaluation of Integrals
..................................................................200
Specific examples
..........................................................................202
Problems
...............................................................................................218
7
SINGULARITIES OF FUNCTIONS DEFINED BY INTEGRALS
.. 225
7.1
The Integrand is Analytic
..............................................................225
7.2
The Integrand is Singular
..............................................................226
Fixed singularity of the integrand
.................................................227
Movable singularity of the integrand
............................................227
End point and pinch singularities
..................................................228
xii Contents
7.3 Limits
of
The Integral
are
Variable...............................................241
Limits
are analytic functions of
z
..................................................241
Integrals with limits that have singularities
...................................243
Problems
...............................................................................................244
8
CONFORMAL MAPPING
..................................................................249
8.1
Properties of a Mapping
................................................................249
Into and onto mappings
................................................................253
Invariant points
.............................................................................254
Mapping of curves
........................................................................255
Tangent to a curve
........................................................................258
Conformai
and
isogonal
mappings
...............................................261
Inverse mapping
............................................................................263
Conformai
mapping of a differential area
....................................267
8.2
Linear and Bilinear Transformations
............................................271
The linear transformation
.............................................................271
Translation
....................................................................................271
Magnification and rotation
...........................................................272
The bilinear transformation
..........................................................287
8.3
Schwarz-Christoffel Transformation
............................................282
Inverse of the SC mapping
...........................................................283
Mapping the real axis
....................................................................284
Mapping of points that are not on the real axis
............................289
Closed form of the SC mapping
...................................................291
Open and closed polygons
............................................................298
Determining the SC mapping
.......................................................303
8.4
Applications
..................................................................................311
Laplace s equation
........................................................................312
Boundary conditions
.....................................................................313
Applications of
conformai
mapping to problems
1
in electrostatics
..........................................................................318
Sources containing tables of mappings
.........................................344
Problems
..............................................................................................345
9
DISPERSION RELATIONS
................................................................367
9.1
Kramers-Kronig Dispersion Relations Over
The Entire Real Axis
....................................................................368
9.2
Kramers-Kronig Dispersion Relations Over Half
The Real Axis
...............................................................................372
Reflection symmetry around the imaginary axis
..........................372
9.3
Dispersion Relations for a Function
With Branch Structure
..................................................................375
Contents xiii
Functions that are odd/even under reflection about the
real axis
......................................................................................377
9.4
Subtracted Dispersion Relations
...................................................381
Subtracted Kramers-Kronig dispersion relations over the entire
real axis
......................................................................................381
Subtracted Kramers-Kronig dispersion relations over half the
real axis
......................................................................................383
Subtracted dispersion relations for a function with a branch
point
...........................................................................................388
9.5
Dispersion Relations and a Representation of
The Dirac
б
-Symbol
.....................................................................
390
Problems
...............................................................................................392
10
ANALYTIC CONTINUATION
..........................................................399
10.1
Analytic Continuation by Series
.................................................401
Analytic continuation whe the function represented by a series
cannot be expressed in closed form
..........................................406
Analytic continuation along an arc
..............................................409
Analytic continuation along different arcs and the
Schwarz
reflection
...................................................................................413
Natural boundaries
......................................................................416
10.2
Analytic Continuation of The Factorial
......................................418
The gamma function
....................................................................418
Half integers factorial
..................................................................419
Approximation of
г!
for Re(z) positive and large
........................420
Approximation of
г!
for z small
..............................................423
Problems
...............................................................................................427
APPENDIX
1
AC CIRCUITS AND COMPLEX NUMBERS
.................433
Series AC circuit
................................................................436
Parallel AC circuit
..............................................................438
APPENDIX
2
DERIVATION OF GREEN S THEOREM
.......................441
APPENDIX
3
DERIVATION OF THE GEOMETRIC SERIES
..............447
APPENDIX
4
CAUCHY RATIO TEST FOR CONVERGENCE OF A
SERIES
............................................................................449
APPENDIX
5
EVALUATION OF AN INTEGRAL
................................453
APPENDIX
6
TRANSFORMATION OF LAPLACE^S EQUATION
.....457
APPENDIX
7
TRANSFORMATION OF BOUNDARY CONDITIONS.461
APPENDIX
8
THE BETA FUNCTION
....................................................467
REFERENCES
...........................................................................................469
INDEX
.......................................................................................................471
|
adam_txt |
Contents
Preface
.xv
Example
.xix
1
INTRODUCTION
.1
1.1
A Brief History
.1
Real numbers
.1
Complex numbers
.2
Argand diagram
.3
2
COMPLEX NUMBERS
.5
2.
ł
Conjugation, Modulus, Argument and
Arithmetic
.5
Complex conjugation
.5
Modulus
.7
Argument
.7
Addition and subtraction
.7
Multiplication
.9
Division
.10
Equality
.10
2.2
Cartesian, Trigonometric and Polar Forms
.11
deMoivre's theorem
.15
Exponential representations of trigonometric functions
.17
Hyperbolic functions
.18
2.3
Roots of Unity
.19
Roots of
1.19
Roots of
-1.22
Contents
2.4
Complex
Numbers and AC Circuits
.23
DC circuits with resistors
.24
AC circuits with resistors, capacitors and inductors
.26
Problems
.30
COMPLEX VARIABLES
.37
3.1
Derivatives, Cauchy-Riemann Conditions and
Analyticity
.37
Derivatives and the Cauchy-Riemann conditions
.37
Analyticity
.40
Laplace's equation for an analytic function
.44
Determination of an analytic function
.45
3.2
Integrals of Analytic Functions
.48
3.3
Pole Singularities
.52
Removable and nonremovable singularities
.52
Pole singularities
.54
3.4
Cauchy's Residue Theorem
.57
Cauchy's residue theorem for one simple pole
.57
Cauchy's residue theorem for more than one simple pole
.64
Cauchy's residue theorem for high order poles
.67
Integrands with more than one high order pole
.69
Problems
.71
SERIES, LIMITS AND RESIDUES
.77
4.1
Taylor Series for Analytic Functions
.77
Convergence of the Taylor series
.79
4.2
Laurent Series for a Singular Function
.82
Laurent series for an analytic function
.85
Laurent series for a function with a pole of order
M
.86
4.3
Radius of Convergence and The Cauchy Ratio
.88
4.4
Limits and Series
.92
Limit in the form
0/0.93
Limit in the form
«>/«.95
4.5
Arithmetic Combinations of Power Series
.96
Addition and subtraction
.96
Multiplication
.98
Division
.100
4.6
Residues
.104
Contour integral of a function with a pole of order
M
.104
Three methods for determining the residue
.107
Problems
.115
Contents xi
5 EVALUATION
OF
INTEGRALS.127
5.1 Integrals
Along The Entire Real Axis
.127
Functions with inverse power asymptotic behavior
.130
Fourier exponential integrals
.132
Fourier sine/cosine integrals
.135
5.2
Integrals of Functions of
sino
and
coso
.137
5.3
Cauchy's Principal Value Integral and The
Dirac
б
Symbol
.139
Displacement of the pole and the Dirac
б
-symbol
.
143
The Dirac
б
-symbol
as a function
.149
5.4
Miscellaneous Integrals
.150
Problems
.158
6
MULTIVALUED FUNCTIONS, BRANCH POINTS AND
CUTS
.165
6.1
Non-Integer Power, Logarithm Functions
.166
Hth power function
.166
General fractional root function
.167
Irrational power function
.169
Logarithm function
.169
6.2
Riemann Sheets, Branch Points and Cuts
.170
Branch point
.171
Branch cut
.172
Construction of a physical model of a multisheeted complex
plane
.173
Discontinuity across the cut
.174
6.3
Branch Structure
.175
Points on different sheets
.177
Cut structure for the fractional root function
.179
Cut structure for the logarithm function
.183
6.4
Multiple Branch Points
.186
Functions with two branch points
.186
6.5
Evaluation of Integrals
.200
Specific examples
.202
Problems
.218
7
SINGULARITIES OF FUNCTIONS DEFINED BY INTEGRALS
. 225
7.1
The Integrand is Analytic
.225
7.2
The Integrand is Singular
.226
Fixed singularity of the integrand
.227
Movable singularity of the integrand
.227
End point and pinch singularities
.228
xii Contents
7.3 Limits
of
The Integral
are
Variable.241
Limits
are analytic functions of
z
.241
Integrals with limits that have singularities
.243
Problems
.244
8
CONFORMAL MAPPING
.249
8.1
Properties of a Mapping
.249
Into and onto mappings
.253
Invariant points
.254
Mapping of curves
.255
Tangent to a curve
.258
Conformai
and
isogonal
mappings
.261
Inverse mapping
.263
Conformai
mapping of a differential area
.267
8.2
Linear and Bilinear Transformations
.271
The linear transformation
.271
Translation
.271
Magnification and rotation
.272
The bilinear transformation
.287
8.3
Schwarz-Christoffel Transformation
.282
Inverse of the SC mapping
.283
Mapping the real axis
.284
Mapping of points that are not on the real axis
.289
Closed form of the SC mapping
.291
Open and closed polygons
.298
Determining the SC mapping
.303
8.4
Applications
.311
Laplace's equation
.312
Boundary conditions
.313
Applications of
conformai
mapping to problems
1
in electrostatics
.318
Sources containing tables of mappings
.344
Problems
.345
9
DISPERSION RELATIONS
.367
9.1
Kramers-Kronig Dispersion Relations Over
The Entire Real Axis
.368
9.2
Kramers-Kronig Dispersion Relations Over Half
The Real Axis
.372
Reflection symmetry around the imaginary axis
.372
9.3
Dispersion Relations for a Function
With Branch Structure
.375
Contents xiii
Functions that are odd/even under reflection about the
real axis
.377
9.4
Subtracted Dispersion Relations
.381
Subtracted Kramers-Kronig dispersion relations over the entire
real axis
.381
Subtracted Kramers-Kronig dispersion relations over half the
real axis
.383
Subtracted dispersion relations for a function with a branch
point
.388
9.5
Dispersion Relations and a Representation of
The Dirac
б
-Symbol
.
390
Problems
.392
10
ANALYTIC CONTINUATION
.399
10.1
Analytic Continuation by Series
.401
Analytic continuation whe the function represented by a series
cannot be expressed in closed form
.406
Analytic continuation along an arc
.409
Analytic continuation along different arcs and the
Schwarz
reflection
.413
Natural boundaries
.416
10.2
Analytic Continuation of The Factorial
.418
The gamma function
.418
Half integers factorial
.419
Approximation of
г!
for Re(z) positive and large
.420
Approximation of
г!
for \z\ small
.423
Problems
.427
APPENDIX
1
AC CIRCUITS AND COMPLEX NUMBERS
.433
Series AC circuit
.436
Parallel AC circuit
.438
APPENDIX
2
DERIVATION OF GREEN'S THEOREM
.441
APPENDIX
3
DERIVATION OF THE GEOMETRIC SERIES
.447
APPENDIX
4
CAUCHY RATIO TEST FOR CONVERGENCE OF A
SERIES
.449
APPENDIX
5
EVALUATION OF AN INTEGRAL
.453
APPENDIX
6
TRANSFORMATION OF LAPLACE^S EQUATION
.457
APPENDIX
7
TRANSFORMATION OF BOUNDARY CONDITIONS.461
APPENDIX
8
THE BETA FUNCTION
.467
REFERENCES
.469
INDEX
.471 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cohen, Harold |
author_facet | Cohen, Harold |
author_role | aut |
author_sort | Cohen, Harold |
author_variant | h c hc |
building | Verbundindex |
bvnumber | BV023413301 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.7 |
callnumber-search | QA331.7 |
callnumber-sort | QA 3331.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 700 |
ctrlnum | (OCoLC)166357948 (DE-599)HBZHT015357724 |
dewey-full | 515/.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.9 |
dewey-search | 515/.9 |
dewey-sort | 3515 19 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01768nam a2200469 c 4500</leader><controlfield tag="001">BV023413301</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080903 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080724s2007 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N27,0852</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387730578</subfield><subfield code="9">978-0-387-73057-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387730578</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12048861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)166357948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015357724</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Harold</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex analysis with applications in science and engineering</subfield><subfield code="c">Harold Cohen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 477 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions d'une variable complexe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">1. Auflage</subfield><subfield code="a">Cohen, Harold</subfield><subfield code="t">Fundamentals and applications of complex analysis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016595881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016595881</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV023413301 |
illustrated | Illustrated |
index_date | 2024-07-02T21:28:24Z |
indexdate | 2024-07-09T21:18:05Z |
institution | BVB |
isbn | 9780387730578 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016595881 |
oclc_num | 166357948 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 |
owner_facet | DE-355 DE-BY-UBR DE-20 |
physical | XXIII, 477 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
spelling | Cohen, Harold Verfasser aut Complex analysis with applications in science and engineering Harold Cohen 2. ed. New York, NY Springer 2007 XXIII, 477 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Analyse mathématique Fonctions d'une variable complexe Functions of complex variables Mathematical analysis Funktionentheorie (DE-588)4018935-1 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Funktionentheorie (DE-588)4018935-1 s DE-604 1. Auflage Cohen, Harold Fundamentals and applications of complex analysis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016595881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cohen, Harold Complex analysis with applications in science and engineering Analyse mathématique Fonctions d'une variable complexe Functions of complex variables Mathematical analysis Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4018935-1 (DE-588)4123623-3 |
title | Complex analysis with applications in science and engineering |
title_auth | Complex analysis with applications in science and engineering |
title_exact_search | Complex analysis with applications in science and engineering |
title_exact_search_txtP | Complex analysis with applications in science and engineering |
title_full | Complex analysis with applications in science and engineering Harold Cohen |
title_fullStr | Complex analysis with applications in science and engineering Harold Cohen |
title_full_unstemmed | Complex analysis with applications in science and engineering Harold Cohen |
title_old | Cohen, Harold Fundamentals and applications of complex analysis |
title_short | Complex analysis with applications in science and engineering |
title_sort | complex analysis with applications in science and engineering |
topic | Analyse mathématique Fonctions d'une variable complexe Functions of complex variables Mathematical analysis Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Analyse mathématique Fonctions d'une variable complexe Functions of complex variables Mathematical analysis Funktionentheorie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016595881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cohenharold complexanalysiswithapplicationsinscienceandengineering |