Principles of tissue engineering:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier, Acad. Press
2007
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Table of contents only Publisher description Inhaltsverzeichnis |
Beschreibung: | XXVII, 1307 S. Ill., graph. Darst. |
ISBN: | 9780123706157 0123706157 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023407435 | ||
003 | DE-604 | ||
005 | 20090817 | ||
007 | t | ||
008 | 080722s2007 ne ad|| |||| 00||| eng d | ||
010 | |a 2007002966 | ||
020 | |a 9780123706157 |9 978-0-12-370615-7 | ||
020 | |a 0123706157 |9 0-12-370615-7 | ||
035 | |a (OCoLC)80360190 | ||
035 | |a (DE-599)BVBBV023407435 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a ne |c NL | ||
049 | |a DE-20 |a DE-11 |a DE-29T | ||
050 | 0 | |a TP248.27.A53 | |
082 | 0 | |a 612/.028 | |
084 | |a WX 6600 |0 (DE-625)152214:13423 |2 rvk | ||
245 | 1 | 0 | |a Principles of tissue engineering |c ed. by Robert Lanza ... |
250 | |a 3. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier, Acad. Press |c 2007 | |
300 | |a XXVII, 1307 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Animal cell biotechnology | |
650 | 4 | |a Tissue engineering | |
650 | 4 | |a Transplantation of organs, tissues, etc | |
650 | 0 | 7 | |a Tissue Engineering |0 (DE-588)4646061-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewebekultur |0 (DE-588)4157245-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transplantat |0 (DE-588)4185918-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Implantat |0 (DE-588)4026658-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gewebekultur |0 (DE-588)4157245-2 |D s |
689 | 0 | 1 | |a Implantat |0 (DE-588)4026658-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gewebekultur |0 (DE-588)4157245-2 |D s |
689 | 1 | 1 | |a Transplantat |0 (DE-588)4185918-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Tissue Engineering |0 (DE-588)4646061-5 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Lanza, Robert P. |d 1956- |e Sonstige |0 (DE-588)136341640 |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip079/2007002966.html |3 Table of contents only | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0710/2007002966-d.html |3 Publisher description | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016590105&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016590105 |
Datensatz im Suchindex
_version_ | 1804137793379631104 |
---|---|
adam_text | CONTENTS IN BRIEF
Contributors xix
Foreword xxix
Preface xxxi
Preface to the Second Edition xxxiii
Preface to the First Edition xxxv
Introduction to Tissue Engineering 1
1. The History and Scope of Tissue Engineering 3
2. The Challenge of Imitating Nature 7
3. Moving into the Clinic 15
4. Future Perspectives 33
Part I. The Basis of Growth and
Differentiation 51
5. Molecular Biology of the Cell 53
6. Organization of Cells into Higher-Ordered
Structures 67
7. Dynamics of Cell-ECM Interactions 81
8. Matrix Molecules and Their Ligands 101
9. Morphogenesis and Tissue Engineering 117
10. Gene Expression, Cell Determination, and
Differentiation 129
Part II. In Vitro Control of Tissue
Development 135
11. Engineering Functional Tissues 137
12. Principles of Tissue Culture and Bioreactor
Design 155
13. Regulation of Cell Behavior by
Extracellular Proteins 185
14. Growth Factors 193
15. Mechanochemical Control of Cell Fate
Switching 207
Part III. In Vivo Synthesis of Tissues
and Organs 217
16. In Vivo Synthesis of Tissues and Organs 219
Part IV. Models for Tissue Engineering 239
17. Models as Precursors for Prosthetic Devices 241
18. Quantitative Aspects 251
Part V. Biomaterials in Tissue
Engineering 263
19. Micro-Scale Patterning of Cells and Their
Environment 265
20. Cell Interactions with Polymers 279
21. Matrix Effects 297
22. Polymer Scaffold Fabrication 309
23. Biodegradable Polymers 323
24. Micro-and Nanofabricated Scaffolds 341
25. Three-Dimensional Scaffolds 359
Part VI. Transplantation of Engineered
Cells and Tissues 375
26. Tissue Engineering and Transplantation
in the Fetus 377
27. Immunomodulation 389
28. Immunoisolation 399
29. Engineering Challenges in Immunobarrier
Device Development 405
Part VII. Stem Cells 419
30. Embryonic Stem Cells 421
31. Adult Epithelial Tissue Stem Cells 431
32. Embryonic Stem Cells as a Cell Source for
Tissue Engineering 445
33. Postnatal Stem Cells 459
Part VIII. Gene Therapy 469
34. Gene Therapy 471
35. Gene Delivery into Cells and Tissues 493
Part IX. Breast 517
36. Breast Reconstruction 519
Part X. Cardiovascular System 535
37. Progenitor Cells and Cardiac Ilomeostasis 537
38. Cardiac-Tissue Engineering 551
39. Bloodvessels 569
40. Heart Valves 585
Part XI. Endocrinology and Metabolism 603
41. Generation of Islets from Stem Cells 605
42. Bioartificial Pancreas 619
VI CONTENTS IN BRIEF
43. Engineering Pancreatic Beta-Cells 635
44. Thymus and Parathyroid Organogenesis 647
Part XII. Gastrointestinal System 663
45. Adult Stem Cells in Normal Gastrointestinal
Function and Inflammatory Disease 665
46. Alimentary Tract 681
47. Liver Stem Cells 695
48. Liver 707
Part XIII. Hematopoietic System 733
49. Hematopoietic Stem Cells 735
50. Red Blood Cell Substitutes 749
51. Lymphoid Cells 759
Part XIV. Kidney and Genitourinary
System 785
52. Stem Cells in Kidney Development and
Regeneration 787
53. Renal Replacement Devices 801
54. Genitourinary System 811
Part XV. Musculoskeletal System 821
55. Mesenchymal Stem Cells 823
56. Bone Regeneration 845
57. Bone and Cartilage Reconstruction 861
58. Regeneration and Replacement of the
Intervertebral Disc 877
59. Articular Cartilage Injury 897
60. Tendons and Ligaments 909
61. Mechanosensory Mechanisms in Bone 919
62. Skeletal-Tissue Engineering 935
Part XVI. Nervous System 945
63. Neural Stem Cells 947
64. Brain Implants 967
65. Spinal Cord 977
66. Protection and Repair of Audition 995
Part XVII. Ophthalmic Applications 1009
67. Stem Cells in the Eye 1011
68. Corneal-Tissue Replacement 1025
69. Vision Enhancement Systems 1049
Part XVIII. Oral/Dental Applications 1065
70. Biological Tooth Replacement and Repair 1067
71. Oral and Maxillofacial Surgery 1079
72. Periodontal-Tissue Engineering 1095
Part XIX. Respiratory System 1111
73. Progenitor Cells in the Respiratory
System 1113
74. Lungs 1125
Part XX. Skin 1135
75. Cutaneous Stem Cells 1137
76. Wound Repair 1149
77. Bioengineered Skin Constructs 1167
Part XXI. Clinical Experience 1187
78. Current State of Clinical Application 1189
79. Tissue-Engineered Skin Products 1201
80. Tissue-Engineered Cartilage Products 1215
81. Tissue-Engineered Bone Products 1225
82. Tissue-Engineered Cardiovascular
Products 1237
83. Tissue-Engineered Organs 1253
Part XXII. Regulation and Ethics 1263
84. The Tissue-Engineering Industry 1265
85. The Regulatory Path From Concept to
Market 1271
86. Ethical Issues 1281
Epilogue 1289
Subject Index 1291
CONTENTS
Contributors xix
Foreword xxix
Preface xxxi
Preface to the Second Edition xxxiii
Preface to the First Edition xxxv
Introduction to Tissue Engineering 1
1. The History and Scope of Tissue Engineering 3
Joseph Vacanti and Charles A. Vacanti
I. Introduction 3
II. Scientific Challenges 4
III. Cells 4
IV. Materials 5
V. General Scientific Issues 5
VI. Social Challenges 6
VII. References 6
2. The Challenge of Imitating Nature 7
Robert M. Nerem
I. Introduction 7
II. Cell Technology 8
III. Construct Technology 10
IV. Integration into the Living System 11
V. Concluding Discussion 12
VI. Acknowledgments 13
VII. References 13
3. Moving into the Clinic 15
Alan J. Russell and Timothy Bertram
I. Introduction 15
II. History of Clinical Tissue Engineering 16
III. Strategies to Advance Toward the Clinic 20
IV. Bringing Technology Platforms to the
Clinical Setting 26
V. Transition to Clinical Testing 28
VI. Establishing a Regulatory Pathway 30
VII. Conclusions 30
VIII. Acknowledgments 30
IX. References 31
4. Future Perspectives 33
MarkE. Furth and Anthony Atala
I. Clinical Need 33
II. Current State of the Field 33
III. Current Challenges 34
IV. Future Directions 34
V. Future Challenges 42
VI. References 42
Part I. The Basis of Growth and
Differentiation 51
5. Molecular Biology of the Cell 53
Jonathan Slack
I. Introduction 53
II. The Cell Nucleus 54
III. The Cytoplasm 56
IV. Growth and Death 58
V. Cytoskeleton 60
VI. Cell Adhesion Molecules 61
VII. Extracellular Matrix 62
VIII. Culture Media 63
IX. Cells in Tissues 64
X. Further Reading 65
6. Organization of Cells into Higher-Ordered
Structures 67
Jon D. Ahlstrom and Carol A. Erickson
I. Introduction 67
II. Molecular Mechanisms of the EMT 68
III. The EMT Transcriptional Program 70
IV. Molecular Control of the EMT 72
V. Conclusion 76
VI. References 76
7. The Dynamics of Cell-ECM Interactions 81
M. Petreaca and Manuela Martins-Green
I. Introduction 81
II. Cell-ECM Interactions 84
III. Signal Transduction Events During
Cell-ECM Interactions 90
IV. Relevance for Tissue Engineering 93
V. References 95
8. Matrix Molecules and Their Ligands 101
Bjorn Reino Olsen
I. Introduction 101
II. Collagens — Major Constituents
ofECM 102
III. Elastic Fibers and Microfibrils 107
IV. Other MultifunctionalI Proteins in ECM 107
V. Proteoglycans —Multifunctional
Molecules in the Extracellular Matrix
and on Cell Surfaces 111
VI. Conclusion 112
VII. References 112
9. Morphogenesis and Tissue Engineering 117
A. H. Reddi
I. Introduction 117
II. Bone Morphogenetic Proteins (BMPs) 118
III. Cartilage-Derived Morphogenetic
Proteins (CDMPs) 121
IV. Pleiotropy and Thresholds 121
V. BMPs Bind to Extracellular Matrix 122
VI. BMP Receptors 122
VII. Responding Stem Cells 123
VIII. Morphogens and Gene Therapy 123
IX. Biomimetic Biomaterials 124
X. Tissue Engineering of Bones and Joints 124
XI. Future Challenges 125
XII. Acknowledgments 126
XIII. References 126
Vlii CONTENTS
10. Gene Expression, Cell Determination,
and Differentiation 129
William Nikovits, Jr., and Frank E. Stockdale
I. Introduction 129
II. Determination and Differentiation 129
III. MyoD and the bHLH Family of
Developmental Regulatory
Factors 131
IV. MEFs — Coregulators of
Development 132
V. Pax in Development 132
VI. Conclusions 132
VII. References 133
Part II. In Vitro Control of Tissue
Development 135
11. Engineering Functional Tissues 137
Lisa E. Freed and Farshid Guilak
I. Introduction 137
II. Key Concepts 138
III. In Vitro Studies Aimed at Clinical
Translation 139
IV. Representative In Vitro Culture
Environments 139
V. Convective Mixing, Flow, and Mass
Transfer 142
VI. Culture Duration and Mechanical
Conditioning 145
VII. Conclusions 149
VIII. Acknowledgments 150
IX. References 150
12. Principles of Tissue Culture and Bioreactor
Design 155
R. I. Freshney, B. Obradovic,
W. Grayson, C. Cannizzaro,
and Gordana Vunjak-Novakovic
I. Introduction 155
II. Basic Principles of Cell and Tissue
Culture 155
III. Principles of Bioreactor Design 164
IV. Summary 180
V. Acknowledgments 180
VI. References 180
13. Regulation of Cell Behavior by
Extracellular Proteins 185
Amy D. Bradshaw and E. Helene Sage
I. Introduction 185
II. Thrombospondin-1 185
III. Thrombospondin-2 187
IV. Tenascin-C 187
V. Osteopontin 188
VI. SPARC 189
VII. Conclusions 190
VIII. References 191
14. Growth Factors 193
Thomas F. Deuel and Yunchao Chang
I. Introduction 193
II. Wound Healing 194
III. Growth Factors and Cytokines
Active as Early Mediators of the
Inflammatory Process 195
IV. Inflammatory Response Mediators
Activate Transcription of Quiescent
Genes 196
V. Biologic Properties of SIG
(Chemokine) Family Members 197
VI. Regulation of JE Gene Expression by
Glucocorticoids 197
VII. Growth Factors and Accelerated
Healing 197
VIII. Role of Basic Fibroblast Growth
Factor and Angiogenesis 199
IX. Pleiotrophin Remodels Tumor
Microenvironment and Stimulates
Angiogenesis 200
X. Other Roles of Growth Factors and
Cytokines 201
XI. Conclusions 201
XII. References 201
15. Mechanochemical Control of Cell Fate
Switching 207
Donald E. Ingber
I. Introduction 207
II. Extracellular Matrix Structure and
Function 207
III. Pattern Formation Through ECM
Remodeling 209
IV. Mechanochemical Switching Between
Cell Fates 210
V. Summary 213
VI. The Future 213
VII. Acknowledgments 214
VIII. References 214
Part III. In Vivo Synthesis of Tissues
and Organs 217
16. In Vivo Synthesis of Tissues and Organs 219
Brendan A. Harley and Ioannis V. Yannas
I. Introduction 219
II. Mammalian Response to Injury 220
III. Methods to Treat Loss of Organ
Function 221
IV. Active Extracellular Matrix Analogs 223
V. Basic Parameters for In Vivo
Regeneration Studies: Reproducible,
Nonregenerative Wounds 227
VI. Examples of In Vivo Organ
Regeneration 228
VII. Conclusions 235
VIII. Acknowledgments 236
IX. References 236
Part IV. Models for Tissue Engineering 239
17. Models as Precursors for Prosthetic Devices 241
Eugene Bell
I. Introduction 241
II. Pigmentation of the Living-Skin
Equivalent (LSE) In Vitro 244
III. The Living-Skin Equivalent as an
Immunological Model 244
IV. The Living-Skin Equivalent as a
Disease Model 244
V. Wound-Healing Model 246
VI. Vascular Models without Cells 247
VII. Vascular Models with Cells Added 247
VIII. Conclusions 248
IX. References 249
18. Quantitative Aspects 251
Alan J. Grodzinsky, Roger D. Kamm,
and Douglas A. Lauffenburger
I. Introduction 251
II. Molecular Interactions with Cells 251
III. Molecular and Cell Transport
Through Tissue 253
IV. Cell and Tissue Mechanics 256
V. References 260
Part V. Biomaterials in Tissue
Engineering 263
19. Micro-Scale Patterning of Cells and Their
Environment 265
Xingyu Jiang, Shuichi Takayama,
Robert G. Chapman, Ravi S. Kane,
and George M. Whitesides
I. Introduction 265
II. Soft Lithography 266
III. Self-Assembled Monolayers (SAMs) 266
IV. Microcontact Printing and
Microfeatures Used in Cell Biology 267
V. Microfluidic Patterning 272
VI. Laminar Flow Patterning 272
VII. Conclusion and Future Prospects 274
VIII. Acknowledgments 275
IX. References 275
20. Cell Interactions with Polymers 279
W. Mark Saltzman and Themis R. Kyriakides
I. Introduction 279
II. Methods for Characterizing Cell
Interactions with Polymers 279
III. Cell Interactions with Polymers 283
IV. Cell Interactions with Polymers in
Suspension 289
V. Cell Interactions with
Three-Dimensional Polymer
Scaffolds and Gels 291
VI. Cell Interactions Unique to the
In Vivo Setting 292
VII. References 292
21. Matrix Effects 297
Jeffrey A. Hubbell
I. Introduction 297
II. Extracellular Matrix Proteins
and Their Receptors 297
HI. Model Systems for Study of Matrix
Interactions 301
IV. Cell Pattern Formation by Substrate
Patterning 304
CONTENTS • ix
V. Conclusions 304
VI. References 305
22. Polymer Scaffold Fabrication 309
Matthew B. Murphy and Antonios G. Mikos
I. Introduction 309
II. Fiber Bonding 310
III. Electrospinning 311
IV. Solvent Casting and Particulate
Leaching 311
V. Melt Molding 312
VI. Membrane Lamination 312
VII. Extrusion 312
VIII. Freeze-Drying 313
IX. Phase Separation 313
X. High-Internal-Phase Emulsion 313
XI. Gas Foaming 313
XII. Polymer/Ceramic Composite
Fabrication 314
XIII. Rapid Prototyping of Solid Free Forms 315
XTV. Peptide Self-Assembly 316
XV. In Situ Polymerization 316
XVI. Conclusions 317
XVII. Acknowledgments 317
XVIII. References 320
23. Biodegradable Polymers 323
James M. Pachence, Michael P. Bohrer,
and Joachim Kohn
I. Introduction 323
II. Biodegradable Polymer Selection
Criteria 323
III. Biologically Derived Bioresorbables 324
IV. Synthetic Polymers 327
V. Creating Materials for
Tissue-Engineered Products 332
VI. Conclusion 333
VII. References 333
24. Micro- and Nanofabricated Scaffolds 341
Christopher J. Bettinger, Jeffrey T. Borenstein,
and Robert hanger
I. Introduction 341
II. Adaptation of Traditional Micro-Scale
Techniques for Scaffold Fabrication 342
III. Three-Dimensional Scaffolds with
Micro-Scale Architecture 346
IV. Three-Dimensional Scaffold Assembly 348
V. Microfabrication of Cell-Seeded
Scaffolds 352
VI. Summary and Future Direction 356
VII. References 357
25. Three-Dimensional Scaffolds 359
Ying Luo, George Engelmayr, Debra T. Auguste,
Lino da Silva Ferreira, Jeffrey M. Karp,
Rajiv Saigal, and Robert hanger
I. Introduction 359
II. Three-Dimensional Scaffold Design
and Engineering 360
HI. Conclusions 370
IV. References 371
X CONTENTS
Part VI. Transplantation of Engineered
Cells and Tissues 375
26. Tissue Engineering and Transplantation
in the Fetus 377
Dario O. Fauza
I. Introduction 377
II. General Characteristics of Fetal
Cells 378
III. Fetal Tissue Engineering 379
IV. Ethical Considerations 384
V. The Fetus as a Transplantation Host 384
VI. Conclusions 385
VII. References 386
27. Immunomodulation 389
Denise L. Faustman
I. Introduction 389
II. Origin of the Designer Tissue
Concept 390
III. First Demonstration of the Concept 390
IV. Expansion of Research on Designer
Tissues 391
V. Antibody Masking 391
VI. Gene Ablation 392
VII. RNA Ablation 393
VIII. Enzyme Ablation 393
IX. Mechanisms of Graft Survival After
Class I Donor Ablation or Antibody
Masking 394
X. Role of Class I Modifications in
Resistance to Recurrent
Autoimmunity 395
XI. Launching of Xenogeneic Human
Clinical Trials in the United States
Using Immunomodulation 396
XII. Comment 396
XIII. References 397
28. Immunoisolation 399
Beth A. Zielinski and Michael J. Lysaght
I. Introduction 399
II. Theory and Capsule Format 399
III. CellSourcing 401
IV. Host Immune Responses to
Encapsulated Cells 401
V. Conclusion 402
VI. References 403
29. Engineering Challenges in Immunobarrier
Device Development 405
Amy S. Lewis and Clark K. Colton
I. Introduction 405
II. Engineering Challenges 406
III. Strategies for Improving
Immunobarrier Devices 410
IV. Theoretical Analysis of
PFC-containing Microcapsules 411
V. Future Directions 416
VI. References 416
Part VII. Stem Cells 419
30. Embryonic Stem Cells 421
Alan Trounson
I. Introduction 421
II. Derivation of Human Embryonic
Stem Cells (hESC) 422
III. Selecting Embryos for Producing
Embryonic Stem Cells 422
IV. Maintaining Embryonic Stem Cells 423
V. Pluripotential Markers of Embryonic
Stem Cells 423
VI. Genetic Manipulation of Embryonic
Stem Cells 424
VII. Differentiation of Embryonic Stem
Cells 424
VIII. Directing Differentiation of
Embryonic Stem Cells 425
IX. Coculture Systems for Directed
Differentiation of Embryonic Stem
Cells 425
X. Concluding Comments 426
XI. References 426
31. Adult Epithelial Tissue Stem Cells 431
Christopher S. Potten and James W. Wilson
I. Introduction 431
II. A Definition of Stem Cells 432
III. Hierarchically Organized Stem Cell
Populations 433
IV. Skin Stem Cells 435
V. Intestinal Stem Cell System 437
VI. Stem Cell Organization in Filiform
Papillae on the Dorsal Surface of the
Tongue 441
VII. Generalized Scheme 441
VIII. Adult Stem Cell Plasticity 442
IX. References 443
32. Embryonic Stem Cells as a Cell Source for
Tissue Engineering 445
Ali Khademhosseini, Jeffrey M. Karp,
Sharon Gerecht, Lino Ferreira,
Gordana Vunjak-Novakovic, and
Robert hanger
I. Introduction 445
II. Maintenance of ESCs 446
III. Directed Differentiation 448
IV. Isolation of Specific Progenitor Cells
from ESCs 451
V. Transplantation 452
VI. Future Prospects 454
VII. Conclusions 454
VIII. Acknowledgments 455
IX References 455
33. Postnatal Stem Cells 459
Pamela Gehron Robey and Paolo Bianco
I. Introduction 459
II. Reservoirs of Postnatal Stem Cells 459
III. Current Approaches to Tissue
Engineering 460
IV. Conclusions 465
V. Acknowledgments 466
VI. References 466
Part VIII. Gene Therapy 469
34. Gene Therapy 471
Ronald G. Crystal and Stefan Worgall
I. Introduction 471
II. Strategies of Gene Therapy 472
III. Ex Vivo vs. In Vivo Gene Therapy 472
IV. Chromosomal vs. Extrachromosomal
Placement of the Transferred Gene 473
V. Gene Transfer Vectors 474
VI. Cell-Specific Targeting Strategies 480
VII. Regulated Expression of the
Transferred Gene 483
VIII. Combining Gene Transfer with Stem
Cell Strategies 485
IX. Challenges to Gene Therapy for
Tissue Engineering 487
X. Acknowledgments 487
XI. References 487
35. Gene Delivery into Cells and Tissues 493
Ales Prokop and Jeffrey M. Davidson
I. Introduction 493
II. Gene Delivery Systems 493
III. Exploring the Role of Receptor
Ligand Signaling and Receptor
Clustering in Agent Delivery 495
IV. Overview of Nanovehicle Uptake
and Trafficking 497
V. Stability of Nanovectors in Buffers
and Biological Fluids: Steric vs.
Electrostatic Stabilization 500
VI. Localization and Targeting 501
VII. Drug Loading 503
VIII. Gene Delivery Systems (GDS) 504
IX. Special Considerations for Gene
Delivery Systems 507
X. Outlook 509
XI. Acknowledgment 510
XII. References 510
Part IX. Breast 517
36. Breast Reconstruction 519
Lamont Cathey, Kuen YongLee,
Walter D. Holder, David}. Mooney,
and Craig R. Halberstadt
I. Introduction 519
II. Cell Types for Soft-Tissue
Engineering 521
III. Materials 522
IV. Animal Models 526
V. Strategies to Enhance the
Vascularization of Engineered Tissue 528
VI. Special Considerations 530
VII. Concluding Remarks 530
VIII. References 531
CONTENTS • xi
Part X. Cardiovascular System 535
37. Progenitor Cells and Cardiac Homeostasis 537
Annarosa Leri, Toru Hosoda, Marcello Rota,
Claudia Bearzi, Konrad Urbanek,
Roberto Bolli, Jan Kajstura, and
Piero Anversa
I. Introduction 537
II. Organ Homeostasis 537
III. Cardiac Homeostasis 539
IV. Properties of Exogenous and
Endogenous Cells for Cardiac Repair 541
V. The Embryo as a Model of Progenitor
Cell Engraftment and Plasticity 545
VI. Conclusions 547
VII. References 547
38. Cardiac-Tissue Engineering 551
M. Radisic, H. Park, and G. Vunjak-Novakovic
I. Introduction 551
II. Clinical Problem 551
III. Problem Definition 552
IV. Previous Work 554
V. Biomimetic Approach to
Cardiac-Tissue Engineering 554
VI. Engineered Heart Tissue by
Mechanical Stimulation of Cells in
Collagen Gels 560
VII. Cell-Sheet Tissue Engineering 563
VIII. Summary and Current Research
Needs 563
IX. Acknowledgments 565
X. References 566
39. Bloodvessels 569
Luke Brewster, Eric M. Brey,
and Howard P. Greisler
I. Introduction 569
II. Current Status of Vascular Conduits 570
III. Physical or Chemical Modification of
Current Grafts to Improve Durability 572
IV. Therapeutic Angiogenesis and
Arteriogenesis 576
V. Tissue-Engineered Vascular Grafts 577
VI. Endovascular Stents and Stent Grafts 581
VII. Conclusion 582
VIII. References 582
40. Heart Valves 585
Peter Marc Fong, Jason Park,
and Christopher Kane Breuer
I. Introduction 585
II. Heart Valve Function and Structure 585
III. Cellular Biology of the Heart Valve 586
IV. Heart Valve Dysfunction and Valvular
Repair and Remodeling 588
V. Application of Tissue Engineering
Toward the Construction of a
Replacement Heart Valve 590
VI. Conclusion 597
VII. References 597
xii CONTENTS
Part XI. Endocrinology and Metabolism 603
41. Generation of Islets from Stem Cells 605
Bernat Soria, Abdelkrim Hmadcha,
Francisco J. Bedoya, and Juan R. Tejedo
I. Introduction 605
II. Islet Transplantation 606
III. Alternative Sources of Islet Cells 608
IV. Biomaterials 611
V. Acknowledgments 615
VI. References 616
42. Bioartificial Pancreas 619
Athanassios Sambanis
I. Introduction 619
II. Cell Types for Pancreatic Substitutes 620
III. Construct Technology 623
IV. In Vivo Implantation 626
V. Concluding Remarks 629
VI. Acknowledgments 630
VII. References 630
43. Engineering Pancreatic Beta-Cells 635
Hee-Sookjun andJi-Won Yoon
I. Introduction 635
II. Engineering to Generate
Insulin-Producing Cells 636
III. Engineering to Improve Islet Survival 640
IV. Vectors for Engineering Islets and
Beta-Cells 641
V. Conclusion 643
VI. References 643
44. Thymus and Parathyroid Organogenesis 647
Craig Scott Nowell, Ellen Richie,
Nancy Ruth Manley,
and Catherine Clare Blackburn
I. Introdution 647
II. Structure and Morphology of the
Thymus 647
III. In Vitro T-Cell Differentiation 649
IV. Thymus Organogenesis 650
V. Summary 658
VI. Acknowledgments 658
VII. References 658
Part XII. Gastrointestinal System 663
45. Adult Stem Cells in Normal Gastrointestinal
Function and Inflammatory Disease 665
Mairi Brittan and Nicholas A. Wright
I. Introduction 665
II. Defining Properties of Adult Stem
Cells 666
III. Cells of the Intestine 666
IV. Identification of Intestinal Stem Cells 669
V. Pathways of Cellular Differentiation
in the Intestine 670
VI. Adult Stem Cell Plasticity 672
VII. Bone Marrow Contribution to the
Cells in the Adult Intestine 672
VIII. Origin of the ISEMFs 673
IX. Bone Marrow-Derived Vascular
Lineages Contribute to Tissue
Regeneration in IBD 674
X. Stem Cell Plasticity: De Novo Cell
Generation or Heterokaryon
Formation 675
XI. Bone Marrow Transplantation as a
Potential Therapy for Crohn s Disease 676
XII. References 676
46. Alimentary Tract 681
Shaun M. Kunisaki and Joseph Vacanti
I. Introduction 681
II. Tissue-Engineered Small Intestine 681
III. Tissue-Engineered Esophagus 686
IV. Tissue-Engineered Stomach 689
V. Tissue-Engineered Large Intestine 691
VI. Conclusions 692
VII. References 692
47. Liver Stem Cells 695
Eric Lagasse
I. Introduction 695
II. Definition of a Tissue-Derived Stem
Cell 695
III. Cellular Organization of the Adult Liver 696
IV. Hepatocytes: The Functional Unit
of the Liver with Stem Cell Properties 696
V. Liver Stem Cells 699
VI. Liver Stem Cells and Therapeutic
Approaches 703
VII. Conclusion 704
VIII. References 704
48. Liver 707
Gregory H. Underhill, Salman R. Khetani,
Alice A. Chen, and Sangeeta N. Bhatia
I. Introduction 707
II. Liver Failure and Current Treatments 707
HI. Cell Sources for Liver Cell-Based
Therapies 709
IV. In Vitro Hepatic Culture Models 711
V. Extracorporeal Bioartificial Liver
Devices 717
VI. Cell Transplantation 721
VII. Three-Dimensional Hepatocellular
Systems: Development of
Implantable Therapeutic Constructs 722
VIII. Animal Models 726
IX. Conclusion 726
X. References 726
Part XIII. Hematopoietic System 733
49. Hematopoietic Stem Cells 735
Malcolm A. S. Moore
I. Introduction 735
II. Historical Background 735
III. Properties of Hematopoietic Stem
Cells (HSC) 736
IV. Ontogeny of HSC 737
V. Migration, Mobilization, and Homing
of HSC 738
VI. HSC Proliferation and Expansion
In Vitro 739
VII. Negative Regulation of HSC 744
VIII. Hematopoietic Stem Cell Niches 744
IX. Conclusion 745
X. References 746
50. Red Blood Cell Substitutes 749
Thomas Ming Swi Chang
I. Introduction 749
II. Modified Hemoglobin 750
III. First-Generation Modified
Hemoglobin 751
IV. New Generations of Modified
Hemoglobin 753
V. A Chemical Approach Based on
Perfluorochemicals 755
VI. Conclusions 755
VII. Link to Websites 756
VIII. Acknowledgments 756
IX. References 756
51. Lymphoid Cells 759
Una Chen
I. Introduction 759
II. Properties of Lymphocytes 760
III. Lymphocyte Engineering: Reality
and Potential 760
IV. Inductive Model of Sequential Cell
Commitment of Hematopoiesis 760
V. Diagrams to Explain This Model 761
VI. Some Comments on This Model 761
VII. Criteria for Engineering
Developmental Stages of
Lymphopoiesis 763
VIII. Stages of Lymphopoiesis for
Engineering 763
IX. Concluding Remarks and Prospects
for Lymphocyte Engineering 779
X. Acknowledgments 780
XI. References 780
Part XIV. Kidney and Genitourinary
System 785
52. Stem Cells in Kidney Development and
Regeneration 787
Gregory R. Dressier
I. Introduction 787
II. Kidney Development 787
III. Genes That Specify Early Kidney Cell
Lineages 789
IV. Establishment of Additional Cell
Lineages 792
V. Regeneration and Renal Stem Cells 794
VI. Acknowledgments 797
VII. References 797
53. Renal Replacement Devices 801
H. David Humes
I. Introduction 801
II. Basics of Kidney Function 801
CONTENTS • xiii
III. Tissue-Engineering Approach to
Renal Function Replacement 802
IV. References 809
54. Genitourinary System 811
Anthony Atala
I. Introduction 811
II. Reconstitution Strategies 811
III. Role of Biomaterials 812
IV. Vascularization 812
V. Progress in Tissue Engineering of
Urologic Structures 812
VI. Additional Applications 816
VII. Conclusion 818
VIII. References 818
Part XV. Musculoskeletal System 821
55. Mesenchymal Stem Cells 823
Faye H. Chen, Lin Song, Robert L. Mauck,
Wan-Ju Li, and Rocky S. Tuan
I. Introduction 823
II. MSC Biology Relevant to
Musculoskeletal-Tissue Engineering 823
III. MSCs in Musculoskeletal Tissue
Engineering 829
IV. Conclusions and Future Perspectives 838
V. Acknowledgment 838
VI. References 838
56. Bone Regeneration 845
Chantal E. Holy, F. Jerry Volenec,
Jeffrey Geesin, and Scott P. Bruder
I. Introduction 845
II. Cell-Based Approach to Bone-Tissue
Engineering 846
III. Growth Factor-Based Therapies 853
IV. Conclusion and Future Trends 857
V. References 857
57. Bone and Cartilage Reconstruction 861
Wei Liu, Wenjie Zhang, and Yilin Cao
I. Introduction 861
II. Bone Reconstruction 861
III. Clinical Application of Engineered
Bone 867
IV. Cartilage Reconstruction 868
V. Conclusion 873
VI. Acknowledgements 874
VII. References 874
58. Regeneration and Replacement of the
Intervertebral Disc 877
Lori A. Setton, Lawrence J. Bonassar,
and Koichi Masuda
I. Introduction 877
II. IVD Structure and Function 878
III. Biomaterials for Nucleus Pulposus
Replacement 880
IV. Cell-Biomaterial Constructs for IVD
Regeneration 882
V. Cellular Engineering for
Intervertebral Disc Regeneration 886
XIV CONTENTS
VI. Growth Factors and Biologies for
Intervertebral Disc Regeneration 889
VII. Gene Therapy for Intervertebral Disc
Regeneration 889
VIII. Concluding Remarks 891
IX. Acknowledgments 891
X. References 891
59. Articular Cartilage Injury 897
/. A. Buckwalter, J. L. Marsh, T. Brown,
A. Amendola, andj. A. Martin
I. Introduction 897
II. Articular-Cartilage Injury and Joint
Degeneration 898
III. Mechanisms of Articular-Cartilage
Injuries 898
IV. Response of Articular Cartilage to
Injury 900
V. Preventing Joint Degeneration
Following Injury 902
VI. Promoting Articular Surface Repair 902
VII. Conclusion 904
VIII. References 904
60. Tendons and Ligaments 909
Francine Goulet, Lucie Germain,
A. Robin Poole, and Francois A. Auger
I. Introduction 909
II. Need for Bioengineered Tendon
and Ligament Substitutes 910
HI. Histological Description of Tendons
and Ligaments 910
IV. Tissue-Engineered ACL Substitutes 911
V. Conclusion 915
VI. Acknowledgments 916
VII. References 916
61. Mechanosensory Mechanisms in Bone 919
Upma Sharma, Antonios G. Mikos,
and Stephen C. Cowin
I. Introduction 919
II. The Connected Cellular Network
(CCN) 920
III. Mechanosensation on the CCN 921
IV. Mesenchymal Stem Cells 927
V. Acknowledgments 928
VI. References 928
62. Skeletal-Tissue Engineering 935
Matthew D. Kwan, Derrick C. Wan,
and Michael T. Longaker
I. Introduction 935
II. Distraction Osteogenesis 936
III. Critical-Sized Defects 937
IV. Cellular Therapy 937
V. Cytokines 938
VI. Scaffolds 940
VII. Angiogenesis 940
VIII. Tissue Engineering in Practice 941
EX. Conclusion 942
X. References 942
Part XVI. Nervous System 945
63. Neural Stem Cells 947
Lorenz Studer
I. Introduction 947
II. Neural Development 947
III. Neural Stem Cells 948
IV. Embryonic Stem Cell-Derived Neural
Stem Cells and Neural Progeny 951
V. Applications in Biology and Disease 955
VI. Conclusion 958
VII. References 958
64. Brain Implants 967
Lars U. Wahlberg
I. Introduction 967
II. Cell Replacement Implants 968
III. Cell Protection and Regeneration
Implants 970
IV. Combined Replacement and
Regeneration Implants 973
V. Disease Targets for Brain Implants 974
VI. Surgical Considerations 975
VII. Conclusions 975
VIII. References 975
65. Spinal Cord 977
John W. McDonald and Daniel Becker
I. Introduction 977
II. The Problem 977
III. Spinal Cord Organization 978
IV. Injury 978
V. Spontaneous Regeneration 979
VI. Current Limitations and Approaches
to Repair and Redefining Goals 979
VII. Spinal Cord Development 980
VIII. Embryonic Stem Cells 981
DC. Novel Approaches to CNS Repair 986
X. Toward Human Trials 989
XI. Conclusions 990
XII. Acknowledgments 991
XIII. References 991
66. Protection and Repair of Audition 995
Richard A. Altschuler, Yehoash Raphael,
David C. Martin, Jochen Schacht,
David J. Anderson, and Josef M. Miller
I. Introduction 995
II. Interventions to Prevent Hearing
Loss/Cochlear Damage 996
III. Hair Cell Regeneration 998
IV. Auditory Nerve Survival Following
Deafness 999
V. Genetic Deafness 1000
VI. Methods of Therapeutic Intervention 1000
VII. Conclusions 1002
VIII. References 1003
Part XVII. Ophthalmic Applications 1009
67. Stem Cells in the Eye 1011
Michael E. Boulton, Julie Albon,
and Maria B. Grant
I. Introduction 1011
II. Corneal Epithelial Stem Cells 1011
III. Retinal Progenitor Cells 1017
IV. Bone Marrow Stem Cells 1017
V. Potential for Stem Cells in Ocular
Repair and Tissue Engineering 1018
VI. References 1018
68. Corneal-Tissue Replacement 1025
Jeffrey W. Ruberti, James D. Zieske,
and Vickery Trinkaus-Randall
I. Introduction 1025
II. Synthetic Corneal Replacements 1029
III. Corneal-Tissue Engineering 1031
IV. Current State of Corneal-Tissue
Engineering and Future Directions 1043
V. References 1043
69. Vision Enhancement Systems 1049
Gislin Dagnelie
I. Introduction 1049
II. Visual System, Architecture, and
(Dys)function 1049
III. Current and Near-Term Approaches
to Vision Restoration 1052
IV. Emerging Application Areas for
Engineered Cells and Tissues 1058
V. Conclusion: Toward 20/20 Vision 1061
VI. Acknowledgments 1061
VII. References 1061
Part XVIII. Oral/Dental Applications 1065
70. Biological Tooth Replacement and Repair 1067
Anthony J. (Tony) Smith and Paul T. Sharpe
I. Introduction 1067
II. Tooth Development 1067
III. Whole-Tooth Tissue Engineering 1068
IV. Dental-Tissue Regeneration 1071
V. Conclusions 1075
VI. References 1075
71. Oral and Maxillofacial Surgery 1075
Simon Young, Kyriacos A. Athanasiou,
Antonios G. Mikos, and Mark Eu-Kien Wong
I. Introduction 1079
II. Special Challenges in Oral and
Maxillofacial Reconstruction 1079
III. Current Methods of Oral and
Maxillofacial Reconstruction 1082
IV. Relevant Strategies in Oral- and
Maxillofacial-Tissue Engineering 1085
V. Future of Oral- and
Maxillofacial-Tissue Engineering 1091
VI. References 1091
CONTENTS • xv
72. Periodontal-Tissue Engineering 1095
Hai Zhang, Hanson K. Fong,
William V. Giannobile, and Martha J. Somerman
I. Introduction 1095
II. Factors for Periodontal Tissue
Engineering and Regenerative
Medicine 1097
III. Current Approaches in Periodontal
Tissue Engineering 1099
IV. Future Directions 1104
V. Acknowledgments 1105
VI. References 1105
Part XIX. Respiratory System 1111
73. Progenitor Cells in the Respiratory System 1113
Valerie Besnard and Jeffrey A. Whitsett
I. Introduction: Lung Biology and
Opportunities for Regeneration of
the Lung 1113
II. Complexity of Lung Structure
Presents a Challenge for Tissue
Engineering 1113
III. Lung Morphogenesis 1114
IV. Endogenous Progenitor Cells Play
Critical Roles in Repair of the
Respiratory Epithelium After Birth 1118
V. Evidence for Nonpulmonary Stem
Cells in the Lung 1120
VI. Models for Study of Lung
Regeneration In Vitro 1121
VII. Summary and Conclusions 1121
VIII. References 1122
74. Lungs 1125
Anne E. Bishop and Julia M. Polak
I. Introduction 1125
II. Lung Structure 1126
III. Cell Sources for Lung Repair and
Lung-Tissue Engineering 1126
IV. Lung-Tissue Constructs 1129
V. Conclusions 1130
VI. References 1131
Part XX. Skin 1135
75. Cutaneous Stem Cells 1137
George Cotsarelis
I. Introduction 1137
II. What Are Epithelial Stem Cells? 1138
III. Localization of Epithelial Stem Cells 1138
IV. In Vitro Assessment of Proliferative
Potential 1140
V. Multipotent Bulge Cells? 1142
VI. Plasticity of Bulge Cells? 1143
VII. Bulge Cells: The Ultimate Cutaneous
Epithelial Stem Cells? 1143
VIII. Role of Bulge Cells in Wound Healing 1143
DC. Role of Bulge Cells in Tumorigenesis 1144
X. Stem Cells and Alopecia 1144
XI. Bulge Cells for Tissue Engineering 1144
xvi CONTENTS
XII. Molecular Profile — Stem Cell
Phenotype 1145
XIII. The Bulge as Stem Cell Niche 1145
XIV. Conclusion 1145
XV. Acknowledgments 1146
XVI. References 1146
76. Wound Repair 1149
Kaustabh Ghosh and Richard A. F. Clark
I. Introduction 1149
II. Basic Biology of Wound Repair 1150
III. Chronic Wounds 1157
IV. Tissue-Engineered Therapy:
Established Practice 1157
V. Tissue-Engineered Therapy: New
Approaches 1159
VI. References 1161
77. Bioengineered Skin Constructs 1167
Vincent Falanga and Katie Faria
I. Introduction 1167
II. Skin Structure and Function 1168
III. Engineering Skin Tissue 1172
IV. Epidermal Regeneration 1174
V. Dermal Replacement 1174
VI. Composite Skin Grafts 1175
VII. Bioengineered Skin: FDA-Approved
Indications 1176
VIII. Mechanisms of Action of
Bioengineered Skin 1179
IX. Conclusion 1182
X. References 1182
Part XXI. Clinical Experience 1187
78. Current State of Clinical Application 1189
Shaun M. Kunisaki and Dario O. Fauza
I. Introduction 1189
II. Current Challenges 1189
III. Clinical Applications 1190
IV. Conclusion 1198
V. References 1199
79. Tissue-Engineered Skin Products 1201
Jonathan Mansbridge
I. Introduction 1201
II. Types of Therapeutic
Tissue-Engineered Skin Products 1202
III. Components of Tissue-Engineered
Skin Grafts as Related to Function 1203
IV. Commercial Production of
Tissue-Engineered Skin Products 1204
V. Manufacture of Dermagraft and
TransCyte 1206
VI. Dermagraft and TransCyte
Production Processes 1207
VII. Clinical Trials 1209
VIII. Immunological Properties of
Tissue-Engineered Skin 1210
IX. Commercialization 1210
X. Future Developments 1211
XI. Conclusion 1212
XII. References 1212
80. Tissue-Engineered Cartilage Products 1215
David W. Levine
I. Introduction 1215
II. Clinical Experience with
First-Generation ACI 1217
III. Clinical Experience with
Second- Generation ACI 1221
IV. Conclusions 1222
V. References 1222
81. Tissue-Engineered Bone Products 1225
John F. Kay
I. Introduction 1225
II. Bone Healing 1226
III. Osteogenic Grafting Materials 1226
IV. Osteoconductive Bone Graft
Materials 1228
V. Osteoinductive Bone Graft Materials 1229
VI. Composite Bone Grafting 1232
VII. Regulatory Issues 1232
VIII. Examples of Tissue Engineering in
Contemporary Clinical Orthopedics 1233
IX. The Future 1233
X. Conclusions 1235
XI. Acknowledgments 1235
XII. References 1235
82. Tissue-Engineered Cardiovascular Products 1237
Thomas Eschenhagen,
Herrmann Reichenspurner,
and Wolfram-Hubertus Zimmermann
I. Introduction 1237
II. Clinical Need for Tissue-Engineered
Cardiovascular Products? 1238
III. Requirements for Clinical
Application 1239
IV. Current Concepts and Achievements
in Engineering Cardiovascular
Products 1241
V. State of Myocardial-Tissue
Engineering 1243
VI. Bottlenecks 1246
VII. Summary 1247
VIII. References 1248
83. Tissue-Engineered Organs 1253
Steve J. Hodges and Anthony Atala
I. Introduction 1253
II. Tissue Engineering: Strategies
for Tissue Reconstitution 1253
III. Cell Sources 1254
IV. Alternate Cell Sources 1254
V. Therapeutic Cloning 1255
VI. Biomaterials 1256
VII. Growth Factors 1257
VIII. Vascularization 1257
DC. Clinical Applications 1257
X. Conclusion 1259
XI. References 1259
Part XXII. Regulation and Ethics 1263
84. The Tissue-Engineering Industry 1265
Michael J. Lysaght, Elizabeth Deweerd,
and Ana Jaklenec
I. Introduction 1265
II. The Age of Innocence 1266
III. The Perfect Storm 1267
IV. The Present Era 1268
V. Concluding Perspectives 1270
VI. References 1270
85. The Regulatory Path From Concept to
Market 1271
Kiki B. Hellman
I. Introduction 1271
II. Legislative Authority 1272
III. Product Regulatory Process 1272
IV. Product Premarket Submissions 1273
V. Review of Product Premarket
Submissions 1275
VI. Human Cells, Tissues, and
Cellular- and Tissue-Based Products 1275
VII. Science and Product Development 1277
VIII. Conclusion and Future Perspectives 1278
IX. Acknowledgments 1279
X. References 1279
CONTENTS • xvii
86. Ethical Issues 1281
Laurie Zoloth
I. Introduction 1281
II. Are There Reasons, in Principle,
Why Performing the Basic Research
Should be Impermissible? 1282
III. What Contextual Factors Should Be
Taken into Account, and Do Any
of These Prevent the Development
and Use of the Technology? 1284
IV. What Purposes, Techniques, or
Applications Would Be Permissible
and Under What Circumstances? 1285
V. On What Procedures and Structures,
Involving What Policies, Should
Decisions on Appropriate Techniques
and Uses Be Based? 1285
VI. Conclusion 1286
VII. References 1286
Epilogue 1289
Subject Index 1291
|
adam_txt |
CONTENTS IN BRIEF
Contributors xix
Foreword xxix
Preface xxxi
Preface to the Second Edition xxxiii
Preface to the First Edition xxxv
Introduction to Tissue Engineering 1
1. The History and Scope of Tissue Engineering 3
2. The Challenge of Imitating Nature 7
3. Moving into the Clinic 15
4. Future Perspectives 33
Part I. The Basis of Growth and
Differentiation 51
5. Molecular Biology of the Cell 53
6. Organization of Cells into Higher-Ordered
Structures 67
7. Dynamics of Cell-ECM Interactions 81
8. Matrix Molecules and Their Ligands 101
9. Morphogenesis and Tissue Engineering 117
10. Gene Expression, Cell Determination, and
Differentiation 129
Part II. In Vitro Control of Tissue
Development 135
11. Engineering Functional Tissues 137
12. Principles of Tissue Culture and Bioreactor
Design 155
13. Regulation of Cell Behavior by
Extracellular Proteins 185
14. Growth Factors 193
15. Mechanochemical Control of Cell Fate
Switching 207
Part III. In Vivo Synthesis of Tissues
and Organs 217
16. In Vivo Synthesis of Tissues and Organs 219
Part IV. Models for Tissue Engineering 239
17. Models as Precursors for Prosthetic Devices 241
18. Quantitative Aspects 251
Part V. Biomaterials in Tissue
Engineering 263
19. Micro-Scale Patterning of Cells and Their
Environment 265
20. Cell Interactions with Polymers 279
21. Matrix Effects 297
22. Polymer Scaffold Fabrication 309
23. Biodegradable Polymers 323
24. Micro-and Nanofabricated Scaffolds 341
25. Three-Dimensional Scaffolds 359
Part VI. Transplantation of Engineered
Cells and Tissues 375
26. Tissue Engineering and Transplantation
in the Fetus 377
27. Immunomodulation 389
28. Immunoisolation 399
29. Engineering Challenges in Immunobarrier
Device Development 405
Part VII. Stem Cells 419
30. Embryonic Stem Cells 421
31. Adult Epithelial Tissue Stem Cells 431
32. Embryonic Stem Cells as a Cell Source for
Tissue Engineering 445
33. Postnatal Stem Cells 459
Part VIII. Gene Therapy 469
34. Gene Therapy 471
35. Gene Delivery into Cells and Tissues 493
Part IX. Breast 517
36. Breast Reconstruction 519
Part X. Cardiovascular System 535
37. Progenitor Cells and Cardiac Ilomeostasis 537
38. Cardiac-Tissue Engineering 551
39. Bloodvessels 569
40. Heart Valves 585
Part XI. Endocrinology and Metabolism 603
41. Generation of Islets from Stem Cells 605
42. Bioartificial Pancreas 619
VI CONTENTS IN BRIEF
43. Engineering Pancreatic Beta-Cells 635
44. Thymus and Parathyroid Organogenesis 647
Part XII. Gastrointestinal System 663
45. Adult Stem Cells in Normal Gastrointestinal
Function and Inflammatory Disease 665
46. Alimentary Tract 681
47. Liver Stem Cells 695
48. Liver 707
Part XIII. Hematopoietic System 733
49. Hematopoietic Stem Cells 735
50. Red Blood Cell Substitutes 749
51. Lymphoid Cells 759
Part XIV. Kidney and Genitourinary
System 785
52. Stem Cells in Kidney Development and
Regeneration 787
53. Renal Replacement Devices 801
54. Genitourinary System 811
Part XV. Musculoskeletal System 821
55. Mesenchymal Stem Cells 823
56. Bone Regeneration 845
57. Bone and Cartilage Reconstruction 861
58. Regeneration and Replacement of the
Intervertebral Disc 877
59. Articular Cartilage Injury 897
60. Tendons and Ligaments 909
61. Mechanosensory Mechanisms in Bone 919
62. Skeletal-Tissue Engineering 935
Part XVI. Nervous System 945
63. Neural Stem Cells 947
64. Brain Implants 967
65. Spinal Cord 977
66. Protection and Repair of Audition 995
Part XVII. Ophthalmic Applications 1009
67. Stem Cells in the Eye 1011
68. Corneal-Tissue Replacement 1025
69. Vision Enhancement Systems 1049
Part XVIII. Oral/Dental Applications 1065
70. Biological Tooth Replacement and Repair 1067
71. Oral and Maxillofacial Surgery 1079
72. Periodontal-Tissue Engineering 1095
Part XIX. Respiratory System 1111
73. Progenitor Cells in the Respiratory
System 1113
74. Lungs 1125
Part XX. Skin 1135
75. Cutaneous Stem Cells 1137
76. Wound Repair 1149
77. Bioengineered Skin Constructs 1167
Part XXI. Clinical Experience 1187
78. Current State of Clinical Application 1189
79. Tissue-Engineered Skin Products 1201
80. Tissue-Engineered Cartilage Products 1215
81. Tissue-Engineered Bone Products 1225
82. Tissue-Engineered Cardiovascular
Products 1237
83. Tissue-Engineered Organs 1253
Part XXII. Regulation and Ethics 1263
84. The Tissue-Engineering Industry 1265
85. The Regulatory Path From Concept to
Market 1271
86. Ethical Issues 1281
Epilogue 1289
Subject Index 1291
CONTENTS
Contributors xix
Foreword xxix
Preface xxxi
Preface to the Second Edition xxxiii
Preface to the First Edition xxxv
Introduction to Tissue Engineering 1
1. The History and Scope of Tissue Engineering 3
Joseph Vacanti and Charles A. Vacanti
I. Introduction 3
II. Scientific Challenges 4
III. Cells 4
IV. Materials 5
V. General Scientific Issues 5
VI. Social Challenges 6
VII. References 6
2. The Challenge of Imitating Nature 7
Robert M. Nerem
I. Introduction 7
II. Cell Technology 8
III. Construct Technology 10
IV. Integration into the Living System 11
V. Concluding Discussion 12
VI. Acknowledgments 13
VII. References 13
3. Moving into the Clinic 15
Alan J. Russell and Timothy Bertram
I. Introduction 15
II. History of Clinical Tissue Engineering 16
III. Strategies to Advance Toward the Clinic 20
IV. Bringing Technology Platforms to the
Clinical Setting 26
V. Transition to Clinical Testing 28
VI. Establishing a Regulatory Pathway 30
VII. Conclusions 30
VIII. Acknowledgments 30
IX. References 31
4. Future Perspectives 33
MarkE. Furth and Anthony Atala
I. Clinical Need 33
II. Current State of the Field 33
III. Current Challenges 34
IV. Future Directions 34
V. Future Challenges 42
VI. References 42
Part I. The Basis of Growth and
Differentiation 51
5. Molecular Biology of the Cell 53
Jonathan Slack
I. Introduction 53
II. The Cell Nucleus 54
III. The Cytoplasm 56
IV. Growth and Death 58
V. Cytoskeleton 60
VI. Cell Adhesion Molecules 61
VII. Extracellular Matrix 62
VIII. Culture Media 63
IX. Cells in Tissues 64
X. Further Reading 65
6. Organization of Cells into Higher-Ordered
Structures 67
Jon D. Ahlstrom and Carol A. Erickson
I. Introduction 67
II. Molecular Mechanisms of the EMT 68
III. The EMT Transcriptional Program 70
IV. Molecular Control of the EMT 72
V. Conclusion 76
VI. References 76
7. The Dynamics of Cell-ECM Interactions 81
M. Petreaca and Manuela Martins-Green
I. Introduction 81
II. Cell-ECM Interactions 84
III. Signal Transduction Events During
Cell-ECM Interactions 90
IV. Relevance for Tissue Engineering 93
V. References 95
8. Matrix Molecules and Their Ligands 101
Bjorn Reino Olsen
I. Introduction 101
II. Collagens — Major Constituents
ofECM 102
III. Elastic Fibers and Microfibrils 107
IV. Other MultifunctionalI Proteins in ECM 107
V. Proteoglycans —Multifunctional
Molecules in the Extracellular Matrix
and on Cell Surfaces 111
VI. Conclusion 112
VII. References 112
9. Morphogenesis and Tissue Engineering 117
A. H. Reddi
I. Introduction 117
II. Bone Morphogenetic Proteins (BMPs) 118
III. Cartilage-Derived Morphogenetic
Proteins (CDMPs) 121
IV. Pleiotropy and Thresholds 121
V. BMPs Bind to Extracellular Matrix 122
VI. BMP Receptors 122
VII. Responding Stem Cells 123
VIII. Morphogens and Gene Therapy 123
IX. Biomimetic Biomaterials 124
X. Tissue Engineering of Bones and Joints 124
XI. Future Challenges 125
XII. Acknowledgments 126
XIII. References 126
Vlii CONTENTS
10. Gene Expression, Cell Determination,
and Differentiation 129
William Nikovits, Jr., and Frank E. Stockdale
I. Introduction 129
II. Determination and Differentiation 129
III. MyoD and the bHLH Family of
Developmental Regulatory
Factors 131
IV. MEFs — Coregulators of
Development 132
V. Pax in Development 132
VI. Conclusions 132
VII. References 133
Part II. In Vitro Control of Tissue
Development 135
11. Engineering Functional Tissues 137
Lisa E. Freed and Farshid Guilak
I. Introduction 137
II. Key Concepts 138
III. In Vitro Studies Aimed at Clinical
Translation 139
IV. Representative In Vitro Culture
Environments 139
V. Convective Mixing, Flow, and Mass
Transfer 142
VI. Culture Duration and Mechanical
Conditioning 145
VII. Conclusions 149
VIII. Acknowledgments 150
IX. References 150
12. Principles of Tissue Culture and Bioreactor
Design 155
R. I. Freshney, B. Obradovic,
W. Grayson, C. Cannizzaro,
and Gordana Vunjak-Novakovic
I. Introduction 155
II. Basic Principles of Cell and Tissue
Culture 155
III. Principles of Bioreactor Design 164
IV. Summary 180
V. Acknowledgments 180
VI. References 180
13. Regulation of Cell Behavior by
Extracellular Proteins 185
Amy D. Bradshaw and E. Helene Sage
I. Introduction 185
II. Thrombospondin-1 185
III. Thrombospondin-2 187
IV. Tenascin-C 187
V. Osteopontin 188
VI. SPARC 189
VII. Conclusions 190
VIII. References 191
14. Growth Factors 193
Thomas F. Deuel and Yunchao Chang
I. Introduction 193
II. Wound Healing 194
III. Growth Factors and Cytokines
Active as Early Mediators of the
Inflammatory Process 195
IV. Inflammatory Response Mediators
Activate Transcription of Quiescent
Genes 196
V. Biologic Properties of SIG
(Chemokine) Family Members 197
VI. Regulation of JE Gene Expression by
Glucocorticoids 197
VII. Growth Factors and Accelerated
Healing 197
VIII. Role of Basic Fibroblast Growth
Factor and Angiogenesis 199
IX. Pleiotrophin Remodels Tumor
Microenvironment and Stimulates
Angiogenesis 200
X. Other Roles of Growth Factors and
Cytokines 201
XI. Conclusions 201
XII. References 201
15. Mechanochemical Control of Cell Fate
Switching 207
Donald E. Ingber
I. Introduction 207
II. Extracellular Matrix Structure and
Function 207
III. Pattern Formation Through ECM
Remodeling 209
IV. Mechanochemical Switching Between
Cell Fates 210
V. Summary 213
VI. The Future 213
VII. Acknowledgments 214
VIII. References 214
Part III. In Vivo Synthesis of Tissues
and Organs 217
16. In Vivo Synthesis of Tissues and Organs 219
Brendan A. Harley and Ioannis V. Yannas
I. Introduction 219
II. Mammalian Response to Injury 220
III. Methods to Treat Loss of Organ
Function 221
IV. Active Extracellular Matrix Analogs 223
V. Basic Parameters for In Vivo
Regeneration Studies: Reproducible,
Nonregenerative Wounds 227
VI. Examples of In Vivo Organ
Regeneration 228
VII. Conclusions 235
VIII. Acknowledgments 236
IX. References 236
Part IV. Models for Tissue Engineering 239
17. Models as Precursors for Prosthetic Devices 241
Eugene Bell
I. Introduction 241
II. Pigmentation of the Living-Skin
Equivalent (LSE) In Vitro 244
III. The Living-Skin Equivalent as an
Immunological Model 244
IV. The Living-Skin Equivalent as a
Disease Model 244
V. Wound-Healing Model 246
VI. Vascular Models without Cells 247
VII. Vascular Models with Cells Added 247
VIII. Conclusions 248
IX. References 249
18. Quantitative Aspects 251
Alan J. Grodzinsky, Roger D. Kamm,
and Douglas A. Lauffenburger
I. Introduction 251
II. Molecular Interactions with Cells 251
III. Molecular and Cell Transport
Through Tissue 253
IV. Cell and Tissue Mechanics 256
V. References 260
Part V. Biomaterials in Tissue
Engineering 263
19. Micro-Scale Patterning of Cells and Their
Environment 265
Xingyu Jiang, Shuichi Takayama,
Robert G. Chapman, Ravi S. Kane,
and George M. Whitesides
I. Introduction 265
II. Soft Lithography 266
III. Self-Assembled Monolayers (SAMs) 266
IV. Microcontact Printing and
Microfeatures Used in Cell Biology 267
V. Microfluidic Patterning 272
VI. Laminar Flow Patterning 272
VII. Conclusion and Future Prospects 274
VIII. Acknowledgments 275
IX. References 275
20. Cell Interactions with Polymers 279
W. Mark Saltzman and Themis R. Kyriakides
I. Introduction 279
II. Methods for Characterizing Cell
Interactions with Polymers 279
III. Cell Interactions with Polymers 283
IV. Cell Interactions with Polymers in
Suspension 289
V. Cell Interactions with
Three-Dimensional Polymer
Scaffolds and Gels 291
VI. Cell Interactions Unique to the
In Vivo Setting 292
VII. References 292
21. Matrix Effects 297
Jeffrey A. Hubbell
I. Introduction 297
II. Extracellular Matrix Proteins
and Their Receptors 297
HI. Model Systems for Study of Matrix
Interactions 301
IV. Cell Pattern Formation by Substrate
Patterning 304
CONTENTS • ix
V. Conclusions 304
VI. References 305
22. Polymer Scaffold Fabrication 309
Matthew B. Murphy and Antonios G. Mikos
I. Introduction 309
II. Fiber Bonding 310
III. Electrospinning 311
IV. Solvent Casting and Particulate
Leaching 311
V. Melt Molding 312
VI. Membrane Lamination 312
VII. Extrusion 312
VIII. Freeze-Drying 313
IX. Phase Separation 313
X. High-Internal-Phase Emulsion 313
XI. Gas Foaming 313
XII. Polymer/Ceramic Composite
Fabrication 314
XIII. Rapid Prototyping of Solid Free Forms 315
XTV. Peptide Self-Assembly 316
XV. In Situ Polymerization 316
XVI. Conclusions 317
XVII. Acknowledgments 317
XVIII. References 320
23. Biodegradable Polymers 323
James M. Pachence, Michael P. Bohrer,
and Joachim Kohn
I. Introduction 323
II. Biodegradable Polymer Selection
Criteria 323
III. Biologically Derived Bioresorbables 324
IV. Synthetic Polymers 327
V. Creating Materials for
Tissue-Engineered Products 332
VI. Conclusion 333
VII. References 333
24. Micro- and Nanofabricated Scaffolds 341
Christopher J. Bettinger, Jeffrey T. Borenstein,
and Robert hanger
I. Introduction 341
II. Adaptation of Traditional Micro-Scale
Techniques for Scaffold Fabrication 342
III. Three-Dimensional Scaffolds with
Micro-Scale Architecture 346
IV. Three-Dimensional Scaffold Assembly 348
V. Microfabrication of Cell-Seeded
Scaffolds 352
VI. Summary and Future Direction 356
VII. References 357
25. Three-Dimensional Scaffolds 359
Ying Luo, George Engelmayr, Debra T. Auguste,
Lino da Silva Ferreira, Jeffrey M. Karp,
Rajiv Saigal, and Robert hanger
I. Introduction 359
II. Three-Dimensional Scaffold Design
and Engineering 360
HI. Conclusions 370
IV. References 371
X CONTENTS
Part VI. Transplantation of Engineered
Cells and Tissues 375
26. Tissue Engineering and Transplantation
in the Fetus 377
Dario O. Fauza
I. Introduction 377
II. General Characteristics of Fetal
Cells 378
III. Fetal Tissue Engineering 379
IV. Ethical Considerations 384
V. The Fetus as a Transplantation Host 384
VI. Conclusions 385
VII. References 386
27. Immunomodulation 389
Denise L. Faustman
I. Introduction 389
II. Origin of the Designer Tissue
Concept 390
III. First Demonstration of the Concept 390
IV. Expansion of Research on Designer
Tissues 391
V. Antibody Masking 391
VI. Gene Ablation 392
VII. RNA Ablation 393
VIII. Enzyme Ablation 393
IX. Mechanisms of Graft Survival After
Class I Donor Ablation or Antibody
Masking 394
X. Role of Class I Modifications in
Resistance to Recurrent
Autoimmunity 395
XI. Launching of Xenogeneic Human
Clinical Trials in the United States
Using Immunomodulation 396
XII. Comment 396
XIII. References 397
28. Immunoisolation 399
Beth A. Zielinski and Michael J. Lysaght
I. Introduction 399
II. Theory and Capsule Format 399
III. CellSourcing 401
IV. Host Immune Responses to
Encapsulated Cells 401
V. Conclusion 402
VI. References 403
29. Engineering Challenges in Immunobarrier
Device Development 405
Amy S. Lewis and Clark K. Colton
I. Introduction 405
II. Engineering Challenges 406
III. Strategies for Improving
Immunobarrier Devices 410
IV. Theoretical Analysis of
PFC-containing Microcapsules 411
V. Future Directions 416
VI. References 416
Part VII. Stem Cells 419
30. Embryonic Stem Cells 421
Alan Trounson
I. Introduction 421
II. Derivation of Human Embryonic
Stem Cells (hESC) 422
III. Selecting Embryos for Producing
Embryonic Stem Cells 422
IV. Maintaining Embryonic Stem Cells 423
V. Pluripotential Markers of Embryonic
Stem Cells 423
VI. Genetic Manipulation of Embryonic
Stem Cells 424
VII. Differentiation of Embryonic Stem
Cells 424
VIII. Directing Differentiation of
Embryonic Stem Cells 425
IX. Coculture Systems for Directed
Differentiation of Embryonic Stem
Cells 425
X. Concluding Comments 426
XI. References 426
31. Adult Epithelial Tissue Stem Cells 431
Christopher S. Potten and James W. Wilson
I. Introduction 431
II. A Definition of Stem Cells 432
III. Hierarchically Organized Stem Cell
Populations 433
IV. Skin Stem Cells 435
V. Intestinal Stem Cell System 437
VI. Stem Cell Organization in Filiform
Papillae on the Dorsal Surface of the
Tongue 441
VII. Generalized Scheme 441
VIII. Adult Stem Cell Plasticity 442
IX. References 443
32. Embryonic Stem Cells as a Cell Source for
Tissue Engineering 445
Ali Khademhosseini, Jeffrey M. Karp,
Sharon Gerecht, Lino Ferreira,
Gordana Vunjak-Novakovic, and
Robert hanger
I. Introduction 445
II. Maintenance of ESCs 446
III. Directed Differentiation 448
IV. Isolation of Specific Progenitor Cells
from ESCs 451
V. Transplantation 452
VI. Future Prospects 454
VII. Conclusions 454
VIII. Acknowledgments 455
IX References 455
33. Postnatal Stem Cells 459
Pamela Gehron Robey and Paolo Bianco
I. Introduction 459
II. Reservoirs of Postnatal Stem Cells 459
III. Current Approaches to Tissue
Engineering 460
IV. Conclusions 465
V. Acknowledgments 466
VI. References 466
Part VIII. Gene Therapy 469
34. Gene Therapy 471
Ronald G. Crystal and Stefan Worgall
I. Introduction 471
II. Strategies of Gene Therapy 472
III. Ex Vivo vs. In Vivo Gene Therapy 472
IV. Chromosomal vs. Extrachromosomal
Placement of the Transferred Gene 473
V. Gene Transfer Vectors 474
VI. Cell-Specific Targeting Strategies 480
VII. Regulated Expression of the
Transferred Gene 483
VIII. Combining Gene Transfer with Stem
Cell Strategies 485
IX. Challenges to Gene Therapy for
Tissue Engineering 487
X. Acknowledgments 487
XI. References 487
35. Gene Delivery into Cells and Tissues 493
Ales Prokop and Jeffrey M. Davidson
I. Introduction 493
II. Gene Delivery Systems 493
III. Exploring the Role of Receptor
Ligand Signaling and Receptor
Clustering in Agent Delivery 495
IV. Overview of Nanovehicle Uptake
and Trafficking 497
V. Stability of Nanovectors in Buffers
and Biological Fluids: Steric vs.
Electrostatic Stabilization 500
VI. Localization and Targeting 501
VII. Drug Loading 503
VIII. Gene Delivery Systems (GDS) 504
IX. Special Considerations for Gene
Delivery Systems 507
X. Outlook 509
XI. Acknowledgment 510
XII. References 510
Part IX. Breast 517
36. Breast Reconstruction 519
Lamont Cathey, Kuen YongLee,
Walter D. Holder, David}. Mooney,
and Craig R. Halberstadt
I. Introduction 519
II. Cell Types for Soft-Tissue
Engineering 521
III. Materials 522
IV. Animal Models 526
V. Strategies to Enhance the
Vascularization of Engineered Tissue 528
VI. Special Considerations 530
VII. Concluding Remarks 530
VIII. References 531
CONTENTS • xi
Part X. Cardiovascular System 535
37. Progenitor Cells and Cardiac Homeostasis 537
Annarosa Leri, Toru Hosoda, Marcello Rota,
Claudia Bearzi, Konrad Urbanek,
Roberto Bolli, Jan Kajstura, and
Piero Anversa
I. Introduction 537
II. Organ Homeostasis 537
III. Cardiac Homeostasis 539
IV. Properties of Exogenous and
Endogenous Cells for Cardiac Repair 541
V. The Embryo as a Model of Progenitor
Cell Engraftment and Plasticity 545
VI. Conclusions 547
VII. References 547
38. Cardiac-Tissue Engineering 551
M. Radisic, H. Park, and G. Vunjak-Novakovic
I. Introduction 551
II. Clinical Problem 551
III. Problem Definition 552
IV. Previous Work 554
V. Biomimetic Approach to
Cardiac-Tissue Engineering 554
VI. Engineered Heart Tissue by
Mechanical Stimulation of Cells in
Collagen Gels 560
VII. Cell-Sheet Tissue Engineering 563
VIII. Summary and Current Research
Needs 563
IX. Acknowledgments 565
X. References 566
39. Bloodvessels 569
Luke Brewster, Eric M. Brey,
and Howard P. Greisler
I. Introduction 569
II. Current Status of Vascular Conduits 570
III. Physical or Chemical Modification of
Current Grafts to Improve Durability 572
IV. Therapeutic Angiogenesis and
Arteriogenesis 576
V. Tissue-Engineered Vascular Grafts 577
VI. Endovascular Stents and Stent Grafts 581
VII. Conclusion 582
VIII. References 582
40. Heart Valves 585
Peter Marc Fong, Jason Park,
and Christopher Kane Breuer
I. Introduction 585
II. Heart Valve Function and Structure 585
III. Cellular Biology of the Heart Valve 586
IV. Heart Valve Dysfunction and Valvular
Repair and Remodeling 588
V. Application of Tissue Engineering
Toward the Construction of a
Replacement Heart Valve 590
VI. Conclusion 597
VII. References 597
xii CONTENTS
Part XI. Endocrinology and Metabolism 603
41. Generation of Islets from Stem Cells 605
Bernat Soria, Abdelkrim Hmadcha,
Francisco J. Bedoya, and Juan R. Tejedo
I. Introduction 605
II. Islet Transplantation 606
III. Alternative Sources of Islet Cells 608
IV. Biomaterials 611
V. Acknowledgments 615
VI. References 616
42. Bioartificial Pancreas 619
Athanassios Sambanis
I. Introduction 619
II. Cell Types for Pancreatic Substitutes 620
III. Construct Technology 623
IV. In Vivo Implantation 626
V. Concluding Remarks 629
VI. Acknowledgments 630
VII. References 630
43. Engineering Pancreatic Beta-Cells 635
Hee-Sookjun andJi-Won Yoon
I. Introduction 635
II. Engineering to Generate
Insulin-Producing Cells 636
III. Engineering to Improve Islet Survival 640
IV. Vectors for Engineering Islets and
Beta-Cells 641
V. Conclusion 643
VI. References 643
44. Thymus and Parathyroid Organogenesis 647
Craig Scott Nowell, Ellen Richie,
Nancy Ruth Manley,
and Catherine Clare Blackburn
I. Introdution 647
II. Structure and Morphology of the
Thymus 647
III. In Vitro T-Cell Differentiation 649
IV. Thymus Organogenesis 650
V. Summary 658
VI. Acknowledgments 658
VII. References 658
Part XII. Gastrointestinal System 663
45. Adult Stem Cells in Normal Gastrointestinal
Function and Inflammatory Disease 665
Mairi Brittan and Nicholas A. Wright
I. Introduction 665
II. Defining Properties of Adult Stem
Cells 666
III. Cells of the Intestine 666
IV. Identification of Intestinal Stem Cells 669
V. Pathways of Cellular Differentiation
in the Intestine 670
VI. Adult Stem Cell Plasticity 672
VII. Bone Marrow Contribution to the
Cells in the Adult Intestine 672
VIII. Origin of the ISEMFs 673
IX. Bone Marrow-Derived Vascular
Lineages Contribute to Tissue
Regeneration in IBD 674
X. Stem Cell Plasticity: De Novo Cell
Generation or Heterokaryon
Formation 675
XI. Bone Marrow Transplantation as a
Potential Therapy for Crohn's Disease 676
XII. References 676
46. Alimentary Tract 681
Shaun M. Kunisaki and Joseph Vacanti
I. Introduction 681
II. Tissue-Engineered Small Intestine 681
III. Tissue-Engineered Esophagus 686
IV. Tissue-Engineered Stomach 689
V. Tissue-Engineered Large Intestine 691
VI. Conclusions 692
VII. References 692
47. Liver Stem Cells 695
Eric Lagasse
I. Introduction 695
II. Definition of a Tissue-Derived Stem
Cell 695
III. Cellular Organization of the Adult Liver 696
IV. Hepatocytes: The Functional Unit
of the Liver with Stem Cell Properties 696
V. Liver Stem Cells 699
VI. Liver Stem Cells and Therapeutic
Approaches 703
VII. Conclusion 704
VIII. References 704
48. Liver 707
Gregory H. Underhill, Salman R. Khetani,
Alice A. Chen, and Sangeeta N. Bhatia
I. Introduction 707
II. Liver Failure and Current Treatments 707
HI. Cell Sources for Liver Cell-Based
Therapies 709
IV. In Vitro Hepatic Culture Models 711
V. Extracorporeal Bioartificial Liver
Devices 717
VI. Cell Transplantation 721
VII. Three-Dimensional Hepatocellular
Systems: Development of
Implantable Therapeutic Constructs 722
VIII. Animal Models 726
IX. Conclusion 726
X. References 726
Part XIII. Hematopoietic System 733
49. Hematopoietic Stem Cells 735
Malcolm A. S. Moore
I. Introduction 735
II. Historical Background 735
III. Properties of Hematopoietic Stem
Cells (HSC) 736
IV. Ontogeny of HSC 737
V. Migration, Mobilization, and Homing
of HSC 738
VI. HSC Proliferation and Expansion
In Vitro 739
VII. Negative Regulation of HSC 744
VIII. Hematopoietic Stem Cell Niches 744
IX. Conclusion 745
X. References 746
50. Red Blood Cell Substitutes 749
Thomas Ming Swi Chang
I. Introduction 749
II. Modified Hemoglobin 750
III. First-Generation Modified
Hemoglobin 751
IV. New Generations of Modified
Hemoglobin 753
V. A Chemical Approach Based on
Perfluorochemicals 755
VI. Conclusions 755
VII. Link to Websites 756
VIII. Acknowledgments 756
IX. References 756
51. Lymphoid Cells 759
Una Chen
I. Introduction 759
II. Properties of Lymphocytes 760
III. Lymphocyte Engineering: Reality
and Potential 760
IV. Inductive Model of Sequential Cell
Commitment of Hematopoiesis 760
V. Diagrams to Explain This Model 761
VI. Some Comments on This Model 761
VII. Criteria for Engineering
Developmental Stages of
Lymphopoiesis 763
VIII. Stages of Lymphopoiesis for
Engineering 763
IX. Concluding Remarks and Prospects
for Lymphocyte Engineering 779
X. Acknowledgments 780
XI. References 780
Part XIV. Kidney and Genitourinary
System 785
52. Stem Cells in Kidney Development and
Regeneration 787
Gregory R. Dressier
I. Introduction 787
II. Kidney Development 787
III. Genes That Specify Early Kidney Cell
Lineages 789
IV. Establishment of Additional Cell
Lineages 792
V. Regeneration and Renal Stem Cells 794
VI. Acknowledgments 797
VII. References 797
53. Renal Replacement Devices 801
H. David Humes
I. Introduction 801
II. Basics of Kidney Function 801
CONTENTS • xiii
III. Tissue-Engineering Approach to
Renal Function Replacement 802
IV. References 809
54. Genitourinary System 811
Anthony Atala
I. Introduction 811
II. Reconstitution Strategies 811
III. Role of Biomaterials 812
IV. Vascularization 812
V. Progress in Tissue Engineering of
Urologic Structures 812
VI. Additional Applications 816
VII. Conclusion 818
VIII. References 818
Part XV. Musculoskeletal System 821
55. Mesenchymal Stem Cells 823
Faye H. Chen, Lin Song, Robert L. Mauck,
Wan-Ju Li, and Rocky S. Tuan
I. Introduction 823
II. MSC Biology Relevant to
Musculoskeletal-Tissue Engineering 823
III. MSCs in Musculoskeletal Tissue
Engineering 829
IV. Conclusions and Future Perspectives 838
V. Acknowledgment 838
VI. References 838
56. Bone Regeneration 845
Chantal E. Holy, F. Jerry Volenec,
Jeffrey Geesin, and Scott P. Bruder
I. Introduction 845
II. Cell-Based Approach to Bone-Tissue
Engineering 846
III. Growth Factor-Based Therapies 853
IV. Conclusion and Future Trends 857
V. References 857
57. Bone and Cartilage Reconstruction 861
Wei Liu, Wenjie Zhang, and Yilin Cao
I. Introduction 861
II. Bone Reconstruction 861
III. Clinical Application of Engineered
Bone 867
IV. Cartilage Reconstruction 868
V. Conclusion 873
VI. Acknowledgements 874
VII. References 874
58. Regeneration and Replacement of the
Intervertebral Disc 877
Lori A. Setton, Lawrence J. Bonassar,
and Koichi Masuda
I. Introduction 877
II. IVD Structure and Function 878
III. Biomaterials for Nucleus Pulposus
Replacement 880
IV. Cell-Biomaterial Constructs for IVD
Regeneration 882
V. Cellular Engineering for
Intervertebral Disc Regeneration 886
XIV CONTENTS
VI. Growth Factors and Biologies for
Intervertebral Disc Regeneration 889
VII. Gene Therapy for Intervertebral Disc
Regeneration 889
VIII. Concluding Remarks 891
IX. Acknowledgments 891
X. References 891
59. Articular Cartilage Injury 897
/. A. Buckwalter, J. L. Marsh, T. Brown,
A. Amendola, andj. A. Martin
I. Introduction 897
II. Articular-Cartilage Injury and Joint
Degeneration 898
III. Mechanisms of Articular-Cartilage
Injuries 898
IV. Response of Articular Cartilage to
Injury 900
V. Preventing Joint Degeneration
Following Injury 902
VI. Promoting Articular Surface Repair 902
VII. Conclusion 904
VIII. References 904
60. Tendons and Ligaments 909
Francine Goulet, Lucie Germain,
A. Robin Poole, and Francois A. Auger
I. Introduction 909
II. Need for Bioengineered Tendon
and Ligament Substitutes 910
HI. Histological Description of Tendons
and Ligaments 910
IV. Tissue-Engineered ACL Substitutes 911
V. Conclusion 915
VI. Acknowledgments 916
VII. References 916
61. Mechanosensory Mechanisms in Bone 919
Upma Sharma, Antonios G. Mikos,
and Stephen C. Cowin
I. Introduction 919
II. The Connected Cellular Network
(CCN) 920
III. Mechanosensation on the CCN 921
IV. Mesenchymal Stem Cells 927
V. Acknowledgments 928
VI. References 928
62. Skeletal-Tissue Engineering 935
Matthew D. Kwan, Derrick C. Wan,
and Michael T. Longaker
I. Introduction 935
II. Distraction Osteogenesis 936
III. Critical-Sized Defects 937
IV. Cellular Therapy 937
V. Cytokines 938
VI. Scaffolds 940
VII. Angiogenesis 940
VIII. Tissue Engineering in Practice 941
EX. Conclusion 942
X. References 942
Part XVI. Nervous System 945
63. Neural Stem Cells 947
Lorenz Studer
I. Introduction 947
II. Neural Development 947
III. Neural Stem Cells 948
IV. Embryonic Stem Cell-Derived Neural
Stem Cells and Neural Progeny 951
V. Applications in Biology and Disease 955
VI. Conclusion 958
VII. References 958
64. Brain Implants 967
Lars U. Wahlberg
I. Introduction 967
II. Cell Replacement Implants 968
III. Cell Protection and Regeneration
Implants 970
IV. Combined Replacement and
Regeneration Implants 973
V. Disease Targets for Brain Implants 974
VI. Surgical Considerations 975
VII. Conclusions 975
VIII. References 975
65. Spinal Cord 977
John W. McDonald and Daniel Becker
I. Introduction 977
II. The Problem 977
III. Spinal Cord Organization 978
IV. Injury 978
V. Spontaneous Regeneration 979
VI. Current Limitations and Approaches
to Repair and Redefining Goals 979
VII. Spinal Cord Development 980
VIII. Embryonic Stem Cells 981
DC. Novel Approaches to CNS Repair 986
X. Toward Human Trials 989
XI. Conclusions 990
XII. Acknowledgments 991
XIII. References 991
66. Protection and Repair of Audition 995
Richard A. Altschuler, Yehoash Raphael,
David C. Martin, Jochen Schacht,
David J. Anderson, and Josef M. Miller
I. Introduction 995
II. Interventions to Prevent Hearing
Loss/Cochlear Damage 996
III. Hair Cell Regeneration 998
IV. Auditory Nerve Survival Following
Deafness 999
V. Genetic Deafness 1000
VI. Methods of Therapeutic Intervention 1000
VII. Conclusions 1002
VIII. References 1003
Part XVII. Ophthalmic Applications 1009
67. Stem Cells in the Eye 1011
Michael E. Boulton, Julie Albon,
and Maria B. Grant
I. Introduction 1011
II. Corneal Epithelial Stem Cells 1011
III. Retinal Progenitor Cells 1017
IV. Bone Marrow Stem Cells 1017
V. Potential for Stem Cells in Ocular
Repair and Tissue Engineering 1018
VI. References 1018
68. Corneal-Tissue Replacement 1025
Jeffrey W. Ruberti, James D. Zieske,
and Vickery Trinkaus-Randall
I. Introduction 1025
II. Synthetic Corneal Replacements 1029
III. Corneal-Tissue Engineering 1031
IV. Current State of Corneal-Tissue
Engineering and Future Directions 1043
V. References 1043
69. Vision Enhancement Systems 1049
Gislin Dagnelie
I. Introduction 1049
II. Visual System, Architecture, and
(Dys)function 1049
III. Current and Near-Term Approaches
to Vision Restoration 1052
IV. Emerging Application Areas for
Engineered Cells and Tissues 1058
V. Conclusion: Toward 20/20 Vision 1061
VI. Acknowledgments 1061
VII. References 1061
Part XVIII. Oral/Dental Applications 1065
70. Biological Tooth Replacement and Repair 1067
Anthony J. (Tony) Smith and Paul T. Sharpe
I. Introduction 1067
II. Tooth Development 1067
III. Whole-Tooth Tissue Engineering 1068
IV. Dental-Tissue Regeneration 1071
V. Conclusions 1075
VI. References 1075
71. Oral and Maxillofacial Surgery 1075
Simon Young, Kyriacos A. Athanasiou,
Antonios G. Mikos, and Mark Eu-Kien Wong
I. Introduction 1079
II. Special Challenges in Oral and
Maxillofacial Reconstruction 1079
III. Current Methods of Oral and
Maxillofacial Reconstruction 1082
IV. Relevant Strategies in Oral- and
Maxillofacial-Tissue Engineering 1085
V. Future of Oral- and
Maxillofacial-Tissue Engineering 1091
VI. References 1091
CONTENTS • xv
72. Periodontal-Tissue Engineering 1095
Hai Zhang, Hanson K. Fong,
William V. Giannobile, and Martha J. Somerman
I. Introduction 1095
II. Factors for Periodontal Tissue
Engineering and Regenerative
Medicine 1097
III. Current Approaches in Periodontal
Tissue Engineering 1099
IV. Future Directions 1104
V. Acknowledgments 1105
VI. References 1105
Part XIX. Respiratory System 1111
73. Progenitor Cells in the Respiratory System 1113
Valerie Besnard and Jeffrey A. Whitsett
I. Introduction: Lung Biology and
Opportunities for Regeneration of
the Lung 1113
II. Complexity of Lung Structure
Presents a Challenge for Tissue
Engineering 1113
III. Lung Morphogenesis 1114
IV. Endogenous Progenitor Cells Play
Critical Roles in Repair of the
Respiratory Epithelium After Birth 1118
V. Evidence for Nonpulmonary Stem
Cells in the Lung 1120
VI. Models for Study of Lung
Regeneration In Vitro 1121
VII. Summary and Conclusions 1121
VIII. References 1122
74. Lungs 1125
Anne E. Bishop and Julia M. Polak
I. Introduction 1125
II. Lung Structure 1126
III. Cell Sources for Lung Repair and
Lung-Tissue Engineering 1126
IV. Lung-Tissue Constructs 1129
V. Conclusions 1130
VI. References 1131
Part XX. Skin 1135
75. Cutaneous Stem Cells 1137
George Cotsarelis
I. Introduction 1137
II. What Are Epithelial Stem Cells? 1138
III. Localization of Epithelial Stem Cells 1138
IV. In Vitro Assessment of Proliferative
Potential 1140
V. Multipotent Bulge Cells? 1142
VI. Plasticity of Bulge Cells? 1143
VII. Bulge Cells: The Ultimate Cutaneous
Epithelial Stem Cells? 1143
VIII. Role of Bulge Cells in Wound Healing 1143
DC. Role of Bulge Cells in Tumorigenesis 1144
X. Stem Cells and Alopecia 1144
XI. Bulge Cells for Tissue Engineering 1144
xvi CONTENTS
XII. Molecular Profile — Stem Cell
Phenotype 1145
XIII. The Bulge as Stem Cell Niche 1145
XIV. Conclusion 1145
XV. Acknowledgments 1146
XVI. References 1146
76. Wound Repair 1149
Kaustabh Ghosh and Richard A. F. Clark
I. Introduction 1149
II. Basic Biology of Wound Repair 1150
III. Chronic Wounds 1157
IV. Tissue-Engineered Therapy:
Established Practice 1157
V. Tissue-Engineered Therapy: New
Approaches 1159
VI. References 1161
77. Bioengineered Skin Constructs 1167
Vincent Falanga and Katie Faria
I. Introduction 1167
II. Skin Structure and Function 1168
III. Engineering Skin Tissue 1172
IV. Epidermal Regeneration 1174
V. Dermal Replacement 1174
VI. Composite Skin Grafts 1175
VII. Bioengineered Skin: FDA-Approved
Indications 1176
VIII. Mechanisms of Action of
Bioengineered Skin 1179
IX. Conclusion 1182
X. References 1182
Part XXI. Clinical Experience 1187
78. Current State of Clinical Application 1189
Shaun M. Kunisaki and Dario O. Fauza
I. Introduction 1189
II. Current Challenges 1189
III. Clinical Applications 1190
IV. Conclusion 1198
V. References 1199
79. Tissue-Engineered Skin Products 1201
Jonathan Mansbridge
I. Introduction 1201
II. Types of Therapeutic
Tissue-Engineered Skin Products 1202
III. Components of Tissue-Engineered
Skin Grafts as Related to Function 1203
IV. Commercial Production of
Tissue-Engineered Skin Products 1204
V. Manufacture of Dermagraft and
TransCyte 1206
VI. Dermagraft and TransCyte
Production Processes 1207
VII. Clinical Trials 1209
VIII. Immunological Properties of
Tissue-Engineered Skin 1210
IX. Commercialization 1210
X. Future Developments 1211
XI. Conclusion 1212
XII. References 1212
80. Tissue-Engineered Cartilage Products 1215
David W. Levine
I. Introduction 1215
II. Clinical Experience with
First-Generation ACI 1217
III. Clinical Experience with
Second- Generation ACI 1221
IV. Conclusions 1222
V. References 1222
81. Tissue-Engineered Bone Products 1225
John F. Kay
I. Introduction 1225
II. Bone Healing 1226
III. Osteogenic Grafting Materials 1226
IV. Osteoconductive Bone Graft
Materials 1228
V. Osteoinductive Bone Graft Materials 1229
VI. Composite Bone Grafting 1232
VII. Regulatory Issues 1232
VIII. Examples of Tissue Engineering in
Contemporary Clinical Orthopedics 1233
IX. The Future 1233
X. Conclusions 1235
XI. Acknowledgments 1235
XII. References 1235
82. Tissue-Engineered Cardiovascular Products 1237
Thomas Eschenhagen,
Herrmann Reichenspurner,
and Wolfram-Hubertus Zimmermann
I. Introduction 1237
II. Clinical Need for Tissue-Engineered
Cardiovascular Products? 1238
III. Requirements for Clinical
Application 1239
IV. Current Concepts and Achievements
in Engineering Cardiovascular
Products 1241
V. State of Myocardial-Tissue
Engineering 1243
VI. Bottlenecks 1246
VII. Summary 1247
VIII. References 1248
83. Tissue-Engineered Organs 1253
Steve J. Hodges and Anthony Atala
I. Introduction 1253
II. Tissue Engineering: Strategies
for Tissue Reconstitution 1253
III. Cell Sources 1254
IV. Alternate Cell Sources 1254
V. Therapeutic Cloning 1255
VI. Biomaterials 1256
VII. Growth Factors 1257
VIII. Vascularization 1257
DC. Clinical Applications 1257
X. Conclusion 1259
XI. References 1259
Part XXII. Regulation and Ethics 1263
84. The Tissue-Engineering Industry 1265
Michael J. Lysaght, Elizabeth Deweerd,
and Ana Jaklenec
I. Introduction 1265
II. The Age of Innocence 1266
III. The Perfect Storm 1267
IV. The Present Era 1268
V. Concluding Perspectives 1270
VI. References 1270
85. The Regulatory Path From Concept to
Market 1271
Kiki B. Hellman
I. Introduction 1271
II. Legislative Authority 1272
III. Product Regulatory Process 1272
IV. Product Premarket Submissions 1273
V. Review of Product Premarket
Submissions 1275
VI. Human Cells, Tissues, and
Cellular- and Tissue-Based Products 1275
VII. Science and Product Development 1277
VIII. Conclusion and Future Perspectives 1278
IX. Acknowledgments 1279
X. References 1279
CONTENTS • xvii
86. Ethical Issues 1281
Laurie Zoloth
I. Introduction 1281
II. Are There Reasons, in Principle,
Why Performing the Basic Research
Should be Impermissible? 1282
III. What Contextual Factors Should Be
Taken into Account, and Do Any
of These Prevent the Development
and Use of the Technology? 1284
IV. What Purposes, Techniques, or
Applications Would Be Permissible
and Under What Circumstances? 1285
V. On What Procedures and Structures,
Involving What Policies, Should
Decisions on Appropriate Techniques
and Uses Be Based? 1285
VI. Conclusion 1286
VII. References 1286
Epilogue 1289
Subject Index 1291 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)136341640 |
building | Verbundindex |
bvnumber | BV023407435 |
callnumber-first | T - Technology |
callnumber-label | TP248 |
callnumber-raw | TP248.27.A53 |
callnumber-search | TP248.27.A53 |
callnumber-sort | TP 3248.27 A53 |
callnumber-subject | TP - Chemical Technology |
classification_rvk | WX 6600 |
ctrlnum | (OCoLC)80360190 (DE-599)BVBBV023407435 |
dewey-full | 612/.028 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612/.028 |
dewey-search | 612/.028 |
dewey-sort | 3612 228 |
dewey-tens | 610 - Medicine and health |
discipline | Biologie Medizin |
discipline_str_mv | Biologie Medizin |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02159nam a2200553zc 4500</leader><controlfield tag="001">BV023407435</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090817 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080722s2007 ne ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007002966</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123706157</subfield><subfield code="9">978-0-12-370615-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123706157</subfield><subfield code="9">0-12-370615-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)80360190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023407435</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.27.A53</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612/.028</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WX 6600</subfield><subfield code="0">(DE-625)152214:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of tissue engineering</subfield><subfield code="c">ed. by Robert Lanza ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, Acad. Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 1307 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Animal cell biotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tissue engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transplantation of organs, tissues, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tissue Engineering</subfield><subfield code="0">(DE-588)4646061-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewebekultur</subfield><subfield code="0">(DE-588)4157245-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transplantat</subfield><subfield code="0">(DE-588)4185918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Implantat</subfield><subfield code="0">(DE-588)4026658-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewebekultur</subfield><subfield code="0">(DE-588)4157245-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Implantat</subfield><subfield code="0">(DE-588)4026658-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gewebekultur</subfield><subfield code="0">(DE-588)4157245-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Transplantat</subfield><subfield code="0">(DE-588)4185918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Tissue Engineering</subfield><subfield code="0">(DE-588)4646061-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lanza, Robert P.</subfield><subfield code="d">1956-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136341640</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip079/2007002966.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0710/2007002966-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016590105&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016590105</subfield></datafield></record></collection> |
id | DE-604.BV023407435 |
illustrated | Illustrated |
index_date | 2024-07-02T21:26:08Z |
indexdate | 2024-07-09T21:17:56Z |
institution | BVB |
isbn | 9780123706157 0123706157 |
language | English |
lccn | 2007002966 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016590105 |
oclc_num | 80360190 |
open_access_boolean | |
owner | DE-20 DE-11 DE-29T |
owner_facet | DE-20 DE-11 DE-29T |
physical | XXVII, 1307 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Elsevier, Acad. Press |
record_format | marc |
spelling | Principles of tissue engineering ed. by Robert Lanza ... 3. ed. Amsterdam [u.a.] Elsevier, Acad. Press 2007 XXVII, 1307 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Animal cell biotechnology Tissue engineering Transplantation of organs, tissues, etc Tissue Engineering (DE-588)4646061-5 gnd rswk-swf Gewebekultur (DE-588)4157245-2 gnd rswk-swf Transplantat (DE-588)4185918-2 gnd rswk-swf Implantat (DE-588)4026658-8 gnd rswk-swf Gewebekultur (DE-588)4157245-2 s Implantat (DE-588)4026658-8 s DE-604 Transplantat (DE-588)4185918-2 s Tissue Engineering (DE-588)4646061-5 s Lanza, Robert P. 1956- Sonstige (DE-588)136341640 oth http://www.loc.gov/catdir/toc/ecip079/2007002966.html Table of contents only http://www.loc.gov/catdir/enhancements/fy0710/2007002966-d.html Publisher description HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016590105&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Principles of tissue engineering Animal cell biotechnology Tissue engineering Transplantation of organs, tissues, etc Tissue Engineering (DE-588)4646061-5 gnd Gewebekultur (DE-588)4157245-2 gnd Transplantat (DE-588)4185918-2 gnd Implantat (DE-588)4026658-8 gnd |
subject_GND | (DE-588)4646061-5 (DE-588)4157245-2 (DE-588)4185918-2 (DE-588)4026658-8 |
title | Principles of tissue engineering |
title_auth | Principles of tissue engineering |
title_exact_search | Principles of tissue engineering |
title_exact_search_txtP | Principles of tissue engineering |
title_full | Principles of tissue engineering ed. by Robert Lanza ... |
title_fullStr | Principles of tissue engineering ed. by Robert Lanza ... |
title_full_unstemmed | Principles of tissue engineering ed. by Robert Lanza ... |
title_short | Principles of tissue engineering |
title_sort | principles of tissue engineering |
topic | Animal cell biotechnology Tissue engineering Transplantation of organs, tissues, etc Tissue Engineering (DE-588)4646061-5 gnd Gewebekultur (DE-588)4157245-2 gnd Transplantat (DE-588)4185918-2 gnd Implantat (DE-588)4026658-8 gnd |
topic_facet | Animal cell biotechnology Tissue engineering Transplantation of organs, tissues, etc Tissue Engineering Gewebekultur Transplantat Implantat |
url | http://www.loc.gov/catdir/toc/ecip079/2007002966.html http://www.loc.gov/catdir/enhancements/fy0710/2007002966-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016590105&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lanzarobertp principlesoftissueengineering |