Physical principles of meteorology and environmental physics: global, synoptic and micro scales
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey [u.a.]
World Scientific
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 288 S. |
ISBN: | 9789812813848 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023405080 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080721s2008 |||| 00||| eng d | ||
020 | |a 9789812813848 |9 978-981-281-384-8 | ||
035 | |a (OCoLC)254971027 | ||
035 | |a (DE-599)BVBBV023405080 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-11 | ||
084 | |a UT 5100 |0 (DE-625)146823: |2 rvk | ||
100 | 1 | |a Blake, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Physical principles of meteorology and environmental physics |b global, synoptic and micro scales |c David Blake & Robert Robson |
264 | 1 | |a New Jersey [u.a.] |b World Scientific |c 2008 | |
300 | |a 288 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Meteorologie |0 (DE-588)4038953-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Meteorologie |0 (DE-588)4038953-4 |D s |
689 | 0 | 1 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Robson, Robert |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016587781&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016587781 |
Datensatz im Suchindex
_version_ | 1804137789796646912 |
---|---|
adam_text | Titel: Physical principles of meteorology and environmental physics
Autor: Blake, David
Jahr: 2008
Contents
About the Authors vii
Preface ix
Acknowledgments xi
List of Figures xix
List of Tables xxv
Theoretical Foundations 1
1. The Big Picture 3
1.1 Introduction.......................... 3
1.2 The Atmospheric Environment............... 5
1.2.1 Composition of the Atmosphere.......... 5
1.2.2 Vertical Structure of the Atmosphere....... 7
1.2.3 The Horizontal Picture............... 9
1.2.4 Water in the Atmosphere.............. 9
1.3 Solar Radiation........................ 11
1.3.1 Solar Constant.................... 11
1.3.2 Radiative Equilibrium, Atmospheric Solar Energy
Budget........................ 12
1.4 Estimation of Average Terrestrial Temperatures...... 12
1.5 Enhanced Greenhouse Effect ................ 15
1.6 Problems for Chapter 1 ................... 16
Problems for Chapter 1....................... 16
xiv Physical Principles of Meteorology and Environmental Physics
2. Atmospheric Thermodynamics and Stability 21
2.1 Equation of State of the Atmosphere............ 21
2.2 Atmospheric Thermodynamics ............... 23
2.3 Hydrostatic Equilibrium, Height Computations...... 28
2.4 Thermodynamic Diagrams.................. 31
2.5 Examples on the Use of the F160 Diagram......... 33
2.6 Lapse Rate and Stability, Adiabatic Lapse Rate...... 36
2.7 Saturated Adiabatic Lapse Rate .............. 39
2.8 Stable Atmosphere, Brunt-Vaisala Frequency....... 41
2.9 Model Atmospheres ..................... 41
2.9.1 Homogeneous Atmosphere............. 41
2.9.2 Isothermal Atmosphere............... 42
2.9.3 Constant Lapse Rate Atmosphere......... 42
Problems for Chapter 2....................... 43
3. Air Flow on a Rotating Earth 47
3.1 Introduction, Equation of Motion.............. 47
3.2 Decoupling of Vertical and Horizontal Motion....... 51
3.3 Geostrophic Approximation................. 52
3.4 Balanced Curved Flow: Natural Coordinates ....... 53
3.4.1 Acceleration in Natural Coordinates........ 53
3.4.2 Equation of Motion in Natural Coordinates .... 55
3.5 Inertial, Cyclostrophic and Gradient Flow......... 56
3.5.1 Inertial Flow..................... 56
3.5.2 Cyclostrophic Flow................. 57
3.5.3 Geostrophic Flow.................. 58
3.5.4 Gradient Flow.................... 58
3.5.5 Trajectories and Streamlines............ 60
3.6 Frictional Effects....................... 60
3.7 Vertical Variation of the Geostrophic Wind........ 62
3.7.1 Isobaric Coordinates ................ 62
3.7.2 Wind Shear and Thermal Wind Equation..... 64
3.7.3 Implications of the Equations ........... 65
Problems for Chapter 3....................... 69
4. Divergence, Vorticity and Circulation 73
4.1 Equation of Continuity.................... 73
4.2 Mechanism of Pressure Change............... 75
Contents xv
4.3 Vorticity and Circulation Theorems ............ 77
4.4 The Vorticity Equation and its Implications........ 79
4.5 Potential Vorticity...................... 83
4.6 Further Comments on Vorticity............... 84
4.7 Rossby Waves......................... 85
Problems for Chapter 4....................... 87
5. Boundary Layer Meteorology 91
5.1 Introduction.......................... 91
5.2 Turbulence in the Atmosphere ............... 91
5.3 Turbulent Balance Equation................. 94
5.3.1 Momentum Balance (Equation of Motion) .... 96
5.3.2 Energy Balance................... 96
5.3.3 Moisture Balance Equation............. 96
5.4 Calculation of Vertical Flux; Flux-Gradient
Relationships......................... 97
5.5 Turbulent Transport Equations............... 98
5.6 Surface Boundary Layer................... 98
5.7 Momentum Flux, Vertical Wind Profile .......... 99
5.8 Energy Fluxes at the Earth s Surface............ 103
5.9 Planetary Boundary Layer.................. 107
5.9.1 Heat Transfer in the Planetary Boundary Layer . 108
5.9.2 Wind in the Planetary Boundary Layer...... Ill
5.9.3 Dispersion of Pollutants from an Elevated Source 113
5.10 Richardson Number, Obukhov Length........... 116
Problems for Chapter 5....................... 118
6. Biometeorology, Environmental Biophysics 123
6.1 Introduction.......................... 123
6.2 Metabolism, Maintenance of Body Temperature...... 124
6.3 Molecular Versus Turbulent Transport........... 125
6.4 Modes of Heat Transfer................... 128
6.4.1 Radiation....................... 128
6.4.2 Convective Heat Transfer.............. 130
6.4.3 Evaporation, Latent Heat Exchange........ 130
6.4.4 Heat Conduction .................. 131
6.5 Summary of Formulae and Expression for Total Heat Loss 133
6.6 The Importance of Latent Heat: Some Examples..... 133
xvi Physical Principles of Meteorology and Environmental Physics
6.6.1 Energy Expended in Respiration.......... 134
6.6.2 Heat Loss from a New-Born Infant ........ 136
6.7 Inside the Organism: When Heat Conduction
is Important.......................... 137
6.7.1 Temperature Rise in a Working Muscle...... 137
6.7.2 Conduction and Convection ............ 139
6.8 Transpiration in Plants ................... 141
6.8.1 Resistance to Diffusion............... 141
6.8.2 Leaf Structure.................... 142
6.8.3 Diffusion from a Circular Orifice, Perforated Screen 142
6.8.4 Transpiration from Leaves............. 145
6.9 Flux Versus Temperature, Fact Versus Fiction....... 146
Problems for Chapter 6....................... 148
Experiments in the Tropical Boundary Layer 155
7. Introduction to the Experiments 157
7.1 Measurements......................... 157
7.2 A Brief Survey of Eddy Correlation Measurements .... 161
7.2.1 Instrumentation................... 162
7.2.2 Topography, Vegetation and Geophysical
Variability...................... 164
7.3 Practical Considerations................... 167
8. Approaches to Measurement of Net Ecosystem Exchange 169
8.1 Introduction.......................... 169
8.2 Comparison of Flux Measurement Techniques....... 170
8.2.1 Flux Gradient Methods............... 170
8.2.2 Eddy Correlation Methods............. 170
8.3 Approaches to NEE Measurement ............. 171
8.3.1 The Balance Equation ............... 171
8.3.2 The Reynolds Approach .............. 172
8.3.3 The WPL Approach................. 173
8.3.4 The Lee Approach.................. 176
8.3.5 Reconciling the WPL and Lee Approaches .... 178
8.4 Summary........................... 180
Contents xvii
9. Application of the WPL Method 183
9.1 Introduction.......................... 183
9.2 Coordinate Frames...................... 183
9.2.1 General........................ 183
9.2.2 Coordinate Rotations................ 184
9.3 Fourier Analysis ....................... 186
9.4 Averaging Periods...................... 188
9.5 Sampling Rates........................ 190
9.6 Sensor Placement....................... 192
9.6.1 Sensor Height.................... 192
9.6.2 Sensor Separation, Flow Distortion and Path
Length Averaging.................. 192
9.7 Summary........................... 193
10. Experimental Methods 195
10.1 Introduction.......................... 195
10.2 Instrumentation........................ 196
10.2.1 Sonic Anemometer ................. 196
10.2.2 Infrared Gas Analyser (IRGA)........... 197
10.2.3 Datalogger...................... 197
10.2.4 Flux Measurement System............. 197
10.3 Calibration.......................... 198
10.3.1 Sonic Anemometer ................. 198
10.3.2 Infrared Gas Analyser................ 199
10.4 Processing Software ..................... 201
10.4.1 Fourier Analysis................... 201
10.4.2 Logger Program................... 203
10.4.3 Analysis Program.................. 203
10.5 Error Analysis ........................ 206
10.6 Experimental Sites...................... 208
10.7 Summary........................... 209
11. Results and Analysis 211
11.1 Introduction.......................... 211
11.2 Time Series Analysis..................... 212
11.2.1 Rainforest...................... 212
11.2.2 Sugar Cane...................... 219
11.2.3 Summary....................... 223
xviii Physical Principles of Meteorology and Environmental Physics
11.3 Effects of Averaging Period and Sampling Rate
Variations on Flux Measurements.............. 228
11.3.1 Averaging Periods.................. 228
11.3.2 Sampling Rates................... 229
11.4 Fluxes............................. 231
11.5 Error Analysis ........................ 239
11.6 Summary of Experimental Issues.............. 239
11.7 Main Results......................... 241
11.8 Recommendations for Further Study............ 242
11.8.1 Allowance for Convergence in the Horizontal Wind 242
11.8.2 Energy Balance Closure............... 242
11.8.3 Transfer Functions.................. 242
11.8.4 Equipment Mounting................ 243
11.8.5 Detrending...................... 243
11.8.6 Software....................... 243
Appendix A Some Useful Numerical Values 245
Appendix B Saturated Vapour Density and Pressure of H2O 247
Appendix C Vector Identities 249
Bibliography 251
References 255
Index 257
List of Figures
1.1 Schematic representation of the vertical temperature
structure in the lowest 100 km of the atmosphere....... 8
1.2 Schematic representation of radiative equilibrium in the
Earth-atmosphere system.................... 12
1.3 Average solar radiation budget in the Earth-atmosphere
system .............................. 13
1.4 Simplified model of radiative transfer processes in the
atmosphere............................ 13
1.5 Schematic representation of the three possible radiative
equilibrium points for a model absorption coefficient a(T) . . 19
2.1 Schematic representation of adiabats and isotherms on a
p - a diagram.......................... 26
2.2 Cartesian coordinate systems used in meteorology...... 28
2.3 Vertical column of air, showing forces acting on a slab .... 28
2.4 Graphical method of determination of mean temperature of a
layer from observed radiosonde temperature trace...... 30
2.5 Adiabats, isotherms and isobaric surface on an emagram . . 32
2.6 Method of calculation of thermodynamic parameters..... 34
2.7 Method of calculation of lifting condensation level (LCL) and
cloud heights for data shown in Table 2.1........... 35
2.8 Schematic illustration of stability in a simple mechanical
system .............................. 36
2.9 Illustration of a rising air parcel and environmental lapse rate
referred to in the text...................... 37
xx Physical Principles of Meteorology and Environmental Physics
2.10 Four types of plume behaviour under various conditions of
stability and instability. At left: broken lines, dry adiabatic
lapse rate; full lines, existing lapse rates............ 45
2.11 Schematic representation of a turbulent eddy in the boundary
layer................................ 46
3.1 Schematic illustration of Buys-Ballots law........... 48
3.2 Model of the Earth showing latitude measured positive in
the northern hemisphere, and negative in the southern
hemisphere............................ 49
3.3 Horizontal forces (x-direction only shown) acting on an air
parcel............................... 50
3.4 The coordinate system describing curved flow......... 54
3.5 Calculation of 5s......................... 54
3.6 Inertial flow in both hemispheres................ 56
3.7 (i) Rt 0, §£ 0 (ii) Rt 0 ................ 57
3.8 Force balance in the four types of gradient flow: (a) regular
low, (b) regular high, (c) anomalous low, (d) anomalous high 59
3.9 Balanced flow in the presence of friction............ 61
3.10 Schematic representation of two isobaric surfaces in the
vertical plane........................... 63
3.11 Schematic representation of geostrophic flow in relation to
height contours on an isobaric surface............. 63
3.12 Vertical section of the atmosphere showing a layer of air
bounded by two isobaric surfaces................ 66
3.13 Global mean zonal temperature distribution and vertical wind
shear in the southern hemisphere................ 67
3.14 Horizontal cold air advection and backing of wind with
height............................... 67
3.15 Diagrams for Worked Example................. 68
3.16 Problem 3.1 ........................... 69
3.17 Problem 3.4 ........................... 70
3.18 Problem 3.6 ........................... 71
4.1 A fluid element with horizontal cross section 6A....... 73
4.2 Schematic representation of vertical columns of air showing
successive zones of surface convergence and divergence .... 76
4.3 Frictional convergence in a northern hemisphere cyclone ... 77
4.4 Circulation around an arbitrary loop L ............ 77
List of Figures xxi
4.5 Solid body circulation at angular velocity u .......... 79
4.6 Spin of an element of the Earth s surface of area 5A..... 81
4.7 Anticyclonic circulation resulting from divergence...... 82
4.8 Vertical cross section showing motion of a fluid element over
a north-south mountain range................. 84
4.9 Clockwise rotation of a paddle wheel in a shear flow
du/dy 0 ............................ 85
5.1 Schematic representation of average wind flow near the
surface .............................. 92
5.2 Schematic representation of turbulent eddy motion near the
surface.............................. 93
5.3 Simple model of an eddy of dimension I............ 93
5.4 Schematic representation of the way in which zq and «4 are
determined from empirical data (+).............. 101
5.5 Measurement of mean wind versus height for young sugar
cane................................ 102
5.6 Partitioning of radiative energy fluxes for day and night . . . 103
5.7 Surface energy fluxes, day and night, with the energy balance
represented by RN = H + LE + G............... 104
5.8 Schematic representation of the (potential) temperature
variations in the atmospheric boundary layer over the course
of a day.............................. 109
5.9 The Ekman spiral, as given by (5.72), showing winds at three
heights.............................. 113
5.10 Dispersion of pollutants from an elevated source in the
presence of an elevated inversion at height I.......... 114
5.11 Normalized concentration calculated from (5.76) for a low-
level inversion .......................... 117
6.1 A living organism and some forms of energy and matter
exchange with its environment................. 124
6.2 Schematic diagram showing how the body reacts to overheat-
ing in order to maintain body temperature at normal values 126
6.3 Linear temperature profile in slab geometry.......... 132
6.4 Simplified physical model of the breathing process...... 134
6.5 Cylindrical model of a muscle.................. 137
6.6 Temperature as a function of radial distance in the cylindrical
muscle .............................. 139
xxii Physical Principles of Meteorology and Environmental Physics
6.7 Heat fluxes before and after putting on clothing....... 140
6.8 Equivalent circuit diagram for the situation shown in
Figure 6.7............................. 141
6.9 Evaporation from a tube.................... 143
6.10 (a) As for Fig. 6.9, with a perforated screen over the mouth
of the tube; and (b) details of the pores in the screen .... 144
6.11 The equivalent circuit diagram for Figure 6.10 (see also
Problem 6.5)........................... 144
6.12 Temperature profile in a two sub-layer system ........ 149
6.13 Model of heat transfer between a human and the environment 150
6.14 Model of heat transfer in a human limb............ 151
6.15 Model of heat transfer through a layer of soil......... 152
7.1 The traditional method of obtaining data in the surface
boundary layer is to attach instruments at various heights
on a tower............................ 158
7.2 Tethered balloon in flight.................... 159
7.3 Tethered balloon at launch, showing instrument package . . 160
7.4 Acoustic sounder, located at Townsville on the north-east
coast of tropical Australia (latitude 19° 13 , South, longitude
146° 48 , East).......................... 160
7.5 A typical acoustic sounder recording of the transition period
from night to day (from Potts [14]) .............. 161
9.1 Polar coordinate system..................... 185
9.2 Schematic representation of aliasing of frequencies above the
Nyquist frequency........................ 191
10.1 Campbell Scientific CSAT3 sonic anemometer (head only),
photograph courtesy Campbell Scientific Inc.......... 195
10.2 LiCor LI7500 open path C02 /H20 analyser (head and
electronics box), photograph courtesy LiCor Inc........ 196
10.3 Experimental setup - sugar cane................ 198
10.4 Experimental setup - rainforest ................ 199
10.5 Power system - Canopy Crane (note calibration gas visible in
background)........................... 200
10.6 Experimental sites........................ 209
11.1 Vertical velocity amplitude spectrum for rainforest, 12am, day
78. lhr 20Hz.......................... 213
List of Figures xxiii
11.2 Vertical velocity amplitude spectrum for rainforest, 12pm, day
78, lhr 20Hz.......................... 213
11.3 Horizontal velocity amplitude spectrum for rainforest, 12am,
day 78, lhr 20Hz....................... 214
11.4 Horizontal velocity amplitude spectrum for rainforest, 12pm,
day 78, lhr 20Hz....................... 214
11.5 Vertical power spectrum for rainforest, 11am, day 75, 3.8 days
0.2Hz.............................. 216
11.6 Horizontal velocity power spectrum for rainforest, 11am, day
75, 3.8 days 0.2Hz....................... 216
11.7 Vertical velocity weighted energy density spectrum for rain-
forest, 11am, day 75, 3.8 days 0.2Hz ............ 217
11.8 Horizontal velocity weighted energy density spectrum for rain-
forest, 11am, day 75, 3.8 days 0.2Hz ............ 217
11.9 Mean temperature and mean variance of wT time series (five
minute means), rainforest, day 78............... 218
11.10 Mean temperature and mean variance of wpv time series (five
minute means), rainforest, day 78............... 218
11.11 Mean temperature and mean variance of wpc time series (five
minute means), rainforest, day 78............... 220
11.12 Mean variance of vertical wind and mean variance of wT time
series (five minute means), rainforest, day 78......... 220
11.13 Vertical velocity amplitude spectrum for sugar cane, 12am,
day 23, lhr 20Hz....................... 221
11.14 Vertical velocity amplitude spectrum for sugar cane, 12pm,
day 23, lhr 20Hz....................... 221
11.15 Horizontal velocity amplitude spectrum for sugar cane, 12am,
day 23, lhr 20Hz....................... 222
11.16 Horizontal velocity amplitude spectrum for sugar cane, 12pm,
day 23, lhr 20Hz....................... 222
11.17 Vertical velocity power spectrum for sugar cane, 7am, day 21,
3.8 days 0.2Hz......................... 224
11.18 Horizontal velocity power spectrum for sugar cane, 7am, day
21, 3.8 days 0.2Hz....................... 224
11.19 Weighted vertical velocity energy density spectrum for sugar
cane, 11am, day 21, 3.8 days 0.2Hz............. 225
11.20 Weighted horizontal velocity energy density spectrum for
sugar cane, 11am, day 21, 3.8 days 0.2Hz.......... 225
xxiv Physical Principles of Meteorology and Environmental Physics
11.21 Mean temperature and mean variance of wT time series (five
minute means), sugar cane, day 23............... 226
11.22 Mean temperature and mean variance of wpv time series (five
minute means), sugar cane, day 23............... 226
11.23 Mean temperature and mean variance of wpv time series (five
minute means), sugar cane, day 23............... 227
11.24 Mean variance of vertical wind and mean variance of wT time
series (five minute means), sugar cane, day 23 ........ 227
11.25 CO2 Flux for various averaging periods (as marked)..... 228
11.26 CO2 Flux for various averaging periods (as marked)..... 230
11.27 CO2 Flux for various sampling rates (as marked)....... 230
11.28 Eight day mean sensible heat flux - rainforest ........ 232
11.29 Eight day mean uncorrected latent heat flux - rainforest . . 232
11.30 Eight day mean corrected latent heat flux - rainforest .... 233
11.31 Eight day mean uncorrected CO2 flux - rainforest...... 233
11.32 Eight day mean corrected C02 flux - rainforest ....... 234
11.33 Eight day mean WPL correction to the CO2 flux - rainforest 234
11.34 Eight day mean sensible heat flux - sugar cane........ 235
11.35 Eight day mean uncorrected latent heat flux - sugar cane . . 235
11.36 Eight day mean corrected latent heat flux - sugar cane . . . 236
11.37 Eight day mean uncorrected CO2 flux - sugar cane ..... 236
11.38 Eight day mean corrected CO2 flux ~ sugar cane....... 237
11.39 Eight day mean WPL correction to the CO2 flux - sugar cane 237
B.l Saturated vapour density (ps) and saturated vapour pressure
(es) for water........................... 247
List of Tables
1.1 Various length scales encountered in physical systems .... 4
1.2 Mass and energy in the Earth-atmosphere system...... 4
1.3 Composition of dry air below ~80 km............. 6
2.1 Radiosonde data at Townsville on 26.4.74 at 0900...... 34
2.2 Stability criteria for saturated and unsaturated air...... 39
3.1 The various allowed solutions of (3.34) for the northern hemi-
sphere / 0........................... 59
5.1 Typical values of roughness length and friction velocity ... 101
6.1 Representative values for emissivity.............. 129
11.1 Peak CO2 flux value for varying averaging periods (polyno-
mial fit to data, day 23)..................... 229
11.2 Summary of results of eight-day mean flux measurements over
rainforest and sugar cane.................... 231
B.l Saturated vapour density (ps) and saturated vapour pressure
(es) for water........................... 247
|
adam_txt |
Titel: Physical principles of meteorology and environmental physics
Autor: Blake, David
Jahr: 2008
Contents
About the Authors vii
Preface ix
Acknowledgments xi
List of Figures xix
List of Tables xxv
Theoretical Foundations 1
1. The Big Picture 3
1.1 Introduction. 3
1.2 The Atmospheric Environment. 5
1.2.1 Composition of the Atmosphere. 5
1.2.2 Vertical Structure of the Atmosphere. 7
1.2.3 The Horizontal Picture. 9
1.2.4 Water in the Atmosphere. 9
1.3 Solar Radiation. 11
1.3.1 Solar Constant. 11
1.3.2 Radiative Equilibrium, Atmospheric Solar Energy
Budget. 12
1.4 Estimation of Average Terrestrial Temperatures. 12
1.5 Enhanced Greenhouse Effect . 15
1.6 Problems for Chapter 1 . 16
Problems for Chapter 1. 16
xiv Physical Principles of Meteorology and Environmental Physics
2. Atmospheric Thermodynamics and Stability 21
2.1 Equation of State of the Atmosphere. 21
2.2 Atmospheric Thermodynamics . 23
2.3 Hydrostatic Equilibrium, Height Computations. 28
2.4 Thermodynamic Diagrams. 31
2.5 Examples on the Use of the F160 Diagram. 33
2.6 Lapse Rate and Stability, Adiabatic Lapse Rate. 36
2.7 Saturated Adiabatic Lapse Rate . 39
2.8 Stable Atmosphere, Brunt-Vaisala Frequency. 41
2.9 Model Atmospheres . 41
2.9.1 Homogeneous Atmosphere. 41
2.9.2 Isothermal Atmosphere. 42
2.9.3 Constant Lapse Rate Atmosphere. 42
Problems for Chapter 2. 43
3. Air Flow on a Rotating Earth 47
3.1 Introduction, Equation of Motion. 47
3.2 Decoupling of Vertical and Horizontal Motion. 51
3.3 Geostrophic Approximation. 52
3.4 Balanced Curved Flow: Natural Coordinates . 53
3.4.1 Acceleration in Natural Coordinates. 53
3.4.2 Equation of Motion in Natural Coordinates . 55
3.5 Inertial, Cyclostrophic and Gradient Flow. 56
3.5.1 Inertial Flow. 56
3.5.2 Cyclostrophic Flow. 57
3.5.3 Geostrophic Flow. 58
3.5.4 Gradient Flow. 58
3.5.5 Trajectories and Streamlines. 60
3.6 Frictional Effects. 60
3.7 Vertical Variation of the Geostrophic Wind. 62
3.7.1 Isobaric Coordinates . 62
3.7.2 Wind Shear and Thermal Wind Equation. 64
3.7.3 Implications of the Equations . 65
Problems for Chapter 3. 69
4. Divergence, Vorticity and Circulation 73
4.1 Equation of Continuity. 73
4.2 Mechanism of Pressure Change. 75
Contents xv
4.3 Vorticity and Circulation Theorems . 77
4.4 The Vorticity Equation and its Implications. 79
4.5 Potential Vorticity. 83
4.6 Further Comments on Vorticity. 84
4.7 Rossby Waves. 85
Problems for Chapter 4. 87
5. Boundary Layer Meteorology 91
5.1 Introduction. 91
5.2 Turbulence in the Atmosphere . 91
5.3 Turbulent Balance Equation. 94
5.3.1 Momentum Balance (Equation of Motion) . 96
5.3.2 Energy Balance. 96
5.3.3 Moisture Balance Equation. 96
5.4 Calculation of Vertical Flux; Flux-Gradient
Relationships. 97
5.5 Turbulent Transport Equations. 98
5.6 Surface Boundary Layer. 98
5.7 Momentum Flux, Vertical Wind Profile . 99
5.8 Energy Fluxes at the Earth's Surface. 103
5.9 Planetary Boundary Layer. 107
5.9.1 Heat Transfer in the Planetary Boundary Layer . 108
5.9.2 Wind in the Planetary Boundary Layer. Ill
5.9.3 Dispersion of Pollutants from an Elevated Source 113
5.10 Richardson Number, Obukhov Length. 116
Problems for Chapter 5. 118
6. Biometeorology, Environmental Biophysics 123
6.1 Introduction. 123
6.2 Metabolism, Maintenance of Body Temperature. 124
6.3 Molecular Versus Turbulent Transport. 125
6.4 Modes of Heat Transfer. 128
6.4.1 Radiation. 128
6.4.2 Convective Heat Transfer. 130
6.4.3 Evaporation, Latent Heat Exchange. 130
6.4.4 Heat Conduction . 131
6.5 Summary of Formulae and Expression for Total Heat Loss 133
6.6 The Importance of Latent Heat: Some Examples. 133
xvi Physical Principles of Meteorology and Environmental Physics
6.6.1 Energy Expended in Respiration. 134
6.6.2 Heat Loss from a New-Born Infant . 136
6.7 Inside the Organism: When Heat Conduction
is Important. 137
6.7.1 Temperature Rise in a Working Muscle. 137
6.7.2 Conduction and Convection . 139
6.8 Transpiration in Plants . 141
6.8.1 Resistance to Diffusion. 141
6.8.2 Leaf Structure. 142
6.8.3 Diffusion from a Circular Orifice, Perforated Screen 142
6.8.4 Transpiration from Leaves. 145
6.9 Flux Versus Temperature, Fact Versus Fiction. 146
Problems for Chapter 6. 148
Experiments in the Tropical Boundary Layer 155
7. Introduction to the Experiments 157
7.1 Measurements. 157
7.2 A Brief Survey of Eddy Correlation Measurements . 161
7.2.1 Instrumentation. 162
7.2.2 Topography, Vegetation and Geophysical
Variability. 164
7.3 Practical Considerations. 167
8. Approaches to Measurement of Net Ecosystem Exchange 169
8.1 Introduction. 169
8.2 Comparison of Flux Measurement Techniques. 170
8.2.1 Flux Gradient Methods. 170
8.2.2 Eddy Correlation Methods. 170
8.3 Approaches to NEE Measurement . 171
8.3.1 The Balance Equation . 171
8.3.2 The Reynolds Approach . 172
8.3.3 The WPL Approach. 173
8.3.4 The Lee Approach. 176
8.3.5 Reconciling the WPL and Lee Approaches . 178
8.4 Summary. 180
Contents xvii
9. Application of the WPL Method 183
9.1 Introduction. 183
9.2 Coordinate Frames. 183
9.2.1 General. 183
9.2.2 Coordinate Rotations. 184
9.3 Fourier Analysis . 186
9.4 Averaging Periods. 188
9.5 Sampling Rates. 190
9.6 Sensor Placement. 192
9.6.1 Sensor Height. 192
9.6.2 Sensor Separation, Flow Distortion and Path
Length Averaging. 192
9.7 Summary. 193
10. Experimental Methods 195
10.1 Introduction. 195
10.2 Instrumentation. 196
10.2.1 Sonic Anemometer . 196
10.2.2 Infrared Gas Analyser (IRGA). 197
10.2.3 Datalogger. 197
10.2.4 Flux Measurement System. 197
10.3 Calibration. 198
10.3.1 Sonic Anemometer . 198
10.3.2 Infrared Gas Analyser. 199
10.4 Processing Software . 201
10.4.1 Fourier Analysis. 201
10.4.2 Logger Program. 203
10.4.3 Analysis Program. 203
10.5 Error Analysis . 206
10.6 Experimental Sites. 208
10.7 Summary. 209
11. Results and Analysis 211
11.1 Introduction. 211
11.2 Time Series Analysis. 212
11.2.1 Rainforest. 212
11.2.2 Sugar Cane. 219
11.2.3 Summary. 223
xviii Physical Principles of Meteorology and Environmental Physics
11.3 Effects of Averaging Period and Sampling Rate
Variations on Flux Measurements. 228
11.3.1 Averaging Periods. 228
11.3.2 Sampling Rates. 229
11.4 Fluxes. 231
11.5 Error Analysis . 239
11.6 Summary of Experimental Issues. 239
11.7 Main Results. 241
11.8 Recommendations for Further Study. 242
11.8.1 Allowance for Convergence in the Horizontal Wind 242
11.8.2 Energy Balance Closure. 242
11.8.3 Transfer Functions. 242
11.8.4 Equipment Mounting. 243
11.8.5 Detrending. 243
11.8.6 Software. 243
Appendix A Some Useful Numerical Values 245
Appendix B Saturated Vapour Density and Pressure of H2O 247
Appendix C Vector Identities 249
Bibliography 251
References 255
Index 257
List of Figures
1.1 Schematic representation of the vertical temperature
structure in the lowest 100 km of the atmosphere. 8
1.2 Schematic representation of radiative equilibrium in the
Earth-atmosphere system. 12
1.3 Average solar radiation budget in the Earth-atmosphere
system . 13
1.4 Simplified model of radiative transfer processes in the
atmosphere. 13
1.5 Schematic representation of the three possible radiative
equilibrium points for a model absorption coefficient a(T) . . 19
2.1 Schematic representation of adiabats and isotherms on a
p - a diagram. 26
2.2 Cartesian coordinate systems used in meteorology. 28
2.3 Vertical column of air, showing forces acting on a slab . 28
2.4 Graphical method of determination of mean temperature of a
layer from observed radiosonde temperature trace. 30
2.5 Adiabats, isotherms and isobaric surface on an emagram . . 32
2.6 Method of calculation of thermodynamic parameters. 34
2.7 Method of calculation of lifting condensation level (LCL) and
cloud heights for data shown in Table 2.1. 35
2.8 Schematic illustration of stability in a simple mechanical
system . 36
2.9 Illustration of a rising air parcel and environmental lapse rate
referred to in the text. 37
xx Physical Principles of Meteorology and Environmental Physics
2.10 Four types of plume behaviour under various conditions of
stability and instability. At left: broken lines, dry adiabatic
lapse rate; full lines, existing lapse rates. 45
2.11 Schematic representation of a turbulent eddy in the boundary
layer. 46
3.1 Schematic illustration of Buys-Ballots law. 48
3.2 Model of the Earth showing latitude measured positive in
the northern hemisphere, and negative in the southern
hemisphere. 49
3.3 Horizontal forces (x-direction only shown) acting on an air
parcel. 50
3.4 The coordinate system describing curved flow. 54
3.5 Calculation of 5s. 54
3.6 Inertial flow in both hemispheres. 56
3.7 (i) Rt 0, §£ 0 (ii) Rt 0 . 57
3.8 Force balance in the four types of gradient flow: (a) regular
low, (b) regular high, (c) anomalous low, (d) anomalous high 59
3.9 Balanced flow in the presence of friction. 61
3.10 Schematic representation of two isobaric surfaces in the
vertical plane. 63
3.11 Schematic representation of geostrophic flow in relation to
height contours on an isobaric surface. 63
3.12 Vertical section of the atmosphere showing a layer of air
bounded by two isobaric surfaces. 66
3.13 Global mean zonal temperature distribution and vertical wind
shear in the southern hemisphere. 67
3.14 Horizontal cold air advection and backing of wind with
height. 67
3.15 Diagrams for Worked Example. 68
3.16 Problem 3.1 . 69
3.17 Problem 3.4 . 70
3.18 Problem 3.6 . 71
4.1 A fluid element with horizontal cross section 6A. 73
4.2 Schematic representation of vertical columns of air showing
successive zones of surface convergence and divergence . 76
4.3 Frictional convergence in a northern hemisphere cyclone . 77
4.4 Circulation around an arbitrary loop L . 77
List of Figures xxi
4.5 Solid body circulation at angular velocity u . 79
4.6 Spin of an element of the Earth's surface of area 5A. 81
4.7 Anticyclonic circulation resulting from divergence. 82
4.8 Vertical cross section showing motion of a fluid element over
a north-south mountain range. 84
4.9 Clockwise rotation of a "paddle wheel" in a shear flow
du/dy 0 . 85
5.1 Schematic representation of average wind flow near the
surface . 92
5.2 Schematic representation of turbulent eddy motion near the
surface. 93
5.3 Simple model of an eddy of dimension I. 93
5.4 Schematic representation of the way in which zq and «4 are
determined from empirical data (+). 101
5.5 Measurement of mean wind versus height for young sugar
cane. 102
5.6 Partitioning of radiative energy fluxes for day and night . . . 103
5.7 Surface energy fluxes, day and night, with the energy balance
represented by RN = H + LE + G. 104
5.8 Schematic representation of the (potential) temperature
variations in the atmospheric boundary layer over the course
of a day. 109
5.9 The Ekman spiral, as given by (5.72), showing winds at three
heights. 113
5.10 Dispersion of pollutants from an elevated source in the
presence of an elevated inversion at height I. 114
5.11 Normalized concentration calculated from (5.76) for a low-
level inversion . 117
6.1 A living "organism" and some forms of energy and matter
exchange with its environment. 124
6.2 Schematic diagram showing how the body reacts to overheat-
ing in order to maintain body temperature at normal values 126
6.3 Linear temperature profile in slab geometry. 132
6.4 Simplified physical model of the breathing process. 134
6.5 Cylindrical model of a muscle. 137
6.6 Temperature as a function of radial distance in the cylindrical
muscle . 139
xxii Physical Principles of Meteorology and Environmental Physics
6.7 Heat fluxes before and after putting on clothing. 140
6.8 Equivalent circuit diagram for the situation shown in
Figure 6.7. 141
6.9 Evaporation from a tube. 143
6.10 (a) As for Fig. 6.9, with a perforated screen over the mouth
of the tube; and (b) details of the pores in the screen . 144
6.11 The equivalent circuit diagram for Figure 6.10 (see also
Problem 6.5). 144
6.12 Temperature profile in a two sub-layer system . 149
6.13 Model of heat transfer between a human and the environment 150
6.14 Model of heat transfer in a human limb. 151
6.15 Model of heat transfer through a layer of soil. 152
7.1 The traditional method of obtaining data in the surface
boundary layer is to attach instruments at various heights
on a tower. 158
7.2 Tethered balloon in flight. 159
7.3 Tethered balloon at launch, showing instrument package . . 160
7.4 Acoustic sounder, located at Townsville on the north-east
coast of tropical Australia (latitude 19° 13', South, longitude
146° 48', East). 160
7.5 A typical acoustic sounder recording of the transition period
from night to day (from Potts [14]) . 161
9.1 Polar coordinate system. 185
9.2 Schematic representation of aliasing of frequencies above the
Nyquist frequency. 191
10.1 Campbell Scientific CSAT3 sonic anemometer (head only),
photograph courtesy Campbell Scientific Inc. 195
10.2 LiCor LI7500 open path C02 /H20 analyser (head and
electronics box), photograph courtesy LiCor Inc. 196
10.3 Experimental setup - sugar cane. 198
10.4 Experimental setup - rainforest . 199
10.5 Power system - Canopy Crane (note calibration gas visible in
background). 200
10.6 Experimental sites. 209
11.1 Vertical velocity amplitude spectrum for rainforest, 12am, day
78. lhr 20Hz. 213
List of Figures xxiii
11.2 Vertical velocity amplitude spectrum for rainforest, 12pm, day
78, lhr 20Hz. 213
11.3 Horizontal velocity amplitude spectrum for rainforest, 12am,
day 78, lhr 20Hz. 214
11.4 Horizontal velocity amplitude spectrum for rainforest, 12pm,
day 78, lhr 20Hz. 214
11.5 Vertical power spectrum for rainforest, 11am, day 75, 3.8 days
0.2Hz. 216
11.6 Horizontal velocity power spectrum for rainforest, 11am, day
75, 3.8 days 0.2Hz. 216
11.7 Vertical velocity weighted energy density spectrum for rain-
forest, 11am, day 75, 3.8 days 0.2Hz . 217
11.8 Horizontal velocity weighted energy density spectrum for rain-
forest, 11am, day 75, 3.8 days 0.2Hz . 217
11.9 Mean temperature and mean variance of wT time series (five
minute means), rainforest, day 78. 218
11.10 Mean temperature and mean variance of wpv time series (five
minute means), rainforest, day 78. 218
11.11 Mean temperature and mean variance of wpc time series (five
minute means), rainforest, day 78. 220
11.12 Mean variance of vertical wind and mean variance of wT time
series (five minute means), rainforest, day 78. 220
11.13 Vertical velocity amplitude spectrum for sugar cane, 12am,
day 23, lhr 20Hz. 221
11.14 Vertical velocity amplitude spectrum for sugar cane, 12pm,
day 23, lhr 20Hz. 221
11.15 Horizontal velocity amplitude spectrum for sugar cane, 12am,
day 23, lhr 20Hz. 222
11.16 Horizontal velocity amplitude spectrum for sugar cane, 12pm,
day 23, lhr 20Hz. 222
11.17 Vertical velocity power spectrum for sugar cane, 7am, day 21,
3.8 days 0.2Hz. 224
11.18 Horizontal velocity power spectrum for sugar cane, 7am, day
21, 3.8 days 0.2Hz. 224
11.19 Weighted vertical velocity energy density spectrum for sugar
cane, 11am, day 21, 3.8 days 0.2Hz. 225
11.20 Weighted horizontal velocity energy density spectrum for
sugar cane, 11am, day 21, 3.8 days 0.2Hz. 225
xxiv Physical Principles of Meteorology and Environmental Physics
11.21 Mean temperature and mean variance of wT time series (five
minute means), sugar cane, day 23. 226
11.22 Mean temperature and mean variance of wpv time series (five
minute means), sugar cane, day 23. 226
11.23 Mean temperature and mean variance of wpv time series (five
minute means), sugar cane, day 23. 227
11.24 Mean variance of vertical wind and mean variance of wT time
series (five minute means), sugar cane, day 23 . 227
11.25 CO2 Flux for various averaging periods (as marked). 228
11.26 CO2 Flux for various averaging periods (as marked). 230
11.27 CO2 Flux for various sampling rates (as marked). 230
11.28 Eight day mean sensible heat flux - rainforest . 232
11.29 Eight day mean uncorrected latent heat flux - rainforest . . 232
11.30 Eight day mean corrected latent heat flux - rainforest . 233
11.31 Eight day mean uncorrected CO2 flux - rainforest. 233
11.32 Eight day mean corrected C02 flux - rainforest . 234
11.33 Eight day mean WPL correction to the CO2 flux - rainforest 234
11.34 Eight day mean sensible heat flux - sugar cane. 235
11.35 Eight day mean uncorrected latent heat flux - sugar cane . . 235
11.36 Eight day mean corrected latent heat flux - sugar cane . . . 236
11.37 Eight day mean uncorrected CO2 flux - sugar cane . 236
11.38 Eight day mean corrected CO2 flux ~ sugar cane. 237
11.39 Eight day mean WPL correction to the CO2 flux - sugar cane 237
B.l Saturated vapour density (ps) and saturated vapour pressure
(es) for water. 247
List of Tables
1.1 Various length scales encountered in physical systems . 4
1.2 Mass and energy in the Earth-atmosphere system. 4
1.3 Composition of dry air below ~80 km. 6
2.1 Radiosonde data at Townsville on 26.4.74 at 0900. 34
2.2 Stability criteria for saturated and unsaturated air. 39
3.1 The various allowed solutions of (3.34) for the northern hemi-
sphere / 0. 59
5.1 Typical values of roughness length and friction velocity . 101
6.1 Representative values for emissivity. 129
11.1 Peak CO2 flux value for varying averaging periods (polyno-
mial fit to data, day 23). 229
11.2 Summary of results of eight-day mean flux measurements over
rainforest and sugar cane. 231
B.l Saturated vapour density (ps) and saturated vapour pressure
(es) for water. 247 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Blake, David Robson, Robert |
author_facet | Blake, David Robson, Robert |
author_role | aut aut |
author_sort | Blake, David |
author_variant | d b db r r rr |
building | Verbundindex |
bvnumber | BV023405080 |
classification_rvk | UT 5100 |
ctrlnum | (OCoLC)254971027 (DE-599)BVBBV023405080 |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01358nam a2200349 c 4500</leader><controlfield tag="001">BV023405080</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080721s2008 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812813848</subfield><subfield code="9">978-981-281-384-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254971027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023405080</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UT 5100</subfield><subfield code="0">(DE-625)146823:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blake, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical principles of meteorology and environmental physics</subfield><subfield code="b">global, synoptic and micro scales</subfield><subfield code="c">David Blake & Robert Robson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">288 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meteorologie</subfield><subfield code="0">(DE-588)4038953-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Meteorologie</subfield><subfield code="0">(DE-588)4038953-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robson, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016587781&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016587781</subfield></datafield></record></collection> |
id | DE-604.BV023405080 |
illustrated | Not Illustrated |
index_date | 2024-07-02T21:25:16Z |
indexdate | 2024-07-09T21:17:53Z |
institution | BVB |
isbn | 9789812813848 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016587781 |
oclc_num | 254971027 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-11 |
physical | 288 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific |
record_format | marc |
spelling | Blake, David Verfasser aut Physical principles of meteorology and environmental physics global, synoptic and micro scales David Blake & Robert Robson New Jersey [u.a.] World Scientific 2008 288 S. txt rdacontent n rdamedia nc rdacarrier Physik (DE-588)4045956-1 gnd rswk-swf Meteorologie (DE-588)4038953-4 gnd rswk-swf Meteorologie (DE-588)4038953-4 s Physik (DE-588)4045956-1 s DE-604 Robson, Robert Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016587781&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Blake, David Robson, Robert Physical principles of meteorology and environmental physics global, synoptic and micro scales Physik (DE-588)4045956-1 gnd Meteorologie (DE-588)4038953-4 gnd |
subject_GND | (DE-588)4045956-1 (DE-588)4038953-4 |
title | Physical principles of meteorology and environmental physics global, synoptic and micro scales |
title_auth | Physical principles of meteorology and environmental physics global, synoptic and micro scales |
title_exact_search | Physical principles of meteorology and environmental physics global, synoptic and micro scales |
title_exact_search_txtP | Physical principles of meteorology and environmental physics global, synoptic and micro scales |
title_full | Physical principles of meteorology and environmental physics global, synoptic and micro scales David Blake & Robert Robson |
title_fullStr | Physical principles of meteorology and environmental physics global, synoptic and micro scales David Blake & Robert Robson |
title_full_unstemmed | Physical principles of meteorology and environmental physics global, synoptic and micro scales David Blake & Robert Robson |
title_short | Physical principles of meteorology and environmental physics |
title_sort | physical principles of meteorology and environmental physics global synoptic and micro scales |
title_sub | global, synoptic and micro scales |
topic | Physik (DE-588)4045956-1 gnd Meteorologie (DE-588)4038953-4 gnd |
topic_facet | Physik Meteorologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016587781&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT blakedavid physicalprinciplesofmeteorologyandenvironmentalphysicsglobalsynopticandmicroscales AT robsonrobert physicalprinciplesofmeteorologyandenvironmentalphysicsglobalsynopticandmicroscales |