Introduction to computation and modeling for differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
Wiley
2008
|
Schlagworte: | |
Online-Zugang: | Table of contents only Publisher description Contributor biographical information Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XVI, 235 S. |
ISBN: | 9780470270851 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023398049 | ||
003 | DE-604 | ||
005 | 20081002 | ||
007 | t | ||
008 | 080716s2008 xxu |||| 00||| eng d | ||
010 | |a 2007046848 | ||
020 | |a 9780470270851 |9 978-0-470-27085-1 | ||
035 | |a (OCoLC)263714815 | ||
035 | |a (DE-599)BVBBV023398049 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-20 |a DE-703 |a DE-29T |a DE-11 | ||
050 | 0 | |a QA371.5.D37 | |
082 | 0 | |a 515/.350285 | |
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Edsberg, Lennart |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to computation and modeling for differential equations |c Lennart Edsberg |
264 | 1 | |a Hoboken, N.J. |b Wiley |c 2008 | |
300 | |a XVI, 235 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Équations différentielles - Informatique | |
650 | 4 | |a Équations différentielles - Modèles mathématiques | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Differential equations |x Data processing | |
650 | 4 | |a Differential equations |x Mathematical models | |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0806/2007046848-t.html |3 Table of contents only | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0806/2007046848-d.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0829/2007046848-b.html |3 Contributor biographical information | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016580881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805082899367591936 |
---|---|
adam_text |
Titel: Introduction to computation and modeling for differential equations
Autor: Edsberg, Lennart
Jahr: 2008
Contents
List of Figures
Preface
1. Introduction
xv
xi
1
1.1 What Is a Differential Equation? / 1
1.2 Examples of an Ordinary and a Partial Differential Equation / 2
1.3 Numerical Analysis, a Necessity for Scientific Computing / 5
1.4 Outline of the Contents of This Book / 8
Bibliography / 10
2. Ordinary Differential Equations 11
2.1 Problem Classification / 11
2.2 Linear Systems of ODEs with Constant Coefficients / 16
2.3 Some Stability Concepts for ODEs / 20
2.3.1 Stability for a Solution Trajectory of an ODE System / 20
2.3.2 Stability for Critical Points of ODE Systems / 23
2.4 Some ODE Models in Science and Engineering / 26
2.4.1 Newton's Second Law / 27
2.4.2 Hamilton's Equations / 27
2.4.3 Electrical Networks / 28
2.4.4 Chemical Kinetics / 28
vii
W/7 CONTENTS
2.4.5 Control Theory / 29
2.4.6 Compartment Models / 29
2.5 Some Examples from Applications / 30
Bibliography / 36
3. Numerical Methods for Initial Value Problems 37
3.1 Graphical Representation of Solutions / 38
3.2 Basic Principles of Numerical Approximation of ODEs / 40
3.3 Numerical Solution of IVPs with Euler's Method / 41
3.3.1 Euler's Explicit Method: Accuracy / 43
3.3.2 Euler's Explicit Method: Improving the Accuracy / 46
3.3.3 Euler's Explicit Method: Stability / 47
3.3.4 Euler's Implicit Method / 53
3.3.5 The Trapezoidal Method / 54
3.4 Higher-Order Methods for the IVP / 55
3.4.1 Runge-Kutta Methods / 55
3.4.2 Linear Multistep Methods / 59
3.5 The Variational Equation and Parameter Fitting in IVPs / 61
Bibliography / 63
4. Numerical Methods for Boundary Value Problems 65
4.1 Applications / 67
4.2 Difference Methods for BVPs / 72
4.2.1 A Model Problem for BVPs / 72
4.2.2 Accuracy / 78
4.2.3 Spurious Oscillations / 79
4.2.4 Linear Two-Point BVPs / 82
4.2.5 Nonlinear Two-Point BVPs / 82
4.2.6 The Shooting Method / 84
4.3 Ansatz Methods for BVPs / 86
Bibliography / 90
5. Partial Differential Equations 91
5.1 Classical PDE Problems / 92
5.2 Differential Operators Used for PDEs / 96
5.3 Some PDEs in Science and Engineering / 99
5.3.1 Navier-Stokes Equations in Fluid Dynamics / 100
CONTENTS IX
5.3.2 The Convection-Diffusion-Reaction Equations / 101
5.3.3 The Heat Equation / 101
5.3.4 The Diffusion Equation / 102
5.3.5 Maxwell's Equations for the Electromagnetic Field / 102
5.3.6 Acoustic Waves / 103
5.3.7 Schrödinger's Equation in Quantum Mechanics / 103
5.3.8 Navier's Equations in Structural Mechanics / 104
5.3.9 Black-Scholes Equation in Financial Mathematics / 104
5.4 Initial and Boundary Conditions for PDEs / 105
5.5 Numerical Solution of PDEs, Some General Comments / 106
Bibliography / 106
6. Numerical Methods for Parabolic Partial Differential Equations 107
6.1 Applications / 108
6.2 An Introductory Example of Discretization /III
6.3 The Method of Lines for Parabolic PDEs / 114
6.3.1 Solving the Model Problem with MoL / 114
6.3.2 Various Types of Boundary Conditions / 119
6.3.3 An Example of the Use of MoL for a Mixed Boundary
Condition / 120
6.4 Generalizations of the Heat Equation / 121
6.4.1 The Heat Equation with Variable Conductivity / 121
6.4.2 The Convection-Diffusion-Reaction PDE / 122
6.4.3 The General Nonlinear Parabolic PDE / 122
6.5 Ansatz Methods for the Model Equation / 123
Bibliography / 125
7. Numerical Methods for Elliptic Partial Differential Equations 127
7.1 Applications / 129
7.2 The Finite Difference Method / 135
7.3 Discretization of a Problem with Different BCs / 138
7.4 The Finite Element Method / 140
Bibliography / 146
8. Numerical Methods for Hyperbolic Partial Differential Equations 147
8.1 Applications / 153
8.2 Numerical Solution of Hyperbolic PDEs / 155
X CONTENTS
8.3 Introduction to Numerical Stability for Hyperbolic PDEs / 161
Bibliography / 162
9. Mathematical Modeling with Differential Equations 163
9.1 Laws of Nature / 164
9.2 Constitutive Equations / 166
9.2.1 Equations in Heat Transfer Problems / 167
9.2.2 Equations in Mass Diffusion Problems / 167
9.2.3 Equations in Mechanical Moment Diffusion Problems / 168
9.2.4 Equations in Elastic Solid Mechanics Problems / 168
9.2.5 Equations in Chemical Reaction Engineering Problems / 168
9.2.6 Equations in Electrical Engineering Problems / 169
9.3 Conservative Laws / 169
9.3.1 Some Examples of Lumped Models / 170
9.3.2 Some Examples of Distributed Models / 172
9.4 Scaling of Differential Equations to Dimensionless Form / 175
Bibliography / 179
A. Appendix: Some Numerical and Mathematical Tools / 181
A.l Newton's Method for Systems of Nonlinear Algebraic Equations / 181
A.l.l Square Systems / 181
A.1.2 Overdetermined Systems / 184
A.2 Some Facts about Linear Difference Equations / 185
A.3 Derivation of Difference Approximations / 189
A.4 The Interpretations of Div and Curl / 192
A.5 Numerical Solution of Algebraic Systems of Equations / 194
A.5.1 Direct Methods / 194
A.5.2 Iterative Methods for Linear Systems of Equations / 197
A.6 Some Results for Fourier Transforms / 202
B. Appendix: Software for Scientific Computing / 205
B.l Matlab® / 206
B.2 Comsol Multiphysics® / 212
Bibliography / 214
C. Appendix: Computer Exercises to Support the Chapters / 215
Index
229 |
adam_txt |
Titel: Introduction to computation and modeling for differential equations
Autor: Edsberg, Lennart
Jahr: 2008
Contents
List of Figures
Preface
1. Introduction
xv
xi
1
1.1 What Is a Differential Equation? / 1
1.2 Examples of an Ordinary and a Partial Differential Equation / 2
1.3 Numerical Analysis, a Necessity for Scientific Computing / 5
1.4 Outline of the Contents of This Book / 8
Bibliography / 10
2. Ordinary Differential Equations 11
2.1 Problem Classification / 11
2.2 Linear Systems of ODEs with Constant Coefficients / 16
2.3 Some Stability Concepts for ODEs / 20
2.3.1 Stability for a Solution Trajectory of an ODE System / 20
2.3.2 Stability for Critical Points of ODE Systems / 23
2.4 Some ODE Models in Science and Engineering / 26
2.4.1 Newton's Second Law / 27
2.4.2 Hamilton's Equations / 27
2.4.3 Electrical Networks / 28
2.4.4 Chemical Kinetics / 28
vii
W/7 CONTENTS
2.4.5 Control Theory / 29
2.4.6 Compartment Models / 29
2.5 Some Examples from Applications / 30
Bibliography / 36
3. Numerical Methods for Initial Value Problems 37
3.1 Graphical Representation of Solutions / 38
3.2 Basic Principles of Numerical Approximation of ODEs / 40
3.3 Numerical Solution of IVPs with Euler's Method / 41
3.3.1 Euler's Explicit Method: Accuracy / 43
3.3.2 Euler's Explicit Method: Improving the Accuracy / 46
3.3.3 Euler's Explicit Method: Stability / 47
3.3.4 Euler's Implicit Method / 53
3.3.5 The Trapezoidal Method / 54
3.4 Higher-Order Methods for the IVP / 55
3.4.1 Runge-Kutta Methods / 55
3.4.2 Linear Multistep Methods / 59
3.5 The Variational Equation and Parameter Fitting in IVPs / 61
Bibliography / 63
4. Numerical Methods for Boundary Value Problems 65
4.1 Applications / 67
4.2 Difference Methods for BVPs / 72
4.2.1 A Model Problem for BVPs / 72
4.2.2 Accuracy / 78
4.2.3 Spurious Oscillations / 79
4.2.4 Linear Two-Point BVPs / 82
4.2.5 Nonlinear Two-Point BVPs / 82
4.2.6 The Shooting Method / 84
4.3 Ansatz Methods for BVPs / 86
Bibliography / 90
5. Partial Differential Equations 91
5.1 Classical PDE Problems / 92
5.2 Differential Operators Used for PDEs / 96
5.3 Some PDEs in Science and Engineering / 99
5.3.1 Navier-Stokes Equations in Fluid Dynamics / 100
CONTENTS IX
5.3.2 The Convection-Diffusion-Reaction Equations / 101
5.3.3 The Heat Equation / 101
5.3.4 The Diffusion Equation / 102
5.3.5 Maxwell's Equations for the Electromagnetic Field / 102
5.3.6 Acoustic Waves / 103
5.3.7 Schrödinger's Equation in Quantum Mechanics / 103
5.3.8 Navier's Equations in Structural Mechanics / 104
5.3.9 Black-Scholes Equation in Financial Mathematics / 104
5.4 Initial and Boundary Conditions for PDEs / 105
5.5 Numerical Solution of PDEs, Some General Comments / 106
Bibliography / 106
6. Numerical Methods for Parabolic Partial Differential Equations 107
6.1 Applications / 108
6.2 An Introductory Example of Discretization /III
6.3 The Method of Lines for Parabolic PDEs / 114
6.3.1 Solving the Model Problem with MoL / 114
6.3.2 Various Types of Boundary Conditions / 119
6.3.3 An Example of the Use of MoL for a Mixed Boundary
Condition / 120
6.4 Generalizations of the Heat Equation / 121
6.4.1 The Heat Equation with Variable Conductivity / 121
6.4.2 The Convection-Diffusion-Reaction PDE / 122
6.4.3 The General Nonlinear Parabolic PDE / 122
6.5 Ansatz Methods for the Model Equation / 123
Bibliography / 125
7. Numerical Methods for Elliptic Partial Differential Equations 127
7.1 Applications / 129
7.2 The Finite Difference Method / 135
7.3 Discretization of a Problem with Different BCs / 138
7.4 The Finite Element Method / 140
Bibliography / 146
8. Numerical Methods for Hyperbolic Partial Differential Equations 147
8.1 Applications / 153
8.2 Numerical Solution of Hyperbolic PDEs / 155
X CONTENTS
8.3 Introduction to Numerical Stability for Hyperbolic PDEs / 161
Bibliography / 162
9. Mathematical Modeling with Differential Equations 163
9.1 Laws of Nature / 164
9.2 Constitutive Equations / 166
9.2.1 Equations in Heat Transfer Problems / 167
9.2.2 Equations in Mass Diffusion Problems / 167
9.2.3 Equations in Mechanical Moment Diffusion Problems / 168
9.2.4 Equations in Elastic Solid Mechanics Problems / 168
9.2.5 Equations in Chemical Reaction Engineering Problems / 168
9.2.6 Equations in Electrical Engineering Problems / 169
9.3 Conservative Laws / 169
9.3.1 Some Examples of Lumped Models / 170
9.3.2 Some Examples of Distributed Models / 172
9.4 Scaling of Differential Equations to Dimensionless Form / 175
Bibliography / 179
A. Appendix: Some Numerical and Mathematical Tools / 181
A.l Newton's Method for Systems of Nonlinear Algebraic Equations / 181
A.l.l Square Systems / 181
A.1.2 Overdetermined Systems / 184
A.2 Some Facts about Linear Difference Equations / 185
A.3 Derivation of Difference Approximations / 189
A.4 The Interpretations of Div and Curl / 192
A.5 Numerical Solution of Algebraic Systems of Equations / 194
A.5.1 Direct Methods / 194
A.5.2 Iterative Methods for Linear Systems of Equations / 197
A.6 Some Results for Fourier Transforms / 202
B. Appendix: Software for Scientific Computing / 205
B.l Matlab® / 206
B.2 Comsol Multiphysics® / 212
Bibliography / 214
C. Appendix: Computer Exercises to Support the Chapters / 215
Index
229 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Edsberg, Lennart |
author_facet | Edsberg, Lennart |
author_role | aut |
author_sort | Edsberg, Lennart |
author_variant | l e le |
building | Verbundindex |
bvnumber | BV023398049 |
callnumber-first | Q - Science |
callnumber-label | QA371 |
callnumber-raw | QA371.5.D37 |
callnumber-search | QA371.5.D37 |
callnumber-sort | QA 3371.5 D37 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 500 SK 920 |
ctrlnum | (OCoLC)263714815 (DE-599)BVBBV023398049 |
dewey-full | 515/.350285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.350285 |
dewey-search | 515/.350285 |
dewey-sort | 3515 6350285 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023398049</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081002</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080716s2008 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007046848</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470270851</subfield><subfield code="9">978-0-470-27085-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263714815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023398049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA371.5.D37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.350285</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edsberg, Lennart</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to computation and modeling for differential equations</subfield><subfield code="c">Lennart Edsberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">Wiley</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 235 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0806/2007046848-t.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0806/2007046848-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0829/2007046848-b.html</subfield><subfield code="3">Contributor biographical information</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016580881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV023398049 |
illustrated | Not Illustrated |
index_date | 2024-07-02T21:22:44Z |
indexdate | 2024-07-20T07:39:58Z |
institution | BVB |
isbn | 9780470270851 |
language | English |
lccn | 2007046848 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016580881 |
oclc_num | 263714815 |
open_access_boolean | |
owner | DE-20 DE-703 DE-29T DE-11 |
owner_facet | DE-20 DE-703 DE-29T DE-11 |
physical | XVI, 235 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Edsberg, Lennart Verfasser aut Introduction to computation and modeling for differential equations Lennart Edsberg Hoboken, N.J. Wiley 2008 XVI, 235 S. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Équations différentielles - Informatique Équations différentielles - Modèles mathématiques Datenverarbeitung Mathematisches Modell Differential equations Data processing Differential equations Mathematical models Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 s Mathematisches Modell (DE-588)4114528-8 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 http://www.loc.gov/catdir/enhancements/fy0806/2007046848-t.html Table of contents only http://www.loc.gov/catdir/enhancements/fy0806/2007046848-d.html Publisher description http://www.loc.gov/catdir/enhancements/fy0829/2007046848-b.html Contributor biographical information HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016580881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Edsberg, Lennart Introduction to computation and modeling for differential equations Équations différentielles - Informatique Équations différentielles - Modèles mathématiques Datenverarbeitung Mathematisches Modell Differential equations Data processing Differential equations Mathematical models Differentialgleichung (DE-588)4012249-9 gnd Mathematisches Modell (DE-588)4114528-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4012249-9 (DE-588)4114528-8 (DE-588)4128130-5 |
title | Introduction to computation and modeling for differential equations |
title_auth | Introduction to computation and modeling for differential equations |
title_exact_search | Introduction to computation and modeling for differential equations |
title_exact_search_txtP | Introduction to computation and modeling for differential equations |
title_full | Introduction to computation and modeling for differential equations Lennart Edsberg |
title_fullStr | Introduction to computation and modeling for differential equations Lennart Edsberg |
title_full_unstemmed | Introduction to computation and modeling for differential equations Lennart Edsberg |
title_short | Introduction to computation and modeling for differential equations |
title_sort | introduction to computation and modeling for differential equations |
topic | Équations différentielles - Informatique Équations différentielles - Modèles mathématiques Datenverarbeitung Mathematisches Modell Differential equations Data processing Differential equations Mathematical models Differentialgleichung (DE-588)4012249-9 gnd Mathematisches Modell (DE-588)4114528-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Équations différentielles - Informatique Équations différentielles - Modèles mathématiques Datenverarbeitung Mathematisches Modell Differential equations Data processing Differential equations Mathematical models Differentialgleichung Numerisches Verfahren |
url | http://www.loc.gov/catdir/enhancements/fy0806/2007046848-t.html http://www.loc.gov/catdir/enhancements/fy0806/2007046848-d.html http://www.loc.gov/catdir/enhancements/fy0829/2007046848-b.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016580881&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT edsberglennart introductiontocomputationandmodelingfordifferentialequations |