Handbook of knowledge representation:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2008
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Foundations of artificial intelligence
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXVIII, 1005 S. graph. Darst. |
ISBN: | 0444522115 9780444522115 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023394239 | ||
003 | DE-604 | ||
005 | 20111013 | ||
007 | t | ||
008 | 080714s2008 d||| |||| 00||| eng d | ||
020 | |a 0444522115 |9 0-444-52211-5 | ||
020 | |a 9780444522115 |9 978-0-444-52211-5 | ||
035 | |a (OCoLC)253916712 | ||
035 | |a (DE-599)OBVAC06400349 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-83 |a DE-473 |a DE-19 |a DE-11 | ||
050 | 0 | |a Q387 | |
082 | 0 | |a 006.332 |2 22 | |
084 | |a AN 92650 |0 (DE-625)6750: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 304 |0 (DE-625)143653: |2 rvk | ||
245 | 1 | 0 | |a Handbook of knowledge representation |c ed. by Frank van Harmelen ... |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2008 | |
300 | |a XXVIII, 1005 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Foundations of artificial intelligence | |
500 | |a Literaturangaben | ||
650 | 7 | |a Inteligência artificial |2 larpcal | |
650 | 7 | |a Representação de conhecimento |2 larpcal | |
650 | 4 | |a Représentation des connaissances | |
650 | 4 | |a Knowledge representation (Information theory) | |
650 | 0 | 7 | |a Informationstheorie |0 (DE-588)4026927-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensrepräsentation |0 (DE-588)4049534-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Wissensrepräsentation |0 (DE-588)4049534-6 |D s |
689 | 0 | 1 | |a Informationstheorie |0 (DE-588)4026927-9 |D s |
689 | 0 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Harmelen, Frank van |0 (DE-588)124645429 |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016577135&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016577135 |
Datensatz im Suchindex
_version_ | 1804137773313032192 |
---|---|
adam_text | Contents
Dedication
v
Preface
vii
Editors
xi
Contributors
xiii
Contents
xv
I General Methods in Knowledge Representation and
Reasoning
1
1
Knowledge Representation and Classical Logic
3
Vladimir Lifschitz, Leora
Morgenstern
and David Plaisted
1.1
Knowledge Representation and Classical Logic
............ 3
1.2
Syntax, Semantics and Natural Deduction
............... 4
1.2.1
Propositional Logic
....................... 4
1.2.2
First-Order Logic
........................ 8
1.2.3
Second-Order Logic
....................... 16
1.3
Automated Theorem Proving
...................... 18
1.3.1
Resolution in the Propositional Calculus
............ 22
1.3.2
First-Order Proof Systems
................... 25
1.3.3
Equality
............................. 37
1.3.4
Term Rewriting Systems
.................... 43
1.3.5
Confluence and Termination Properties
............ 46
1.3.6
Equational Rewriting
...................... 50
1.3.7
Other Logics
........................... 55
1.4
Applications of Automated Theorem
Provers
............. 58
1.4.1
Applications Involving Human Intervention
.......... 59
1.4.2
Non-Interactive KR Applications of Automated Theorem
Provers
.............................. 61
1.4.3
Exploiting Structure
....................... 64
1.4.4
Prolog
.............................. 65
1.5
Suitability of Logic for Knowledge Representation
.......... 67
1.5.1
Anti-logicist Arguments and Responses
............ 67
xv
xvi Contents
Acknowledgements
.............................. 74
Bibliography
.................................. 74
2
Satisfiability Solvers
89
Carla
P. Gomes, Henry Kautz, Ashish Sabharwal and Bart
Selmán
2.1
Definitions and Notation
........................ 91
2.2
SAT Solver Technology—Complete Methods
............. 92
2.2.1
The DPLL Procedure
...................... 92
2.2.2
Key Features of Modern DPLL-Based SAT Solvers
..... 93
2.2.3
Clause Learning and Iterative DPLL
.............. 95
2.2.4
A Proof Complexity Perspective
................ 100
2.2.5
Symmetry Breaking
....................... 104
2.3
SAT Solver Technology—Incomplete Methods
............ 107
2.3.1
The Phase Transition Phenomenon in Random fc-SAT
.... 109
2.3.2
A New Technique for Random
ł-SAT:
Survey Propagation
.
Ill
2.4
Runtime Variance and Problem Structure
............... 112
2.4.1
Fat and Heavy Tailed Behavior
................. 113
2.4.2
Backdoors
............................ 113
2.4.3
Restarts
.............................. 115
2.5
Beyond SAT: Quantified Boolean Formulas and Model Counting
. . 117
2.5.1
QBFReasoning
......................... 117
2.5.2
Model Counting
......................... 120
Bibliography
.................................. 122
3
Description Logics
135
Franz
Baader,
Ian
Horrocks
and
Ulrike Sattler
3.1
Introduction
............................... 135
3.2
A Basic
DL
and its Extensions
..................... 139
3.2.1
Syntax and Semantics of
ЛСС
................. 140
3.2.2
Important Inference Problems
................. 141
3.2.3
Important Extensions to
ЛСС
................. 142
3.3
Relationships with other Formalisms
.................. 144
3.3.1
DLs and Predicate Logic
.................... 144
3.3.2
DLs and Modal Logic
...................... 145
3.4
Tableau Based Reasoning Techniques
................. 146
3.4.1
A Tableau Algorithm for
ЛСС
................. 146
3.4.2
Implementation and Optimization Techniques
........ 150
3.5
Complexity
................................ 151
3.5.1
ЛСС АВох
Consistency is PSpace-complete
......... 151
3.5.2
Adding General TBoxes Results in ExpTime-Hardness
... 154
3.5.3
The Effect of other Constructors
................ 154
3.6
Other Reasoning Techniques
...................... 155
3.6.1
The Automata Based Approach
................ 156
3.6.2
Structural Approaches
...................... 161
3.7
DLs in Ontology Language Applications
............... 166
3.7.1
The OWL Ontology Language
................. 166
3.7.2
OWL Tools and Applications
.................. 167
Contents xvii
3.8
Further Reading
............................. 168
Bibliography
.................................. 169
Constraint Programming
181
Francesca Rossi, Peter van
Beek
and Toby Walsh
4.1
Introduction
............................... 181
4.2
Constraint Propagation
......................... 182
4.2.1
Local Consistency
........................ 183
4.2.2
Global Constraints
........................ 183
4.3
Search
.................................. 184
4.3.1
Backtracking Search
...................... 184
4.3.2
Local Search
........................... 187
4.3.3
Hybrid Methods
......................... 188
4.4
Tractability
................................ 189
4.4.1
Tractable Constraint Languages
................ 189
4.4.2
Tractable Constraint Graphs
.................. 191
4.5
Modeling
................................. 191
4.5.1
CP
v
-
CP
............................ 192
4.5.2
Viewpoints
............................ 192
4.5.3
Symmetry
............................ 193
4.6
Soft Constraints and Optimization
................... 193
4.6.1
Modeling Soft Constraints
................... 194
4.6.2
Searching for the Best Solution
................. 195
4.6.3
Inference in Soft Constraints
.................. 195
4.7
Constraint Logic Programming
..................... 197
4.7.1
Logic Programs
......................... 197
4.7.2
Constraint Logic Programs
................... 198
4.7.3
LP and CLP Languages
..................... 198
4.7.4
Other Programming Paradigms
................. 199
4.8
Beyond Finite Domains
......................... 199
4.8.1
Intervals
............................. 199
4.8.2
Temporal Problems
....................... 200
4.8.3
Sets and other Datatypes
.................... 200
4.9
Distributed Constraint Programming
.................. 201
4.10
Application Areas
............................ 202
4.11
Conclusions
............................... 203
Bibliography
.................................. 203
Conceptual Graphs
213
John F.
Sowa
5.1
From Existential Graphs to Conceptual Graphs
............ 213
5.2
Common Logic
............................. 217
5.3
Reasoning with Graphs
......................... 223
5.4
Propositions, Situations, and Metalanguage
.............. 230
5.5
Research Extensions
........................... 233
Bibliography
.................................. 235
xviii Contents
6
Nonmonotonic Reasoning
239
Gerhard Brewka, Ilkka
Memela
and
Mirosław Truszczyński
6.1
Introduction
............................... 239
Rules with exceptions
.......................... 240
The frame problem
........................... 240
About this chapter
............................ 241
6.2
Default Logic
.............................. 242
6.2.1
Basic Definitions and Properties
................ 242
6.2.2
Computational Properties
.................... 246
6.2.3
Normal Default Theories
.................... 249
6.2.4
Closed-World Assumption and Normal Defaults
....... 250
6.2.5
Variants of Default Logic
.................... 252
6.3
Autoepistemic Logic
........................... 252
6.3.1
Preliminaries, Intuitions and Basic Results
.......... 253
6.3.2
Computational Properties
.................... 258
6.4
Circumscription
............................. 260
6.4.1
Motivation
............................ 260
6.4.2
Defining Circumscription
.................... 261
6.4.3
Semantics
............................ 263
6.4.4
Computational Properties
.................... 264
6.4.5
Variants
.............................. 266
6.5
Nonmonotonic Inference Relations
................... 267
6.5.1
Semantic Specification of Inference Relations
......... 268
6.5.2
Default Conditionals
...................... 270
6.5.3
Discussion
............................ 272
6.6
Further Issues and Conclusion
..................... 272
6.6.1
Relating Default and Autoepistemic Logics
.......... 273
6.6.2
Relating Default Logic and Circumscription
......... 275
6.6.3
Further Approaches
....................... 276
Acknowledgements
.............................. 277
Bibliography
.................................. 277
7
Answer Sets
285
Michael Gelfond
7.1
Introduction
............................... 285
7.2
Syntax and Semantics of Answer Set Prolog
.............. 286
7.3
Properties of Logic Programs
...................... 292
7.3.1
Consistency of Logic Programs
................ 292
7.3.2
Reasoning Methods for Answer Set Prolog
.......... 295
7.3.3
Properties of Entailment
.................... 297
7.3.4
Relations between Programs
.................. 298
7.4
A Simple Knowledge Base
....................... 300
7.5
Reasoning in Dynamic Domains
.................... 302
7.6
Extensions of Answer Set Prolog
.................... 307
7.7
Conclusion
................................ 309
Acknowledgements
.............................. 310
Bibliography
.................................. 310
Contents xix
8 Belief Revision 317
Pavios
Peppas
8.1
Introduction
............................... 317
8.2
Preliminaries
............................... 318
8.3
The AGM Paradigm
........................... 318
8.3.1
The AGM Postulates for Belief Revision
........... 319
8.3.2
The AGM Postulates for Belief Contraction
.......... 320
8.3.3
Selection Functions
....................... 323
8.3.4
Epistemic
Entrenchment
.................... 325
8.3.5
System of Spheres
........................ 327
8.4
Belief Base Change
........................... 329
8.4.1
Belief Base Change Operations
................. 331
8.4.2
Belief Base Change Schemes
.................. 332
8.5
Multiple Belief Change
......................... 335
8.5.1
Multiple Revision
........................ 336
8.5.2
Multiple Contraction
...................... 338
8.6
Iterated Revision
............................. 340
8.6.1
Iterated Revision with Enriched
Epistemic
Input
....... 340
8.6.2
Iterated Revision with Simple
Epistemic
Input
........ 343
8.7
Non-Prioritized Revision
........................ 346
8.8
BeliefUpdate
.............................. 349
8.9
Conclusion
................................ 352
Acknowledgements
.............................. 353
Bibliography
.................................. 353
9
Qualitative Modeling
361
Kenneth D. Forbus
9.1
Introduction
............................... 361
9.1.1
Key Principles
.......................... 362
9.1.2
Overview of Basic Qualitative Reasoning
........... 363
9.2
Qualitative Mathematics
......................... 365
9.2.1
Quantities
............................ 365
9.2.2
Functions and Relationships
.................. 369
9.3
Ontology
................................. 371
9.3.1
Component Ontologies
..................... 372
9.3.2
Process Ontologies
....................... 373
9.3.3
Field Ontologies
......................... 374
9.4
Causality
................................. 374
9.5
Compositional Modeling
........................ 376
9.5.1
Model Formulation Algorithms
................. 378
9.6
Qualitative States and Qualitative Simulation
............. 379
9.7
Qualitative Spatial Reasoning
...................... 381
9.7.1
Topological Representations
.................. 381
9.7.2
Shape, Location, and Orientation Representations
...... 382
9.7.3
Diagrammatic Reasoning
.................... 382
9.8
Qualitative Modeling Applications
................... 383
xx Contents
9.8.1
Automating or Assisting
Professional
Reasoning
....... 383
9.8.2
Education
............................ 384
9.8.3
Cognitive Modeling
....................... 386
9.9
Frontiers and Resources
......................... 387
Bibliography
.................................. 387
10
Model-based Problem Solving
395
Peter Struss
10.1
Introduction
.............................. 395
10.2
Tasks
.................................. 398
10.2.1
Situation Assessment/Diagnosis
.............. 398
10.2.2
Test Generation, Measurement Proposal, Diagnosability
Analysis
........................... 399
10.2.3
Design and Failure-Modes-and-Effects Analysis
..... 401
10.2.4
Proposal of Remedial Actions (Repair, Reconfiguration,
Recovery, Therapy)
..................... 402
10.2.5
Ingredients of Model-based Problem Solving
....... 402
10.3
Requirements on Modeling
...................... 403
10.3.1
Behavior Prediction and Consistency Check
....... 404
10.3.2
Validity of Behavior Modeling
............... 405
10.3.3
Conceptual Modeling
.................... 405
10.3.4
(Automated) Model Composition
............. 406
10.3.5
Genericky
.......................... 406
10.3.6
Appropriate Granularity
.................. 407
10.4
Diagnosis
............................... 407
10.4.1
Consistency-based Diagnosis with Component-oriented
Models
............................ 408
10.4.2
Computation of Diagnoses
................. 418
10.4.3
Solution Scope and Limitations of Component-Oriented
Diagnosis
.......................... 422
10.4.4
Diagnosis across Time
................... 423
10.4.5
Abductive Diagnosis
.................... 431
10.4.6
Process-Oriented Diagnosis
................ 434
10.4.7
Model-based Diagnosis in Control Engineering
...... 438
10.5
Test and Measurement Proposal, Diagnosability Analysis
..... 438
10.5.1
Test Generation
....................... 439
10.5.2
Entropy-based Test Selection
................ 444
10.5.3
Probe Selection
....................... 445
10.5.4
Diagnosability Analysis
................... 446
10.6
Remedy Proposal
........................... 446
10.6.1
Integration of Diagnosis and Remedy Actions
...... 448
10.6.2
Component-oriented Reconfiguration
........... 450
10.6.3
Process-oriented Therapy Proposal
............ 453
10.7
Other Tasks
.............................. 454
10.7.1
Configuration and Design
.................. 454
10.7.2
Failure-Modes-and-Effects Analysis
............ 456
10.7.3
Debugging and Testing of Software
............ 456
Contents xxi
10.8 State and
Challenges
......................... 458
Acknowledgements
.............................. 460
Bibliography
................................. 460
11
Bayesian Networks
467
Adnan
Darwiche
11.1
Introduction
.............................. 467
11.2
Syntax and Semantics of Bayesian Networks
............ 468
11.2.1
Notational Conventions
................... 468
11.2.2
Probabilistic Beliefs
..................... 469
11.2.3
Bayesian Networks
..................... 470
11.2.4
Structured Representations of CPTs
............ 471
11.2.5
Reasoning about Independence
............... 471
11.2.6
Dynamic Bayesian Networks
................ 472
11.3
Exact Inference
............................ 473
11.3.1
Structure-Based Algorithms
................ 474
11.3.2
Inference with Local (Parametric) Structure
........ 479
11.3.3
Solving MAP and
МРЕ
by Search
............. 480
11.3.4
Compiling Bayesian Networks
............... 481
11.3.5
Inference by Reduction to Logic
.............. 482
11.3.6
Additionallnference Techniques
.............. 484
11.4
Approximate Inference
........................ 485
11.4.1
Inference by Stochastic Sampling
............. 485
11.4.2
Inference as Optimization
................. 486
11.5
Constructing Bayesian Networks
.................. 489
11.5.1
Knowledge Engineering
.................. 489
11.5.2
High-Level Specifications
................. 490
11.5.3
Learning Bayesian Networks
................ 493
11.6
Causality and Intervention
...................... 497
Acknowledgements
.............................. 498
Bibliography
................................. 499
11 Classes of Knowledge and Specialized Representations
511
12
Temporal Representation and Reasoning
513
Michael Fisher
12.1
Temporal Structures
.......................... 514
12.1.1
Instants and Durations
................... 514
12.1.2
From Discreteness to Density
............... 515
12.1.3
Granularity Hierarchies
................... 516
12.1.4
Temporal Organisation
................... 517
12.1.5
Moving in Real Time
.................... 517
12.1.6
Intervals
........................... 518
12.2
Temporal Language
.......................... 520
12.2.1
Modal Temporal Logic
................... 520
12.2.2
Back to the Future
...................... 521
12.2.3
Temporal Arguments and Reified Temporal Logics
. . . . 521
xxii Contents
12.2.4 Operators
over Non-discrete
Models............ 522
12.2.5
Intervals
........................... 523
12.2.6
Real-Time and Hybrid Temporal Languages
....... 524
12.2.7
Quantification
........................ 525
12.2.8
Hybrid Temporal Logic and the Concept of now
.... 528
12.3
Temporal Reasoning
......................... 528
12.3.1
Proof Systems
........................ 529
12.3.2
Automated Deduction
.................... 529
12.4
Applications
.............................. 530
12.4.1
Natural Language
...................... 530
12.4.2
Reactive System Specification
............... 531
12.4.3
Theorem-Proving
...................... 532
12.4.4
Model Checking
....................... 532
12.4.5
PSL/Sugar
.......................... 534
12.4.6
Temporal Description Logics
................ 534
12.5
Concluding Remarks
......................... 535
Acknowledgements
.............................. 535
Bibliography
................................. 535
13
Qualitative Spatial Representation and Reasoning
551
Anthony G. Cohn and
Jochen Renz
13.1
Introduction
.............................. 551
13.1.1
What is Qualitative Spatial Reasoning?
.......... 551
13.1.2
Applications of Qualitative Spatial Reasoning
...... 553
13.2
Aspects of Qualitative Spatial Representation
............ 554
13.2.1
Ontology
........................... 554
13.2.2
Spatial Relations
...................... 556
13.2.3
Mereology
.......................... 557
13.2.4
Mereotopology
....................... 557
13.2.5
Between Mereotopology and Fully Metric Spatial Repre¬
sentation
........................... 566
13.2.6
Mereogeometry
....................... 570
13.2.7
Spatial Vagueness
...................... 571
13.3
Spatial Reasoning
........................... 572
13.3.1
Deduction
.......................... 574
13.3.2
Composition
......................... 575
13.3.3
Constraint-based Spatial Reasoning
............ 576
13.3.4
Finding Efficient Reasoning Algorithms
.......... 578
13.3.5
Planar Realizability
..................... 581
13.4
Reasoning about Spatial Change
................... 581
13.5
Cognitive Validity
........................... 582
13.6
Final Remarks
............................. 583
Acknowledgements
.............................. 584
Bibliography
................................. 584
Contents xxiii
14
Physical Reasoning
597
Ernest Davis
14.1
Architectures
............................. 600
14.1.1
Component Analysis
.................... 600
14.1.2
Process Model
........................ 601
14.2
Domain Theories
........................... 602
14.2.1
Rigid Object Kinematics
.................. 603
14.2.2
Rigid Object Dynamics
................... 605
14.2.3
Liquids
............................ 608
14.3
Abstraction and Multiple Models
.................. 611
14.4
Historical and Bibliographical
.................... 614
14.4.1
Logic-based Representations
................ 614
14.4.2
Solid Objects: Kinematics
................. 615
14.4.3
Solid Object Dynamics
................... 616
14.4.4
Abstraction and Multiple Models
............. 616
14.4.5
Other
............................. 616
14.4.6
Books
............................ 617
Bibliography
................................. 618
15
Reasoning about Knowledge and Belief
621
Yoram Moses
15.1
Introduction
.............................. 621
15.2
The Possible Worlds Model
..................... 622
15.2.1
A Language for Knowledge and Belief
.......... 622
15.3
Properties of Knowledge
....................... 626
15.4
The Knowledge of Groups
...................... 628
15.4.1
Common Knowledge
.................... 629
15.4.2
Distributed Knowledge
................... 632
15.5
Runs and Systems
........................... 633
15.6
Adding Time
............................. 635
15.6.1
Common Knowledge and Time
.............. 636
15.7
Knowledge-based Behaviors
..................... 637
15.7.1
Contexts and Protocols
................... 637
15.7.2
Knowledge-based Programs
................ 639
15.7.3
A Subtle kb Program
.................... 641
15.8
Beyond Square One
.......................... 643
15.9
How to Reason about Knowledge and Belief
............ 644
15.9.1
Concluding Remark
..................... 645
Bibliography
................................. 645
Further reading
................................ 647
16
Situation Calculus
649
Fangzhen Lin
16.1
Axiomatizations
............................ 650
16.2
The Frame, the Ramification and the Qualification Problems
. . . 652
16.2.1
The Frame Problem—Reiter s Solution
.......... 654
16.2.2
The Ramification Problem and Lin s Solution
....... 657
xxiv Contents
16.2.3 The
Qualification
Problem................. 660
16.3
Reiter s Foundational Axioms and Basic Action Theories
..... 661
16.4
Applications
.............................. 665
16.5
Concluding Remarks
......................... 667
Acknowledgements
.............................. 667
Bibliography
................................. 667
17
Event Calculus
671
Erik T. Mueller
17.1
Introduction
.............................. 671
17.2
Versions of the Event Calculus
.................... 672
17.2.1
Original Event Calculus (OEC)
.............. 672
17.2.2
Simplified Event Calculus (SEC)
.............. 674
17.2.3
Basic Event Calculus
(ВЕС)
................ 676
17.2.4
Event Calculus (EC)
.................... 679
17.2.5
Discrete Event Calculus (DEC)
.............. 681
17.2.6
Equivalence of DEC and EC
................ 683
17.2.7
Other Versions
........................ 683
17.3
Relationship to other Formalisms
.................. 684
17.4
Default Reasoning
.......................... 684
17.4.1
Circumscription
....................... 684
17.4.2
Computing Circumscription
................ 685
17.4.3
Historical Note
....................... 686
17.4.4
Negation as Failure
..................... 687
17.5
Event Calculus Knowledge Representation
............. 687
17.5.1
Parameters
.......................... 687
17.5.2
Event Effects
........................ 688
17.5.3
Preconditions
........................ 689
17.5.4
State Constraints
...................... 689
17.5.5
Concurrent Events
...................... 690
17.5.6
Triggered Events
...................... 691
17.5.7
Continuous Change
..................... 692
17.5.8
Nondeterministic Effects
.................. 693
17.5.9
Indirect Effects
....................... 694
17.5.10
Partially Ordered Events
.................. 696
17.6
Action Language
8.......................... 697
17.7
Automated Event Calculus Reasoning
................ 699
17.7.1
Prolog
............................ 699
17.7.2
Answer Set Programming
................. 700
17.7.3
Satisfiability (SAT) Solving
................ 700
17.7.4
First-Order Logic Automated Theorem Proving
..... 700
17.8
Applications of the Event Calculus
................. 700
Bibliography
................................. 701
18
Temporal Action Logics
709
Patrick Doherty and Jonas
Kvarnström
18.1
Introduction
.............................. 709
Contents xxv
18.1.1 PMONandTAL...................... 710
18.1.2
Previous Work
....................... 711
18.1.3
Chapter Structure .....................
713
18.2 Basic
Concepts
............................ 713
18.3 TAL
Narratives
............................ 716
18.3.1
The Russian Airplane Hijack
Scenario
.......... 717
18.3.2
Narrative Background Specification
........... 718
18.3.3
Narrative Specification
.................. 723
18.4
The Relation Between the
TAL
Languages £(ND) and £(FL)
. . 724
18.5
The
TAL
Surface Language £(ND)
................. 725
18.5.1
Sorts, Terms and Variables
................ 725
18.5.2
Formulas
.......................... 726
18.5.3
Statements
......................... 727
18.6
The
TAL Base
Language £(FL)
................... 728
18.6.1
Translation from £(ND) to £(FL)
............ 728
18.7
Circumscription and
TAL
....................... 730
18.8
Representing Ramifications in
TAL
................. 735
18.9
Representing Qualifications in
TAL
................. 737
18.9.1
Enabling Fluents
...................... 738
18.9.2
Strong Qualification
.................... 740
18.9.3
Weak Qualification
..................... 740
18.9.4
Qualification: Not Only For Actions
........... 741
18.9.5
Ramifications as Qualifications
.............. 742
18.10
Action Expressivity in
TAL
..................... 742
18.11
Concurrent Actions in
TAL
...................... 744
18.11.1
Independent Concurrent Actions
............. 744
18.11.2
Interacting Concurrent Actions
.............. 745
18.11.3
Laws of Interaction
.................... 745
18.12
An Application of
TAL:
TALplanner
................ 747
18.13
Summary
............................... 752
Acknowledgements
.............................. 752
Bibliography
................................. 753
19
Nonmonotonic Causal Logic
759
Hudson
Türner
19.1
Fundamentals
............................. 762
19.1.1
Finite Domain Propositional Logic
............ 762
19.1.2
Causal Theories
...................... 763
19.2
Strong Equivalence
.......................... 765
19.3
Completion
.............................. 766
19.4
Expressiveness
............................ 768
19.4.1
Nondeterminism: Coin Tossing
.............. 768
19.4.2
Implied Action Preconditions: Moving an Object
.... 768
19.4.3
Things that Change by Themselves: Falling
Dominos . 769
19.4.4
Things that Tend to Change by Themselves: Pendulum
. 769
19.5
High-Level Action Language C+
.................. 770
19.6
Relationship to Default Logic
.................... 771
xxvi Contents
19.7
Causal
Theories in Higher-Order Classical Logic
.......... 772
19.8
A Logic of Universal Causation
................... 773
Acknowledgement
.............................. 774
Bibliography
................................. 774
III Knowledge Representation in Applications
777
20
Knowledge Representation and Question Answering
779
Marcello Balduccini,
Chitta
Barai
and Yuliya Lierler
20.1
Introduction
.............................. 779
20.1.1
Role of Knowledge Representation and Reasoning in QA
780
20.1.2
Architectural Overview of QA Systems Using Knowl¬
edge Representation and Reasoning
........... 782
20.2
From English to Logical Theories
.................. 783
20.3
The COGEX Logic
Prover
of the LCC QA System
........ 790
20.4
Extracting Relevant Facts from Logical Theories and its Use in the
DD QA System about Dynamic Domains and Trips
........ 792
20.4.1
The Overall Architecture of the DD System
....... 793
20.4.2
From Logic Forms to QSR Facts: An Illustration
.... 794
20.4.3
OSR: From QSR Relations to Domain Relations
.... 796
20.4.4
An Early Travel Module of the DD System
....... 798
20.4.5
Other Enhancements to the Travel Module
........ 802
20.5
From Natural Language to Relevant Facts in the
ASU
QA System
803
20.6
Nutcracker
—
System for Recognizing Textual Entailment
..... 806
20.7
Mueller s Story Understanding System
............... 810
20.8
Conclusion
............................... 813
Acknowledgements
.............................. 815
Bibliography
................................. 815
21
The Semantic Web: Webizing Knowledge Representation
821
Jim Hendler and Frank van
Harmelen
21.1
Introduction
.............................. 821
21.2
The Semantic Web Today
...................... 823
21.3
Semantic Web KR Language Design
................ 826
21.3.1
Web Infrastructure
..................... 826
21.3.2
Webizing KR
........................ 827
21.3.3
Scalability and the Semantic Web
............ 830
21.4
OWL—Defining a Semantic Web KR Language
.......... 831
21.5
Semantic Web KR Challenges
.................... 836
21.6
Beyond OWL
............................. 836
21.7
Conclusion
............................... 837
Acknowledgements
.............................. 837
Bibliography
................................. 838
22
Automated Planning
841
Alessandro Cimatti,
Marco Pistore and Paolo
Traverso
22.1
Introduction
.............................. 841
Contents xxvii
22.2 The General Framework....................... 843
22.2.1 Domains.......................... 843
22.2.2 Plans
and Plan Executions
................. 844
22.2.3 Goals and Problems.................... 845
22.3
Strong Planning under Full Observability
.............. 845
22.4
Strong Cyclic Planning under Full Observability
.......... 847
22.5
Planning for Temporally Extended Goals under Full Observability
850
22.6
Conformant Planning
......................... 857
22.7
Strong Planning under Partial Observability
............ 859
22.8
A Technological Overview
...................... 860
22.9
Conclusions
.............................. 863
Bibliography
................................. 864
23
Cognitive Robotics
869
Hector Levesque and Gerhard Lakemeyer
23.1
Introduction
.............................. 869
23.2
Knowledge Representation for Cognitive Robots
.......... 870
23.2.1
Varieties of Actions
.................... 871
23.2.2
Sensing
........................... 871
23.2.3
Knowledge
......................... 872
23.3
Reasoning for Cognitive Robots
................... 873
23.3.1
Projection via Progression and Regression
........ 873
23.3.2
Reasoning in Closed and Open Worlds
.......... 875
23.4
High-Level Control for Cognitive Robots
.............. 876
23.4.1
Classical Planning
..................... 876
23.4.2
High-Level Offline Robot Programming
......... 877
23.4.3
High-Level Online Robot Programming
......... 879
23.5
Conclusion
............................... 881
Bibliography
................................. 882
24
Multi-Agent Systems
887
Wiebe van
der Hoek
and Michael Wooldridge
24.1
Introduction
.............................. 887
24.2
Representing Rational Cognitive States
............... 888
24.2.1
A Logical Toolkit
..................... 890
24.2.2
Dynamic
Epistemic
Logic
................. 891
24.2.3
Cohen and Levesque s Intention Logic
.......... 893
24.2.4
Rao and Georgeff s
BDI
Logics
.............. 896
24.2.5
The
KARO
Framework
.................. 899
24.2.6
Discussion
......................... 903
24.2.7
Cognitive Agent Logics in Practice
............ 903
24.3
Representing the Strategic Structure of a System
.......... 909
24.3.1
Coalition Logic
...................... 910
24.3.2
Strategic Temporal Logic: ATL
.............. 913
24.3.3
Knowledge in Strategic Temporal Logics: ATEL
..... 916
24.3.4
CL-PC
........................... 919
24.3.5
Applications of Strategic Cooperation Logics
...... 920
xxviii Contents
24.4
Conclusions
.............................. 920
Bibliography
................................. 920
25
Knowledge Engineering
929
Guus Schreiber
25.1
Introduction
.............................. 929
25.2
Baseline
................................ 929
25.3
Tasks and Problem-Solving Methods
................ 930
25.3.1
Two Sample Problem-Solving Methods
......... 930
25.3.2
The Notion of Knowledge Role
............ 934
25.3.3
Specification Languages
.................. 935
25.4
Ontologies
............................... 936
25.4.1
Ontology Specification Languages
............ 937
25.4.2
Types of Ontologies
.................... 938
25.4.3
Ontology Engineering
................... 940
25.4.4
Ontologies and Data Models
............... 941
25.5
Knowledge Elicitation Techniques1
................. 941
Bibliography
................................. 943
Author Index
947
Subject Index
987
|
adam_txt |
Contents
Dedication
v
Preface
vii
Editors
xi
Contributors
xiii
Contents
xv
I General Methods in Knowledge Representation and
Reasoning
1
1
Knowledge Representation and Classical Logic
3
Vladimir Lifschitz, Leora
Morgenstern
and David Plaisted
1.1
Knowledge Representation and Classical Logic
. 3
1.2
Syntax, Semantics and Natural Deduction
. 4
1.2.1
Propositional Logic
. 4
1.2.2
First-Order Logic
. 8
1.2.3
Second-Order Logic
. 16
1.3
Automated Theorem Proving
. 18
1.3.1
Resolution in the Propositional Calculus
. 22
1.3.2
First-Order Proof Systems
. 25
1.3.3
Equality
. 37
1.3.4
Term Rewriting Systems
. 43
1.3.5
Confluence and Termination Properties
. 46
1.3.6
Equational Rewriting
. 50
1.3.7
Other Logics
. 55
1.4
Applications of Automated Theorem
Provers
. 58
1.4.1
Applications Involving Human Intervention
. 59
1.4.2
Non-Interactive KR Applications of Automated Theorem
Provers
. 61
1.4.3
Exploiting Structure
. 64
1.4.4
Prolog
. 65
1.5
Suitability of Logic for Knowledge Representation
. 67
1.5.1
Anti-logicist Arguments and Responses
. 67
xv
xvi Contents
Acknowledgements
. 74
Bibliography
. 74
2
Satisfiability Solvers
89
Carla
P. Gomes, Henry Kautz, Ashish Sabharwal and Bart
Selmán
2.1
Definitions and Notation
. 91
2.2
SAT Solver Technology—Complete Methods
. 92
2.2.1
The DPLL Procedure
. 92
2.2.2
Key Features of Modern DPLL-Based SAT Solvers
. 93
2.2.3
Clause Learning and Iterative DPLL
. 95
2.2.4
A Proof Complexity Perspective
. 100
2.2.5
Symmetry Breaking
. 104
2.3
SAT Solver Technology—Incomplete Methods
. 107
2.3.1
The Phase Transition Phenomenon in Random fc-SAT
. 109
2.3.2
A New Technique for Random
ł-SAT:
Survey Propagation
.
Ill
2.4
Runtime Variance and Problem Structure
. 112
2.4.1
Fat and Heavy Tailed Behavior
. 113
2.4.2
Backdoors
. 113
2.4.3
Restarts
. 115
2.5
Beyond SAT: Quantified Boolean Formulas and Model Counting
. . 117
2.5.1
QBFReasoning
. 117
2.5.2
Model Counting
. 120
Bibliography
. 122
3
Description Logics
135
Franz
Baader,
Ian
Horrocks
and
Ulrike Sattler
3.1
Introduction
. 135
3.2
A Basic
DL
and its Extensions
. 139
3.2.1
Syntax and Semantics of
ЛСС
. 140
3.2.2
Important Inference Problems
. 141
3.2.3
Important Extensions to
ЛСС
. 142
3.3
Relationships with other Formalisms
. 144
3.3.1
DLs and Predicate Logic
. 144
3.3.2
DLs and Modal Logic
. 145
3.4
Tableau Based Reasoning Techniques
. 146
3.4.1
A Tableau Algorithm for
ЛСС
. 146
3.4.2
Implementation and Optimization Techniques
. 150
3.5
Complexity
. 151
3.5.1
ЛСС АВох
Consistency is PSpace-complete
. 151
3.5.2
Adding General TBoxes Results in ExpTime-Hardness
. 154
3.5.3
The Effect of other Constructors
. 154
3.6
Other Reasoning Techniques
. 155
3.6.1
The Automata Based Approach
. 156
3.6.2
Structural Approaches
. 161
3.7
DLs in Ontology Language Applications
. 166
3.7.1
The OWL Ontology Language
. 166
3.7.2
OWL Tools and Applications
. 167
Contents xvii
3.8
Further Reading
. 168
Bibliography
. 169
Constraint Programming
181
Francesca Rossi, Peter van
Beek
and Toby Walsh
4.1
Introduction
. 181
4.2
Constraint Propagation
. 182
4.2.1
Local Consistency
. 183
4.2.2
Global Constraints
. 183
4.3
Search
. 184
4.3.1
Backtracking Search
. 184
4.3.2
Local Search
. 187
4.3.3
Hybrid Methods
. 188
4.4
Tractability
. 189
4.4.1
Tractable Constraint Languages
. 189
4.4.2
Tractable Constraint Graphs
. 191
4.5
Modeling
. 191
4.5.1
CP
v
-
CP
. 192
4.5.2
Viewpoints
. 192
4.5.3
Symmetry
. 193
4.6
Soft Constraints and Optimization
. 193
4.6.1
Modeling Soft Constraints
. 194
4.6.2
Searching for the Best Solution
. 195
4.6.3
Inference in Soft Constraints
. 195
4.7
Constraint Logic Programming
. 197
4.7.1
Logic Programs
. 197
4.7.2
Constraint Logic Programs
. 198
4.7.3
LP and CLP Languages
. 198
4.7.4
Other Programming Paradigms
. 199
4.8
Beyond Finite Domains
. 199
4.8.1
Intervals
. 199
4.8.2
Temporal Problems
. 200
4.8.3
Sets and other Datatypes
. 200
4.9
Distributed Constraint Programming
. 201
4.10
Application Areas
. 202
4.11
Conclusions
. 203
Bibliography
. 203
Conceptual Graphs
213
John F.
Sowa
5.1
From Existential Graphs to Conceptual Graphs
. 213
5.2
Common Logic
. 217
5.3
Reasoning with Graphs
. 223
5.4
Propositions, Situations, and Metalanguage
. 230
5.5
Research Extensions
. 233
Bibliography
. 235
xviii Contents
6
Nonmonotonic Reasoning
239
Gerhard Brewka, Ilkka
Memela
and
Mirosław Truszczyński
6.1
Introduction
. 239
Rules with exceptions
. 240
The frame problem
. 240
About this chapter
. 241
6.2
Default Logic
. 242
6.2.1
Basic Definitions and Properties
. 242
6.2.2
Computational Properties
. 246
6.2.3
Normal Default Theories
. 249
6.2.4
Closed-World Assumption and Normal Defaults
. 250
6.2.5
Variants of Default Logic
. 252
6.3
Autoepistemic Logic
. 252
6.3.1
Preliminaries, Intuitions and Basic Results
. 253
6.3.2
Computational Properties
. 258
6.4
Circumscription
. 260
6.4.1
Motivation
. 260
6.4.2
Defining Circumscription
. 261
6.4.3
Semantics
. 263
6.4.4
Computational Properties
. 264
6.4.5
Variants
. 266
6.5
Nonmonotonic Inference Relations
. 267
6.5.1
Semantic Specification of Inference Relations
. 268
6.5.2
Default Conditionals
. 270
6.5.3
Discussion
. 272
6.6
Further Issues and Conclusion
. 272
6.6.1
Relating Default and Autoepistemic Logics
. 273
6.6.2
Relating Default Logic and Circumscription
. 275
6.6.3
Further Approaches
. 276
Acknowledgements
. 277
Bibliography
. 277
7
Answer Sets
285
Michael Gelfond
7.1
Introduction
. 285
7.2
Syntax and Semantics of Answer Set Prolog
. 286
7.3
Properties of Logic Programs
. 292
7.3.1
Consistency of Logic Programs
. 292
7.3.2
Reasoning Methods for Answer Set Prolog
. 295
7.3.3
Properties of Entailment
. 297
7.3.4
Relations between Programs
. 298
7.4
A Simple Knowledge Base
. 300
7.5
Reasoning in Dynamic Domains
. 302
7.6
Extensions of Answer Set Prolog
. 307
7.7
Conclusion
. 309
Acknowledgements
. 310
Bibliography
. 310
Contents xix
8 Belief Revision 317
Pavios
Peppas
8.1
Introduction
. 317
8.2
Preliminaries
. 318
8.3
The AGM Paradigm
. 318
8.3.1
The AGM Postulates for Belief Revision
. 319
8.3.2
The AGM Postulates for Belief Contraction
. 320
8.3.3
Selection Functions
. 323
8.3.4
Epistemic
Entrenchment
. 325
8.3.5
System of Spheres
. 327
8.4
Belief Base Change
. 329
8.4.1
Belief Base Change Operations
. 331
8.4.2
Belief Base Change Schemes
. 332
8.5
Multiple Belief Change
. 335
8.5.1
Multiple Revision
. 336
8.5.2
Multiple Contraction
. 338
8.6
Iterated Revision
. 340
8.6.1
Iterated Revision with Enriched
Epistemic
Input
. 340
8.6.2
Iterated Revision with Simple
Epistemic
Input
. 343
8.7
Non-Prioritized Revision
. 346
8.8
BeliefUpdate
. 349
8.9
Conclusion
. 352
Acknowledgements
. 353
Bibliography
. 353
9
Qualitative Modeling
361
Kenneth D. Forbus
9.1
Introduction
. 361
9.1.1
Key Principles
. 362
9.1.2
Overview of Basic Qualitative Reasoning
. 363
9.2
Qualitative Mathematics
. 365
9.2.1
Quantities
. 365
9.2.2
Functions and Relationships
. 369
9.3
Ontology
. 371
9.3.1
Component Ontologies
. 372
9.3.2
Process Ontologies
. 373
9.3.3
Field Ontologies
. 374
9.4
Causality
. 374
9.5
Compositional Modeling
. 376
9.5.1
Model Formulation Algorithms
. 378
9.6
Qualitative States and Qualitative Simulation
. 379
9.7
Qualitative Spatial Reasoning
. 381
9.7.1
Topological Representations
. 381
9.7.2
Shape, Location, and Orientation Representations
. 382
9.7.3
Diagrammatic Reasoning
. 382
9.8
Qualitative Modeling Applications
. 383
xx Contents
9.8.1
Automating or Assisting
Professional
Reasoning
. 383
9.8.2
Education
. 384
9.8.3
Cognitive Modeling
. 386
9.9
Frontiers and Resources
. 387
Bibliography
. 387
10
Model-based Problem Solving
395
Peter Struss
10.1
Introduction
. 395
10.2
Tasks
. 398
10.2.1
Situation Assessment/Diagnosis
. 398
10.2.2
Test Generation, Measurement Proposal, Diagnosability
Analysis
. 399
10.2.3
Design and Failure-Modes-and-Effects Analysis
. 401
10.2.4
Proposal of Remedial Actions (Repair, Reconfiguration,
Recovery, Therapy)
. 402
10.2.5
Ingredients of Model-based Problem Solving
. 402
10.3
Requirements on Modeling
. 403
10.3.1
Behavior Prediction and Consistency Check
. 404
10.3.2
Validity of Behavior Modeling
. 405
10.3.3
Conceptual Modeling
. 405
10.3.4
(Automated) Model Composition
. 406
10.3.5
Genericky
. 406
10.3.6
Appropriate Granularity
. 407
10.4
Diagnosis
. 407
10.4.1
Consistency-based Diagnosis with Component-oriented
Models
. 408
10.4.2
Computation of Diagnoses
. 418
10.4.3
Solution Scope and Limitations of Component-Oriented
Diagnosis
. 422
10.4.4
Diagnosis across Time
. 423
10.4.5
Abductive Diagnosis
. 431
10.4.6
Process-Oriented Diagnosis
. 434
10.4.7
Model-based Diagnosis in Control Engineering
. 438
10.5
Test and Measurement Proposal, Diagnosability Analysis
. 438
10.5.1
Test Generation
. 439
10.5.2
Entropy-based Test Selection
. 444
10.5.3
Probe Selection
. 445
10.5.4
Diagnosability Analysis
. 446
10.6
Remedy Proposal
. 446
10.6.1
Integration of Diagnosis and Remedy Actions
. 448
10.6.2
Component-oriented Reconfiguration
. 450
10.6.3
Process-oriented Therapy Proposal
. 453
10.7
Other Tasks
. 454
10.7.1
Configuration and Design
. 454
10.7.2
Failure-Modes-and-Effects Analysis
. 456
10.7.3
Debugging and Testing of Software
. 456
Contents xxi
10.8 State and
Challenges
. 458
Acknowledgements
. 460
Bibliography
. 460
11
Bayesian Networks
467
Adnan
Darwiche
11.1
Introduction
. 467
11.2
Syntax and Semantics of Bayesian Networks
. 468
11.2.1
Notational Conventions
. 468
11.2.2
Probabilistic Beliefs
. 469
11.2.3
Bayesian Networks
. 470
11.2.4
Structured Representations of CPTs
. 471
11.2.5
Reasoning about Independence
. 471
11.2.6
Dynamic Bayesian Networks
. 472
11.3
Exact Inference
. 473
11.3.1
Structure-Based Algorithms
. 474
11.3.2
Inference with Local (Parametric) Structure
. 479
11.3.3
Solving MAP and
МРЕ
by Search
. 480
11.3.4
Compiling Bayesian Networks
. 481
11.3.5
Inference by Reduction to Logic
. 482
11.3.6
Additionallnference Techniques
. 484
11.4
Approximate Inference
. 485
11.4.1
Inference by Stochastic Sampling
. 485
11.4.2
Inference as Optimization
. 486
11.5
Constructing Bayesian Networks
. 489
11.5.1
Knowledge Engineering
. 489
11.5.2
High-Level Specifications
. 490
11.5.3
Learning Bayesian Networks
. 493
11.6
Causality and Intervention
. 497
Acknowledgements
. 498
Bibliography
. 499
11 Classes of Knowledge and Specialized Representations
511
12
Temporal Representation and Reasoning
513
Michael Fisher
12.1
Temporal Structures
. 514
12.1.1
Instants and Durations
. 514
12.1.2
From Discreteness to Density
. 515
12.1.3
Granularity Hierarchies
. 516
12.1.4
Temporal Organisation
. 517
12.1.5
Moving in Real Time
. 517
12.1.6
Intervals
. 518
12.2
Temporal Language
. 520
12.2.1
Modal Temporal Logic
. 520
12.2.2
Back to the Future
. 521
12.2.3
Temporal Arguments and Reified Temporal Logics
. . . . 521
xxii Contents
12.2.4 Operators
over Non-discrete
Models. 522
12.2.5
Intervals
. 523
12.2.6
Real-Time and Hybrid Temporal Languages
. 524
12.2.7
Quantification
. 525
12.2.8
Hybrid Temporal Logic and the Concept of "now"
. 528
12.3
Temporal Reasoning
. 528
12.3.1
Proof Systems
. 529
12.3.2
Automated Deduction
. 529
12.4
Applications
. 530
12.4.1
Natural Language
. 530
12.4.2
Reactive System Specification
. 531
12.4.3
Theorem-Proving
. 532
12.4.4
Model Checking
. 532
12.4.5
PSL/Sugar
. 534
12.4.6
Temporal Description Logics
. 534
12.5
Concluding Remarks
. 535
Acknowledgements
. 535
Bibliography
. 535
13
Qualitative Spatial Representation and Reasoning
551
Anthony G. Cohn and
Jochen Renz
13.1
Introduction
. 551
13.1.1
What is Qualitative Spatial Reasoning?
. 551
13.1.2
Applications of Qualitative Spatial Reasoning
. 553
13.2
Aspects of Qualitative Spatial Representation
. 554
13.2.1
Ontology
. 554
13.2.2
Spatial Relations
. 556
13.2.3
Mereology
. 557
13.2.4
Mereotopology
. 557
13.2.5
Between Mereotopology and Fully Metric Spatial Repre¬
sentation
. 566
13.2.6
Mereogeometry
. 570
13.2.7
Spatial Vagueness
. 571
13.3
Spatial Reasoning
. 572
13.3.1
Deduction
. 574
13.3.2
Composition
. 575
13.3.3
Constraint-based Spatial Reasoning
. 576
13.3.4
Finding Efficient Reasoning Algorithms
. 578
13.3.5
Planar Realizability
. 581
13.4
Reasoning about Spatial Change
. 581
13.5
Cognitive Validity
. 582
13.6
Final Remarks
. 583
Acknowledgements
. 584
Bibliography
. 584
Contents xxiii
14
Physical Reasoning
597
Ernest Davis
14.1
Architectures
. 600
14.1.1
Component Analysis
. 600
14.1.2
Process Model
. 601
14.2
Domain Theories
. 602
14.2.1
Rigid Object Kinematics
. 603
14.2.2
Rigid Object Dynamics
. 605
14.2.3
Liquids
. 608
14.3
Abstraction and Multiple Models
. 611
14.4
Historical and Bibliographical
. 614
14.4.1
Logic-based Representations
. 614
14.4.2
Solid Objects: Kinematics
. 615
14.4.3
Solid Object Dynamics
. 616
14.4.4
Abstraction and Multiple Models
. 616
14.4.5
Other
. 616
14.4.6
Books
. 617
Bibliography
. 618
15
Reasoning about Knowledge and Belief
621
Yoram Moses
15.1
Introduction
. 621
15.2
The Possible Worlds Model
. 622
15.2.1
A Language for Knowledge and Belief
. 622
15.3
Properties of Knowledge
. 626
15.4
The Knowledge of Groups
. 628
15.4.1
Common Knowledge
. 629
15.4.2
Distributed Knowledge
. 632
15.5
Runs and Systems
. 633
15.6
Adding Time
. 635
15.6.1
Common Knowledge and Time
. 636
15.7
Knowledge-based Behaviors
. 637
15.7.1
Contexts and Protocols
. 637
15.7.2
Knowledge-based Programs
. 639
15.7.3
A Subtle kb Program
. 641
15.8
Beyond Square One
. 643
15.9
How to Reason about Knowledge and Belief
. 644
15.9.1
Concluding Remark
. 645
Bibliography
. 645
Further reading
. 647
16
Situation Calculus
649
Fangzhen Lin
16.1
Axiomatizations
. 650
16.2
The Frame, the Ramification and the Qualification Problems
. . . 652
16.2.1
The Frame Problem—Reiter's Solution
. 654
16.2.2
The Ramification Problem and Lin's Solution
. 657
xxiv Contents
16.2.3 The
Qualification
Problem. 660
16.3
Reiter's Foundational Axioms and Basic Action Theories
. 661
16.4
Applications
. 665
16.5
Concluding Remarks
. 667
Acknowledgements
. 667
Bibliography
. 667
17
Event Calculus
671
Erik T. Mueller
17.1
Introduction
. 671
17.2
Versions of the Event Calculus
. 672
17.2.1
Original Event Calculus (OEC)
. 672
17.2.2
Simplified Event Calculus (SEC)
. 674
17.2.3
Basic Event Calculus
(ВЕС)
. 676
17.2.4
Event Calculus (EC)
. 679
17.2.5
Discrete Event Calculus (DEC)
. 681
17.2.6
Equivalence of DEC and EC
. 683
17.2.7
Other Versions
. 683
17.3
Relationship to other Formalisms
. 684
17.4
Default Reasoning
. 684
17.4.1
Circumscription
. 684
17.4.2
Computing Circumscription
. 685
17.4.3
Historical Note
. 686
17.4.4
Negation as Failure
. 687
17.5
Event Calculus Knowledge Representation
. 687
17.5.1
Parameters
. 687
17.5.2
Event Effects
. 688
17.5.3
Preconditions
. 689
17.5.4
State Constraints
. 689
17.5.5
Concurrent Events
. 690
17.5.6
Triggered Events
. 691
17.5.7
Continuous Change
. 692
17.5.8
Nondeterministic Effects
. 693
17.5.9
Indirect Effects
. 694
17.5.10
Partially Ordered Events
. 696
17.6
Action Language
8. 697
17.7
Automated Event Calculus Reasoning
. 699
17.7.1
Prolog
. 699
17.7.2
Answer Set Programming
. 700
17.7.3
Satisfiability (SAT) Solving
. 700
17.7.4
First-Order Logic Automated Theorem Proving
. 700
17.8
Applications of the Event Calculus
. 700
Bibliography
. 701
18
Temporal Action Logics
709
Patrick Doherty and Jonas
Kvarnström
18.1
Introduction
. 709
Contents xxv
18.1.1 PMONandTAL. 710
18.1.2
Previous Work
. 711
18.1.3
Chapter Structure .
713
18.2 Basic
Concepts
. 713
18.3 TAL
Narratives
. 716
18.3.1
The Russian Airplane Hijack
Scenario
. 717
18.3.2
Narrative Background Specification
. 718
18.3.3
Narrative Specification
. 723
18.4
The Relation Between the
TAL
Languages £(ND) and £(FL)
. . 724
18.5
The
TAL
Surface Language £(ND)
. 725
18.5.1
Sorts, Terms and Variables
. 725
18.5.2
Formulas
. 726
18.5.3
Statements
. 727
18.6
The
TAL Base
Language £(FL)
. 728
18.6.1
Translation from £(ND) to £(FL)
. 728
18.7
Circumscription and
TAL
. 730
18.8
Representing Ramifications in
TAL
. 735
18.9
Representing Qualifications in
TAL
. 737
18.9.1
Enabling Fluents
. 738
18.9.2
Strong Qualification
. 740
18.9.3
Weak Qualification
. 740
18.9.4
Qualification: Not Only For Actions
. 741
18.9.5
Ramifications as Qualifications
. 742
18.10
Action Expressivity in
TAL
. 742
18.11
Concurrent Actions in
TAL
. 744
18.11.1
Independent Concurrent Actions
. 744
18.11.2
Interacting Concurrent Actions
. 745
18.11.3
Laws of Interaction
. 745
18.12
An Application of
TAL:
TALplanner
. 747
18.13
Summary
. 752
Acknowledgements
. 752
Bibliography
. 753
19
Nonmonotonic Causal Logic
759
Hudson
Türner
19.1
Fundamentals
. 762
19.1.1
Finite Domain Propositional Logic
. 762
19.1.2
Causal Theories
. 763
19.2
Strong Equivalence
. 765
19.3
Completion
. 766
19.4
Expressiveness
. 768
19.4.1
Nondeterminism: Coin Tossing
. 768
19.4.2
Implied Action Preconditions: Moving an Object
. 768
19.4.3
Things that Change by Themselves: Falling
Dominos . 769
19.4.4
Things that Tend to Change by Themselves: Pendulum
. 769
19.5
High-Level Action Language C+
. 770
19.6
Relationship to Default Logic
. 771
xxvi Contents
19.7
Causal
Theories in Higher-Order Classical Logic
. 772
19.8
A Logic of Universal Causation
. 773
Acknowledgement
. 774
Bibliography
. 774
III Knowledge Representation in Applications
777
20
Knowledge Representation and Question Answering
779
Marcello Balduccini,
Chitta
Barai
and Yuliya Lierler
20.1
Introduction
. 779
20.1.1
Role of Knowledge Representation and Reasoning in QA
780
20.1.2
Architectural Overview of QA Systems Using Knowl¬
edge Representation and Reasoning
. 782
20.2
From English to Logical Theories
. 783
20.3
The COGEX Logic
Prover
of the LCC QA System
. 790
20.4
Extracting Relevant Facts from Logical Theories and its Use in the
DD QA System about Dynamic Domains and Trips
. 792
20.4.1
The Overall Architecture of the DD System
. 793
20.4.2
From Logic Forms to QSR Facts: An Illustration
. 794
20.4.3
OSR: From QSR Relations to Domain Relations
. 796
20.4.4
An Early Travel Module of the DD System
. 798
20.4.5
Other Enhancements to the Travel Module
. 802
20.5
From Natural Language to Relevant Facts in the
ASU
QA System
803
20.6
Nutcracker
—
System for Recognizing Textual Entailment
. 806
20.7
Mueller's Story Understanding System
. 810
20.8
Conclusion
. 813
Acknowledgements
. 815
Bibliography
. 815
21
The Semantic Web: Webizing Knowledge Representation
821
Jim Hendler and Frank van
Harmelen
21.1
Introduction
. 821
21.2
The Semantic Web Today
. 823
21.3
Semantic Web KR Language Design
. 826
21.3.1
Web Infrastructure
. 826
21.3.2
Webizing KR
. 827
21.3.3
Scalability and the Semantic Web
. 830
21.4
OWL—Defining a Semantic Web KR Language
. 831
21.5
Semantic Web KR Challenges
. 836
21.6
Beyond OWL
. 836
21.7
Conclusion
. 837
Acknowledgements
. 837
Bibliography
. 838
22
Automated Planning
841
Alessandro Cimatti,
Marco Pistore and Paolo
Traverso
22.1
Introduction
. 841
Contents xxvii
22.2 The General Framework. 843
22.2.1 Domains. 843
22.2.2 Plans
and Plan Executions
. 844
22.2.3 Goals and Problems. 845
22.3
Strong Planning under Full Observability
. 845
22.4
Strong Cyclic Planning under Full Observability
. 847
22.5
Planning for Temporally Extended Goals under Full Observability
850
22.6
Conformant Planning
. 857
22.7
Strong Planning under Partial Observability
. 859
22.8
A Technological Overview
. 860
22.9
Conclusions
. 863
Bibliography
. 864
23
Cognitive Robotics
869
Hector Levesque and Gerhard Lakemeyer
23.1
Introduction
. 869
23.2
Knowledge Representation for Cognitive Robots
. 870
23.2.1
Varieties of Actions
. 871
23.2.2
Sensing
. 871
23.2.3
Knowledge
. 872
23.3
Reasoning for Cognitive Robots
. 873
23.3.1
Projection via Progression and Regression
. 873
23.3.2
Reasoning in Closed and Open Worlds
. 875
23.4
High-Level Control for Cognitive Robots
. 876
23.4.1
Classical Planning
. 876
23.4.2
High-Level Offline Robot Programming
. 877
23.4.3
High-Level Online Robot Programming
. 879
23.5
Conclusion
. 881
Bibliography
. 882
24
Multi-Agent Systems
887
Wiebe van
der Hoek
and Michael Wooldridge
24.1
Introduction
. 887
24.2
Representing Rational Cognitive States
. 888
24.2.1
A Logical Toolkit
. 890
24.2.2
Dynamic
Epistemic
Logic
. 891
24.2.3
Cohen and Levesque's Intention Logic
. 893
24.2.4
Rao and Georgeff's
BDI
Logics
. 896
24.2.5
The
KARO
Framework
. 899
24.2.6
Discussion
. 903
24.2.7
Cognitive Agent Logics in Practice
. 903
24.3
Representing the Strategic Structure of a System
. 909
24.3.1
Coalition Logic
. 910
24.3.2
Strategic Temporal Logic: ATL
. 913
24.3.3
Knowledge in Strategic Temporal Logics: ATEL
. 916
24.3.4
CL-PC
. 919
24.3.5
Applications of Strategic Cooperation Logics
. 920
xxviii Contents
24.4
Conclusions
. 920
Bibliography
. 920
25
Knowledge Engineering
929
Guus Schreiber
25.1
Introduction
. 929
25.2
Baseline
. 929
25.3
Tasks and Problem-Solving Methods
. 930
25.3.1
Two Sample Problem-Solving Methods
. 930
25.3.2
The Notion of "Knowledge Role"
. 934
25.3.3
Specification Languages
. 935
25.4
Ontologies
. 936
25.4.1
Ontology Specification Languages
. 937
25.4.2
Types of Ontologies
. 938
25.4.3
Ontology Engineering
. 940
25.4.4
Ontologies and Data Models
. 941
25.5
Knowledge Elicitation Techniques1
. 941
Bibliography
. 943
Author Index
947
Subject Index
987 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Harmelen, Frank van |
author2_role | edt |
author2_variant | f v h fv fvh |
author_GND | (DE-588)124645429 |
author_facet | Harmelen, Frank van |
building | Verbundindex |
bvnumber | BV023394239 |
callnumber-first | Q - Science |
callnumber-label | Q387 |
callnumber-raw | Q387 |
callnumber-search | Q387 |
callnumber-sort | Q 3387 |
callnumber-subject | Q - General Science |
classification_rvk | AN 92650 ST 300 ST 304 |
ctrlnum | (OCoLC)253916712 (DE-599)OBVAC06400349 |
dewey-full | 006.332 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.332 |
dewey-search | 006.332 |
dewey-sort | 16.332 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines Informatik |
discipline_str_mv | Allgemeines Informatik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02069nam a2200517 c 4500</leader><controlfield tag="001">BV023394239</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111013 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080714s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444522115</subfield><subfield code="9">0-444-52211-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444522115</subfield><subfield code="9">978-0-444-52211-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)253916712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC06400349</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.332</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AN 92650</subfield><subfield code="0">(DE-625)6750:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 304</subfield><subfield code="0">(DE-625)143653:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of knowledge representation</subfield><subfield code="c">ed. by Frank van Harmelen ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 1005 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Foundations of artificial intelligence</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inteligência artificial</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representação de conhecimento</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentation des connaissances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge representation (Information theory)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informationstheorie</subfield><subfield code="0">(DE-588)4026927-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensrepräsentation</subfield><subfield code="0">(DE-588)4049534-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wissensrepräsentation</subfield><subfield code="0">(DE-588)4049534-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informationstheorie</subfield><subfield code="0">(DE-588)4026927-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harmelen, Frank van</subfield><subfield code="0">(DE-588)124645429</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016577135&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016577135</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023394239 |
illustrated | Illustrated |
index_date | 2024-07-02T21:21:16Z |
indexdate | 2024-07-09T21:17:37Z |
institution | BVB |
isbn | 0444522115 9780444522115 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016577135 |
oclc_num | 253916712 |
open_access_boolean | |
owner | DE-20 DE-83 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-20 DE-83 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-11 |
physical | XXVIII, 1005 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Elsevier |
record_format | marc |
series2 | Foundations of artificial intelligence |
spelling | Handbook of knowledge representation ed. by Frank van Harmelen ... 1. ed. Amsterdam [u.a.] Elsevier 2008 XXVIII, 1005 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Foundations of artificial intelligence Literaturangaben Inteligência artificial larpcal Representação de conhecimento larpcal Représentation des connaissances Knowledge representation (Information theory) Informationstheorie (DE-588)4026927-9 gnd rswk-swf Wissensrepräsentation (DE-588)4049534-6 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Wissensrepräsentation (DE-588)4049534-6 s Informationstheorie (DE-588)4026927-9 s Künstliche Intelligenz (DE-588)4033447-8 s DE-604 Harmelen, Frank van (DE-588)124645429 edt Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016577135&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Handbook of knowledge representation Inteligência artificial larpcal Representação de conhecimento larpcal Représentation des connaissances Knowledge representation (Information theory) Informationstheorie (DE-588)4026927-9 gnd Wissensrepräsentation (DE-588)4049534-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4026927-9 (DE-588)4049534-6 (DE-588)4033447-8 (DE-588)4143413-4 |
title | Handbook of knowledge representation |
title_auth | Handbook of knowledge representation |
title_exact_search | Handbook of knowledge representation |
title_exact_search_txtP | Handbook of knowledge representation |
title_full | Handbook of knowledge representation ed. by Frank van Harmelen ... |
title_fullStr | Handbook of knowledge representation ed. by Frank van Harmelen ... |
title_full_unstemmed | Handbook of knowledge representation ed. by Frank van Harmelen ... |
title_short | Handbook of knowledge representation |
title_sort | handbook of knowledge representation |
topic | Inteligência artificial larpcal Representação de conhecimento larpcal Représentation des connaissances Knowledge representation (Information theory) Informationstheorie (DE-588)4026927-9 gnd Wissensrepräsentation (DE-588)4049534-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Inteligência artificial Representação de conhecimento Représentation des connaissances Knowledge representation (Information theory) Informationstheorie Wissensrepräsentation Künstliche Intelligenz Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016577135&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT harmelenfrankvan handbookofknowledgerepresentation |