Molecular nanomagnets:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2008
|
Ausgabe: | 1. publ., reprinted |
Schriftenreihe: | Mesoscopic physics and nanotechnology
5 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 395 S. Ill., graph. Darst. |
ISBN: | 9780198567530 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV023391279 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080711s2008 xxuad|| |||| 00||| eng d | ||
020 | |a 9780198567530 |9 978-0-19-856753-0 | ||
035 | |a (OCoLC)254772787 | ||
035 | |a (DE-599)BVBBV023391279 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 | ||
050 | 0 | |a QC753.2 | |
082 | 0 | |a 538 | |
084 | |a UP 6500 |0 (DE-625)146428: |2 rvk | ||
100 | 1 | |a Gatteschi, Dante |e Verfasser |0 (DE-588)1074200845 |4 aut | |
245 | 1 | 0 | |a Molecular nanomagnets |c Dante Gatteschi ; Roberta Sessoli ; Jacques Villain |
250 | |a 1. publ., reprinted | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2008 | |
300 | |a XII, 395 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mesoscopic physics and nanotechnology |v 5 | |
650 | 4 | |a Magnetismus - Molekülsystem | |
650 | 4 | |a Magnetism | |
650 | 4 | |a Nanostructured materials |x Magnetic properties | |
650 | 0 | 7 | |a Magnetische Eigenschaft |0 (DE-588)4129002-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekül |0 (DE-588)4039972-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanopartikel |0 (DE-588)4333369-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanopartikel |0 (DE-588)4333369-2 |D s |
689 | 0 | 1 | |a Magnetische Eigenschaft |0 (DE-588)4129002-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Molekül |0 (DE-588)4039972-2 |D s |
689 | 1 | 1 | |a Magnetische Eigenschaft |0 (DE-588)4129002-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sessoli, Roberta |e Verfasser |4 aut | |
700 | 1 | |a Villain, Jacques |d 1934- |e Verfasser |0 (DE-588)13572354X |4 aut | |
830 | 0 | |a Mesoscopic physics and nanotechnology |v 5 |w (DE-604)BV011705218 |9 5 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016574216&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016574216 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137768661549056 |
---|---|
adam_text | CONTENTS
1
Introduction
1
2
Magnetic interactions in molecular systems
14
2.1
The spin Hamiltonian approach
15
2.1.1
Zeeman
and crystal field terms for isolated ions
15
2.1.2
Electron nucleus (hyperfine) interaction terms
20
2.1.3
Spin Hamiltonian for pairs
21
2.2
Single ion levels
23
2.3
Exchange interaction
30
2.3.1
Delocalization effects
30
2.3.2
Spin polarization effects
32
2.3.3
Some examples
34
2.3.4
Double exchange
35
2.3.5
Towards quantitative calculations of exchange
interactions
36
2.4
Through-space and other interactions
37
2.5
From pairs to clusters and beyond
39
2.5.1 Isotropie
coupling
39
2.5.2
Magnetic anisotropy in clusters
44
3
Observation of microscopic magnetism
49
3.1
Magnetic techniques
49
3.1.1
Standard
magnetometry
49
3.1.2
Time-dependent measurements
58
3.1.3
Micro-SQUID and micro-Hall probe techniques
61
3.1.4
Torque
magnetometry
64
3.1.5
Ac susceptometry
69
3.2
Specific heat measurements
75
3.2.1
The specific heat and its magnetic part
75
3.2.2
Magnetic specific heat at equilibrium
76
3.2.3
Measurement of the magnetic specific heat: the
relaxation method
78
3.2.4
Magnetic specific heat in an alternating current
80
3.3
Magnetic resonances
81
3.3.1
Electron paramagnetic resonance
81
3.3.2
Nuclear magnetic resonance
89
3.3.3
Muon spin resonance ^SR)
95
CONTENTS
3.4 Neutron
techniques
99
3.4.1
Polarized neutron diffraction
99
3.4.2
Inelastic neutron scattering
104
Single-molecule magnets
108
4.1
Serendipity versus rational design of SMMs
108
4.2
Synthetic strategies to SMMs
109
4.3
The use of preformed building blocks
118
4.3.1
Cyanide-based clusters
118
4.3.2
The disruption of oxocentred carboxylate triangles
123
4.4
Polyoxometalates
126
4.4.1
The role of pentagons
127
4.5
The templating effect
129
4.6
Solvothermal synthesis
132
4.7
A survey of the most investigated SMMs
134
4.7.1
The archetypal Mni2 acetate cluster
135
4.7.2
The Mn12 family
146
4.7.3
The reduced species of
Мщг
clusters
149
4.7.4
Fe8 clusters
151
4.7.5
Mn4 clusters
156
Thermally activated magnetic relaxation
160
5.1
Relaxation and relaxation time
160
5.2
Potential barrier
161
5.3
Transition probabilities and the master equation
163
5.4
Solution of the master equation
165
5.5
Spin-phonon interaction
167
5.5.1
Basic features
167
5.5.2
Local rotation
168
5.5.3
Local strain
168
5.5.4
Terms linear in the spin operators
169
5.6
Transition probabilities and the golden rule
171
5.7
Qualitative formulae
173
5.8
Multiphonon processes
175
5.9
Spin-phonon interactions resulting from exchange
176
5.10
Effect of photons
177
5.10.1
Phonons and photons
177
5.10.2
Photons at thermal equilibrium
177
5.10.3
The beauty of light
178
5.10.4
Classical
electromagnetism
and quantum
electrodynamics
180
5.10.5
Coherence and superradiance
180
5.11
Limitations of the model
180
CONTENTS ix
Magnetic
tunnelling of an isolated spin
182
6.1
Spin tunnelling
182
6.1.1
Particle tunnelling: a reminder
182
6.1.2
An example
183
6.1.3
The case
s
= 1/2 184
6.1.4
Case of an arbitrary spin
184
6.1.5
Delocalization
185
6.1.6
Large spin
=
classical spin?
187
6.1.7
Approximate localized eigenstates
188
6.2
Symmetry and selection rules for tunnelling
191
6.3
Tunnelling width for an isolated spin
192
6.4
Tunnel splitting according to perturbation theory
194
6.5
Time-dependent wavefunction: magnetic tunnelling
197
6.6
Effect of a field along the hard axis
199
6.7
Evaluation of the tunnel splitting for large spins
199
6.7.1
General methods
199
6.7.2
Example: the Hamiltonian
(2.5) 201
6.8
Diabolic points
203
6.8.1
Degeneracy with and without symmetry
203
6.8.2
The
von
Neumann-Wigner theorem
204
6.8.3
The quest of the Devil
205
Introduction to path integrals
209
7.1
General ideas
209
7.2
The enharmonic oscillator
209
7.3
Tunnel effect and
instantons
210
7.4
The path integral method applied to spins
213
Tunnelling in a time-dependent magnetic field at low
temperature
216
8.1
Advantages of a time-dependent magnetic field
216
8.2
Fast sweeping and adiabatic limit
218
8.3
Calculation of the reversal probability
219
8.3.1
Equations of motion
219
8.3.2
The solution of Landau, Zener, and
Stückelberg 221
8.3.3
Fast sweeping
222
8.3.4
Sweeping back and forth through the resonances
223
Interaction of a spin with the external
world at low temperature
225
9.1
Coherence, incoherence, and relaxation
225
9.1.1
Low temperatures
225
9.1.2
The window mechanism
226
CONTENTS
9.2
Hyperñne
interactions
227
9.2.1
The hyperfine field and its order of magnitude
227
9.2.2
Experimental evidence of hyperfine interactions
229
9.2.3
Linewidth of hyperfine origin
234
9.2.4
Relaxation of hyperfine origin
236
9.2.5
Effect of hyperfine interactions in the case of
time-dependent fields
237
9.2.6
How do nuclear spins relax?
238
9.3
Relaxation by
dipole
interactions between molecular spins
240
9.4
Other theoretical
approches
244
9.4.1
The theory of
Caldeira
and Leggett
244
9.4.2
Hyperfine interactions according to Prokofev and
Stamp
244
9.4.3
Hyperfine interactions as a random walk
245
9.4.4
Tunnelling as an effect of hyperfine interactions
247
10
Tunnelling between excited states
248
10.1
The three relaxation regimes
248
10.2
Tunnelling at resonance
248
10.3
Tunnel probability into an excited state
250
10.4
A remark about the dynamic susceptibility
253
10.5
Two different types of relaxation
253
10.6
Effect of a time-dependent field at
Τ φ
0 254
10.7
Role of excited spin states
254
10.8
Magnetic specific heat in the presence of spin tunnelling
255
10.9
Tunnelling out of resonance
257
11
Coherence and decoherence
258
11.1
The mystery of
Schrödinger s
cat
258
11.2
The density matrix
258
11.3
Master equation for the density matrix
260
11.4
Properties of the master matrix
Λ
261
11.5
Coherence and muon spectroscopy
262
11.6
Case of spin tunnelling
263
11.7
Spin tunnelling between localized states
264
11.7.1
Decoherence by nuclear spins in zero field
265
11.8
Potential applications of quantum coherence:
quantum computing
267
12
Disorder and magnetic tunnelling
269
12.1
Experimental evidence of disorder
269
12.2 Landau-Zener-Stückelberg
experiment with a distribution
of tunnel frequencies
269
12.3
The scaling law of Chudnovsky and Garanin
271
12.4
Other distortion isomers in
Мпігас
274
CONTENTS
12.5
Spin glass phases?
274
12.6
Conclusion
275
13
More experiments on single-molecule magnets
276
13.1
The advantages of complexity
276
13.2
Intercluster
interactions in Mn4 clusters
278
13.2.1
The effects of
intercluster
interactions on magnetic
tunnelling
278
13.2.2
The effects of magnetic tunnelling on long-range
magnetic order
281
13.3
Tunnelling and electromagnetic radiation
284
14
Other Magnetic Molecules
287
14.1
Magnetic wheels
289
14.1.1
Iron rings
291
14.2
Grids
297
14.3
Three-dimensional clusters
299
14.3.1
Spherical antiferromagnets
299
14.3.2
Vanadium cluster
301
14.3.3
Mixed-valence systems
303
15
Emerging trends in molecular nanomagnetism
306
15.1
SMMs based on a single metal ion
308
15.2
Single chain magnets
311
A Systems of units, physical constants and basic
mathematical tools
319
A.I International system of units, electromagnetic
CGS
and
electrostatic
CGS
systems
319
A.
2
Gauss system of units
320
A.3 Other common units
320
A.
4
Physical constants
320
A.
5
Stevens operators
321
A.6 3j- and
бј
-symbols
321
A.7 Different notation
322
В
The magnetic field
324
B.I A complicated vocabulary
324
B.2 Demagnetizing field and local field
324
B.3 Free energy
325
С
How irreversibility comes in
327
D
Basic properties of the master equation
329
E
Derivation of the Arrhenius law
331
CONTENTS
F
Phonems
and how to use them
333
F.I Memento of the basic formulae
333
F.2 Numerical calculation of the relaxation rate
336
G
High-order perturbation theory
340
H
Proof of the Landau—Zener—
Stückelberg
formula
343
I Tunnelling between hyperfine states
346
J
Specific heat
349
J.I Specific heat at equilibrium and at high frequency
349
J.2 Frequency-dependent specific heat
350
К
Master equation for the density matrix
352
K.I Basic hypotheses
352
K.2 An expression for the density matrix of a spin system
353
K.3 Perturbation theory
354
K.3.1 Diagrammatic expansion
354
K.3.
2
First and second diagrams
355
K.3.3 Third to sixth diagrams
358
K.3.
4
Summary of this section
360
K.4 Tunnelling
361
References
363
Index
389
|
adam_txt |
CONTENTS
1
Introduction
1
2
Magnetic interactions in molecular systems
14
2.1
The spin Hamiltonian approach
15
2.1.1
Zeeman
and crystal field terms for isolated ions
15
2.1.2
Electron nucleus (hyperfine) interaction terms
20
2.1.3
Spin Hamiltonian for pairs
21
2.2
Single ion levels
23
2.3
Exchange interaction
30
2.3.1
Delocalization effects
30
2.3.2
Spin polarization effects
32
2.3.3
Some examples
34
2.3.4
Double exchange
35
2.3.5
Towards quantitative calculations of exchange
interactions
36
2.4
Through-space and other interactions
37
2.5
From pairs to clusters and beyond
39
2.5.1 Isotropie
coupling
39
2.5.2
Magnetic anisotropy in clusters
44
3
Observation of microscopic magnetism
49
3.1
Magnetic techniques
49
3.1.1
Standard
magnetometry
49
3.1.2
Time-dependent measurements
58
3.1.3
Micro-SQUID and micro-Hall probe techniques
61
3.1.4
Torque
magnetometry
64
3.1.5
Ac susceptometry
69
3.2
Specific heat measurements
75
3.2.1
The specific heat and its magnetic part
75
3.2.2
Magnetic specific heat at equilibrium
76
3.2.3
Measurement of the magnetic specific heat: the
relaxation method
78
3.2.4
Magnetic specific heat in an alternating current
80
3.3
Magnetic resonances
81
3.3.1
Electron paramagnetic resonance
81
3.3.2
Nuclear magnetic resonance
89
3.3.3
Muon spin resonance ^SR)
95
CONTENTS
3.4 Neutron
techniques
99
3.4.1
Polarized neutron diffraction
99
3.4.2
Inelastic neutron scattering
104
Single-molecule magnets
108
4.1
Serendipity versus rational design of SMMs
108
4.2
Synthetic strategies to SMMs
109
4.3
The use of preformed building blocks
118
4.3.1
Cyanide-based clusters
118
4.3.2
The disruption of oxocentred carboxylate triangles
123
4.4
Polyoxometalates
126
4.4.1
The role of pentagons
127
4.5
The templating effect
129
4.6
Solvothermal synthesis
132
4.7
A survey of the most investigated SMMs
134
4.7.1
The archetypal Mni2 acetate cluster
135
4.7.2
The Mn12 family
146
4.7.3
The reduced species of
Мщг
clusters
149
4.7.4
Fe8 clusters
151
4.7.5
Mn4 clusters
156
Thermally activated magnetic relaxation
160
5.1
Relaxation and relaxation time
160
5.2
Potential barrier
161
5.3
Transition probabilities and the master equation
163
5.4
Solution of the master equation
165
5.5
Spin-phonon interaction
167
5.5.1
Basic features
167
5.5.2
Local rotation
168
5.5.3
Local strain
168
5.5.4
Terms linear in the spin operators
169
5.6
Transition probabilities and the golden rule
171
5.7
Qualitative formulae
173
5.8
Multiphonon processes
175
5.9
Spin-phonon interactions resulting from exchange
176
5.10
Effect of photons
177
5.10.1
Phonons and photons
177
5.10.2
Photons at thermal equilibrium
177
5.10.3
The beauty of light
178
5.10.4
Classical
electromagnetism
and quantum
electrodynamics
180
5.10.5
Coherence and superradiance
180
5.11
Limitations of the model
180
CONTENTS ix
Magnetic
tunnelling of an isolated spin
182
6.1
Spin tunnelling
182
6.1.1
Particle tunnelling: a reminder
182
6.1.2
An example
183
6.1.3
The case
s
= 1/2 184
6.1.4
Case of an arbitrary spin
184
6.1.5
Delocalization
185
6.1.6
Large spin
=
classical spin?
187
6.1.7
Approximate localized eigenstates
188
6.2
Symmetry and selection rules for tunnelling
191
6.3
Tunnelling width for an isolated spin
192
6.4
Tunnel splitting according to perturbation theory
194
6.5
Time-dependent wavefunction: magnetic tunnelling
197
6.6
Effect of a field along the hard axis
199
6.7
Evaluation of the tunnel splitting for large spins
199
6.7.1
General methods
199
6.7.2
Example: the Hamiltonian
(2.5) 201
6.8
Diabolic points
203
6.8.1
Degeneracy with and without symmetry
203
6.8.2
The
von
Neumann-Wigner theorem
204
6.8.3
The quest of the Devil
205
Introduction to path integrals
209
7.1
General ideas
209
7.2
The enharmonic oscillator
209
7.3
Tunnel effect and
instantons
210
7.4
The path integral method applied to spins
213
Tunnelling in a time-dependent magnetic field at low
temperature
216
8.1
Advantages of a time-dependent magnetic field
216
8.2
Fast sweeping and adiabatic limit
218
8.3
Calculation of the reversal probability
219
8.3.1
Equations of motion
219
8.3.2
The solution of Landau, Zener, and
Stückelberg 221
8.3.3
Fast sweeping
222
8.3.4
Sweeping back and forth through the resonances
223
Interaction of a spin with the external
world at low temperature
225
9.1
Coherence, incoherence, and relaxation
225
9.1.1
Low temperatures
225
9.1.2
The window mechanism
226
CONTENTS
9.2
Hyperñne
interactions
227
9.2.1
The hyperfine field and its order of magnitude
227
9.2.2
Experimental evidence of hyperfine interactions
229
9.2.3
Linewidth of hyperfine origin
234
9.2.4
Relaxation of hyperfine origin
236
9.2.5
Effect of hyperfine interactions in the case of
time-dependent fields
237
9.2.6
How do nuclear spins relax?
238
9.3
Relaxation by
dipole
interactions between molecular spins
240
9.4
Other theoretical
approches
244
9.4.1
The theory of
Caldeira
and Leggett
244
9.4.2
Hyperfine interactions according to Prokofev and
Stamp
244
9.4.3
Hyperfine interactions as a random walk
245
9.4.4
Tunnelling as an effect of hyperfine interactions
247
10
Tunnelling between excited states
248
10.1
The three relaxation regimes
248
10.2
Tunnelling at resonance
248
10.3
Tunnel probability into an excited state
250
10.4
A remark about the dynamic susceptibility
253
10.5
Two different types of relaxation
253
10.6
Effect of a time-dependent field at
Τ φ
0 254
10.7
Role of excited spin states
254
10.8
Magnetic specific heat in the presence of spin tunnelling
255
10.9
Tunnelling out of resonance
257
11
Coherence and decoherence
258
11.1
The mystery of
Schrödinger's
cat
258
11.2
The density matrix
258
11.3
Master equation for the density matrix
260
11.4
Properties of the master matrix
Λ
261
11.5
Coherence and muon spectroscopy
262
11.6
Case of spin tunnelling
263
11.7
Spin tunnelling between localized states
264
11.7.1
Decoherence by nuclear spins in zero field
265
11.8
Potential applications of quantum coherence:
quantum computing
267
12
Disorder and magnetic tunnelling
269
12.1
Experimental evidence of disorder
269
12.2 Landau-Zener-Stückelberg
experiment with a distribution
of tunnel frequencies
269
12.3
The scaling law of Chudnovsky and Garanin
271
12.4
Other distortion isomers in
Мпігас
274
CONTENTS
12.5
Spin glass phases?
274
12.6
Conclusion
275
13
More experiments on single-molecule magnets
276
13.1
The advantages of complexity
276
13.2
Intercluster
interactions in Mn4 clusters
278
13.2.1
The effects of
intercluster
interactions on magnetic
tunnelling
278
13.2.2
The effects of magnetic tunnelling on long-range
magnetic order
281
13.3
Tunnelling and electromagnetic radiation
284
14
Other Magnetic Molecules
287
14.1
Magnetic wheels
289
14.1.1
Iron rings
291
14.2
Grids
297
14.3
Three-dimensional clusters
299
14.3.1
Spherical antiferromagnets
299
14.3.2
Vanadium cluster
301
14.3.3
Mixed-valence systems
303
15
Emerging trends in molecular nanomagnetism
306
15.1
SMMs based on a single metal ion
308
15.2
Single chain magnets
311
A Systems of units, physical constants and basic
mathematical tools
319
A.I International system of units, electromagnetic
CGS
and
electrostatic
CGS
systems
319
A.
2
Gauss' system of units
320
A.3 Other common units
320
A.
4
Physical constants
320
A.
5
Stevens operators
321
A.6 3j- and
бј
-symbols
321
A.7 Different notation
322
В
The magnetic field
324
B.I A complicated vocabulary
324
B.2 Demagnetizing field and local field
324
B.3 Free energy
325
С
How irreversibility comes in
327
D
Basic properties of the master equation
329
E
Derivation of the Arrhenius law
331
CONTENTS
F
Phonems
and how to use them
333
F.I Memento of the basic formulae
333
F.2 Numerical calculation of the relaxation rate
336
G
High-order perturbation theory
340
H
Proof of the Landau—Zener—
Stückelberg
formula
343
I Tunnelling between hyperfine states
346
J
Specific heat
349
J.I Specific heat at equilibrium and at high frequency
349
J.2 Frequency-dependent specific heat
350
К
Master equation for the density matrix
352
K.I Basic hypotheses
352
K.2 An expression for the density matrix of a spin system
353
K.3 Perturbation theory
354
K.3.1 Diagrammatic expansion
354
K.3.
2
First and second diagrams
355
K.3.3 Third to sixth diagrams
358
K.3.
4
Summary of this section
360
K.4 Tunnelling
361
References
363
Index
389 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Gatteschi, Dante Sessoli, Roberta Villain, Jacques 1934- |
author_GND | (DE-588)1074200845 (DE-588)13572354X |
author_facet | Gatteschi, Dante Sessoli, Roberta Villain, Jacques 1934- |
author_role | aut aut aut |
author_sort | Gatteschi, Dante |
author_variant | d g dg r s rs j v jv |
building | Verbundindex |
bvnumber | BV023391279 |
callnumber-first | Q - Science |
callnumber-label | QC753 |
callnumber-raw | QC753.2 |
callnumber-search | QC753.2 |
callnumber-sort | QC 3753.2 |
callnumber-subject | QC - Physics |
classification_rvk | UP 6500 |
ctrlnum | (OCoLC)254772787 (DE-599)BVBBV023391279 |
dewey-full | 538 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 538 - Magnetism |
dewey-raw | 538 |
dewey-search | 538 |
dewey-sort | 3538 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. publ., reprinted |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02128nam a2200529zcb4500</leader><controlfield tag="001">BV023391279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080711s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198567530</subfield><subfield code="9">978-0-19-856753-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254772787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023391279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC753.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">538</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 6500</subfield><subfield code="0">(DE-625)146428:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gatteschi, Dante</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1074200845</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular nanomagnets</subfield><subfield code="c">Dante Gatteschi ; Roberta Sessoli ; Jacques Villain</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ., reprinted</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 395 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mesoscopic physics and nanotechnology</subfield><subfield code="v">5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetismus - Molekülsystem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield><subfield code="x">Magnetic properties</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetische Eigenschaft</subfield><subfield code="0">(DE-588)4129002-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekül</subfield><subfield code="0">(DE-588)4039972-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanopartikel</subfield><subfield code="0">(DE-588)4333369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanopartikel</subfield><subfield code="0">(DE-588)4333369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Magnetische Eigenschaft</subfield><subfield code="0">(DE-588)4129002-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Molekül</subfield><subfield code="0">(DE-588)4039972-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Magnetische Eigenschaft</subfield><subfield code="0">(DE-588)4129002-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sessoli, Roberta</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Villain, Jacques</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13572354X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mesoscopic physics and nanotechnology</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV011705218</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016574216&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016574216</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023391279 |
illustrated | Illustrated |
index_date | 2024-07-02T21:20:01Z |
indexdate | 2024-07-09T21:17:33Z |
institution | BVB |
isbn | 9780198567530 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016574216 |
oclc_num | 254772787 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XII, 395 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Oxford Univ. Press |
record_format | marc |
series | Mesoscopic physics and nanotechnology |
series2 | Mesoscopic physics and nanotechnology |
spelling | Gatteschi, Dante Verfasser (DE-588)1074200845 aut Molecular nanomagnets Dante Gatteschi ; Roberta Sessoli ; Jacques Villain 1. publ., reprinted Oxford [u.a.] Oxford Univ. Press 2008 XII, 395 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mesoscopic physics and nanotechnology 5 Magnetismus - Molekülsystem Magnetism Nanostructured materials Magnetic properties Magnetische Eigenschaft (DE-588)4129002-1 gnd rswk-swf Molekül (DE-588)4039972-2 gnd rswk-swf Nanopartikel (DE-588)4333369-2 gnd rswk-swf Nanopartikel (DE-588)4333369-2 s Magnetische Eigenschaft (DE-588)4129002-1 s DE-604 Molekül (DE-588)4039972-2 s 1\p DE-604 Sessoli, Roberta Verfasser aut Villain, Jacques 1934- Verfasser (DE-588)13572354X aut Mesoscopic physics and nanotechnology 5 (DE-604)BV011705218 5 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016574216&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gatteschi, Dante Sessoli, Roberta Villain, Jacques 1934- Molecular nanomagnets Mesoscopic physics and nanotechnology Magnetismus - Molekülsystem Magnetism Nanostructured materials Magnetic properties Magnetische Eigenschaft (DE-588)4129002-1 gnd Molekül (DE-588)4039972-2 gnd Nanopartikel (DE-588)4333369-2 gnd |
subject_GND | (DE-588)4129002-1 (DE-588)4039972-2 (DE-588)4333369-2 |
title | Molecular nanomagnets |
title_auth | Molecular nanomagnets |
title_exact_search | Molecular nanomagnets |
title_exact_search_txtP | Molecular nanomagnets |
title_full | Molecular nanomagnets Dante Gatteschi ; Roberta Sessoli ; Jacques Villain |
title_fullStr | Molecular nanomagnets Dante Gatteschi ; Roberta Sessoli ; Jacques Villain |
title_full_unstemmed | Molecular nanomagnets Dante Gatteschi ; Roberta Sessoli ; Jacques Villain |
title_short | Molecular nanomagnets |
title_sort | molecular nanomagnets |
topic | Magnetismus - Molekülsystem Magnetism Nanostructured materials Magnetic properties Magnetische Eigenschaft (DE-588)4129002-1 gnd Molekül (DE-588)4039972-2 gnd Nanopartikel (DE-588)4333369-2 gnd |
topic_facet | Magnetismus - Molekülsystem Magnetism Nanostructured materials Magnetic properties Magnetische Eigenschaft Molekül Nanopartikel |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016574216&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011705218 |
work_keys_str_mv | AT gatteschidante molecularnanomagnets AT sessoliroberta molecularnanomagnets AT villainjacques molecularnanomagnets |