Spin physics in semiconductors:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schriftenreihe: | Springer series in solid state sciences
157 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 439 S. Ill., graph. Darst. |
ISBN: | 9783540788195 3540788190 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023387352 | ||
003 | DE-604 | ||
005 | 20081113 | ||
007 | t | ||
008 | 080709s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N12,0575 |2 dnb | ||
016 | 7 | |a 987805894 |2 DE-101 | |
020 | |a 9783540788195 |c Gb. : EUR 149.75 (freier Pr.), ca. sfr 244.00 (freier Pr.) |9 978-3-540-78819-5 | ||
020 | |a 3540788190 |c Gb. : ca. EUR 149.75 (freier Pr.), ca. sfr 244.00 (freier Pr.) |9 3-540-78819-0 | ||
024 | 3 | |a 9783540788195 | |
028 | 5 | 2 | |a 12037452 |
035 | |a (OCoLC)222164414 | ||
035 | |a (DE-599)DNB987805894 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-20 |a DE-355 |a DE-91G |a DE-19 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QC611 | |
050 | 0 | |a TK7874.887 | |
082 | 0 | |a 537.22 |2 22 | |
084 | |a UP 1100 |0 (DE-625)146344: |2 rvk | ||
084 | |a UP 3150 |0 (DE-625)146377: |2 rvk | ||
084 | |a PHY 685f |2 stub | ||
084 | |a 530 |2 sdnb | ||
084 | |a PHY 749f |2 stub | ||
245 | 1 | 0 | |a Spin physics in semiconductors |c M. I. Dyakonov (Ed.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XVIII, 439 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in solid state sciences |v 157 | |
650 | 4 | |a Semiconducteurs | |
650 | 4 | |a Spin | |
650 | 4 | |a Nuclear spin | |
650 | 4 | |a Semiconductors | |
650 | 0 | 7 | |a Halbleiter |0 (DE-588)4022993-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetoelektronik |0 (DE-588)4532095-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spinpolarisation |0 (DE-588)4182332-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Halbleiter |0 (DE-588)4022993-2 |D s |
689 | 0 | 1 | |a Spinpolarisation |0 (DE-588)4182332-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Halbleiter |0 (DE-588)4022993-2 |D s |
689 | 1 | 1 | |a Magnetoelektronik |0 (DE-588)4532095-0 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Dyakonov, Mikhail I. |4 edt | |
830 | 0 | |a Springer series in solid state sciences |v 157 |w (DE-604)BV000016582 |9 157 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016570353&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016570353 |
Datensatz im Suchindex
_version_ | 1804137762829369344 |
---|---|
adam_text | Contents
Preface
............................................................
vii
List of Contributors
................................................ xvii
1
Basics of Semiconductor and Spin Physics
.......................... 1
M.I. Dyakonov
.................................................... 1
1.1
Historical Background
........................................... 1
1.2
Spin Interactions
............................................... 2
1.2.1
The
Pauli
Principle
....................................... 2
1.2.2
Exchange Interaction
..................................... 3
1.2.3
Spin-Orbit Interaction
.................................... 3
1.2.4
Hyperfine Interaction with Nuclear Spins
.................... 4
1.2.5
Magnetic Interaction
...................................... 5
1.3
Basics of Semiconductor Physics
.................................. 5
1.3.1
Electron Energy Spectrum in a Crystal
....................... 5
1.3.2
Effective Masses of Electrons and Holes
..................... 5
1.3.3
The Effective Mass Approximation
......................... 6
1.3.4
Role of Impurities
........................................ 7
1.3.5
Excitons
................................................ 8
1.3.6
The Structure of the Valence Band. Light and Heavy Holes
..... 8
1.3.7
Band Structure of GaAs
................................... 11
1.3.8
Photo-generation of Carriers and Luminescence
............... 11
1.3.9
Angular Momentum Conservation in Optical Transitions
....... 12
1.3.10
Low Dimensional Semiconductor Structures
.................. 13
1.4
Overview of Spin Physics in Semiconductors
....................... 15
1.4.1
Optical Spin Orientation and Detection
...................... 15
1.4.2
Spin Relaxation
.......................................... 16
1.4.3
Hanle Effect
............................................. 21
1.4.4
Mutual Transformations of Spin and Charge Currents
.......... 22
1.4.5
Interaction between the Electron and Nuclear Spin Systems
..... 23
1.5
Overview of the Book Content
.................................... 25
References
.................................................... 26
χ
Contents
2
Spin Dynamics of Free Carriers in Quantum Wells
................... 29
R.T. Harley
...................................................... 29
2.1
Introduction
................................................... 29
2.2
Optical Measurements of Spin Dynamics
........................... 29
2.3
Mechanisms of Spin Relaxation of Free Electrons
.................... 32
2.4
Electron Spin Relaxation in Bulk Semiconductors
................... 35
2.5
Electron Spin Relaxation in
[001]
-Oriented Quantum Wells
........... 37
2.5.1
Symmetrical [OOlJ-Oriented Quantum Wells
.................. 37
2.5.2
Structural Inversion Asymmetry in
[001]
-Oriented Quantum
Wells
................................................... 40
2.5.3
Natural Interface Asymmetry in Quantum Wells
.............. 42
2.5.4
Oscillatory Spin-Dynamics in Two-dimensional Electron
Gases
.................................................. 45
2.6
Spin Dynamics of Free Holes in Bulk Material and Quantum Wells
..... 47
2.7
Engineering and Controlling the Spin Dynamics in Quantum Wells
..... 49
2.8
Conclusions
................................................... 51
References
.................................................... 52
3
Exciton Spin Dynamics in Semiconductor Quantum Wells
............ 55
T. Amand and X. Marie
............................................. 55
3.1
Two-dimensional Exciton Fine Structure
........................... 55
3.1.1
Short-Range Electron-Hole Exchange
....................... 56
3.1.2
Long-Range Electron-Hole Exchange
....................... 57
3.2
Optical Orientation of Exciton Spin in Quantum Wells
................ 58
3.3
Exciton Spin Dynamics in Quantum Wells
.......................... 60
3.3.1
Exciton Formation in Quantum Wells
....................... 60
3.3.2
Spin Relaxation of Exciton-Bound Hole
..................... 62
3.3.3
Spin Relaxation of Exciton-Bound Electron
.................. 65
3.3.4
Exciton Spin Relaxation Mechanism
........................ 66
3.4
Exciton Exchange Energy and g-Factor in Quantum Wells
............ 72
3.4.1
Exchange Interaction of
Excitons
and g-Factor Measured with
cw Magneto-Photoluminescence Spectroscopy
................ 73
3.4.2
Exciton Spin Quantum Beats Spectroscopy
................... 76
3.5
Exciton Spin Dynamics in Type II Quantum Wells
................... 81
3.6
Spin Dynamics in Dense Excitonic Systems
......................... 83
References
.................................................... 86
4
Exciton Spin Dynamics in Semiconductor Quantum Dots
............. 91
X. Marie, B. Urbaszek, O.
Krebs
and T. Amand
.......................... 91
4.1
Introduction
................................................... 91
4.2
Electron-Hole Complexes in Quantum Dots
........................ 92
4.2.1
Coulomb Corrections to the Single Particle Picture
............ 93
4.2.2
Fine Structure of Neutral
Excitons
.......................... 93
4.3
Exciton Spin Dynamics in Neutral Quantum Dots without Applied
Magnetic Fields
................................................ 95
Contents xi
4.3.1 Exciton
Spin Dynamics under Resonant Excitation
............ 95
4.3.2
Exciton Spin Quantum Beats: The Role of
Anisotropie
Exchange
............................................... 97
4.4
Exciton Spin Dynamics in Neutral Quantum Dots in External Magnetic
Fields
......................................................... 98
4.4.1
Zeeman
Effect Versus
Anisotropie
Exchange Splittings in Single
Dot Spectroscopy
........................................ 98
4.4.2
Exciton Spin Quantum Beats in Applied Magnetic Fields
....... 100
4.5
Charged Exciton Complexes: Spin Dynamics without Applied Magnetic
Fields
......................................................... 101
4.5.1
Formation of
Trions:
Doped and Charge Tuneable Structures
.... 102
4.5.2
Fine Structure and Polarization of X+ and X~
Excitons
........ 103
4.5.3
Spin Dynamics in Negatively Charged Exciton
Complexes X ~
......................................... 104
4.5.4
Spin Memory of Trapped Electrons
......................... 106
4.6
Charged Exciton Complexes: Spin Dynamics in Applied Magnetic
Fields
......................................................... 106
4.6.1
Electron Spin Polarization in Positively Charged
Excitons
in
Longitudinal Magnetic Fields
.............................. 107
4.6.2
Electron Spin Coherence in Positively Charged
Excitons
in
Transverse Magnetic Fields
................................ 109
4.7
Conclusions
................................................... 110
References
.................................................... 110
5
Time-Resolved Spin Dynamics and Spin Noise Spectroscopy
.......... 115
J.
Hübner
and
M. Oestreich
......................................... 115
5.1
Introduction
................................................... 115
5.2
Time- and Polarization-Resolved
Photoluminescence
................. 116
5.2.1
Experimental Technique
................................... 117
5.2.2
Experimental Example I: Spin Relaxation in
(110)
Oriented
Quantum Wells
.......................................... 119
5.2.3
Experimental Example II: Coherent Dynamics of Coupled
Electron and Hole Spins in Semiconductors
.................. 122
5.2.4
Photoluminescence
and Spin-Optoelectronic Devices
.......... 123
5.3
Time-Resolved Faraday/Kerr Rotation
............................. 123
5.3.1
Experimental Set-Up
..................................... 125
5.3.2
Experimental Example: Spin Amplification
................... 127
5.4
Spin Noise Spectroscopy
........................................ 129
5.4.1
Experimental Realization
.................................. 129
5.5
Spin Noise Measurements in
и
-GaAs
..............................
131
5.6
Conclusions
................................................... 132
References
.................................................... 133
xii Contents
6
Coherent Spin Dynamics of Carriers
............................... 135
D.R. Yakovlev andM. Bayer
......................................... 135
6.1
Introduction
................................................... 135
6.1.1
Spin Coherence and Spin Dephasing Times
.................. 136
6.1.2
Optical Generation of Spin Coherent Carriers
................. 137
6.1.3
Experimental Technique
................................... 138
6.2
Spin Coherence in Quantum Wells
................................ 140
6.2.1
Electron Spin Coherence
.................................. 141
6.2.2
Hole Spin Coherence
..................................... 151
6.3
Spin Coherence in Singly Charged Quantum Dots
................... 153
6.3.1
Excitan
and Electron Spin Beats Probed by Faraday Rotation
... 155
6.3.2
Generation of Electron Spin Coherence
...................... 157
6.3.3
Mode Locking of Spin Coherence in an Ensemble of Quantum
Dots
................................................... 160
6.3.4
Nuclei Induced Frequency Focusing of Spin Coherence
........ 169
6.4
Conclusions
................................................... 174
References
.................................................... 175
7
Spin Properties of Confined Electrons in Si
.......................... 179
W. Jantsch and Z. Wilamowski
....................................... 179
7.1
Introduction
................................................... 179
7.2
Spin-Orbit Effects in Si Quantum Wells
............................ 182
7.2.1
The Bychkov-Rashba Field
................................ 182
7.3
Spin Relaxation of Conduction Electrons in Si/SiGe Quantum Wells
.... 186
7.3.1
Mechanisms of Spin Relaxation of Conduction Electrons
....... 186
7.3.2
Linewidth and the Longitudinal Relaxation Time of the
Two-dimensional Electron Gas in Si/SiGe
.................... 187
7.3.3
Dephasing and Longitudinal Spin Relaxation
................. 191
7.3.4
Comparison with Experiment
.............................. 194
7.4
Current Induced Spin-Orbit Field
................................. 195
7.5
ESR Excited by an ac Current
.................................... 197
7.5.1
Electric
Dipole
vs. Magnetic
Dipole
Spin Excitation
........... 197
7.5.2
The ESR Signal Strength in Two-dimensional Si/SiGe
Structures
—
Experimental Results
.......................... 198
7.5.3
Modeling the Current Induced Excitation and Detection
of ESR
................................................. 199
7.5.4
Power Absorption, Line Shape
............................. 201
7.6
Spin Relaxation under Lateral Confinement
......................... 201
7.6.1
Shallow Donors
.......................................... 202
7.6.2
From the Two-dimensional Electron Gas to Quantum Dots
...... 204
7.6.3
Spin Relaxation and Dephasing in Si Quantum Dots
........... 205
7.7
Conclusions
................................................... 206
References
.................................................... 207
Contents xiii
8
Spin Hall Effect
.................................................. 21
1
M.I. Dyakonov andA.V. Khaetskii
.................................... 211
8.1
Background:
Magnetotransport in
Molecular Gases
.................. 211
8.2
Phenomenology (with Inversion Symmetry)
......................... 213
8.2.1
Preliminaries
............................................ 213
8.2.2
Spin and Charge Current Coupling
.......................... 213
8.2.3
Phenomenological Equations
............................... 214
8.2.4
Physical Consequences of Spin-Charge Coupling
............. 215
8.2.5
Related Problems
........................................ 218
8.2.6
Electrical Effects of Second Order in Spin-Orbit Interaction
.... 219
8.3
Phenomenology (without Inversion Symmetry)
...................... 222
8.4
Microscopic Mechanisms
........................................ 223
8.4.1
Spin Asymmetry in Electron Scattering
...................... 223
8.4.2
The Side Jump Mechanism
................................ 226
8.4.3
Intrinsic Mechanism
...................................... 231
8.5
Experiments
................................................... 235
8.6
Conclusion
.................................................... 239
Appendix A: The Generalized Kinetic Equation
..................... 239
References
.................................................... 241
9
Spin-Photogalvanics
.............................................. 245
E.L Ivchenko and S. Ganichev
....................................... 245
9.1
Introduction. Phenomenological Description
........................ 245
9.2
Circular Photogalvanic Effect
..................................... 247
9.2.1
Historical Background
.................................... 247
9.2.2
Basic Experiments
....................................... 248
9.2.3
Microscopic Model for Inter-Sub-Band Transitions
............ 251
9.2.4
Relation to it-Linear Terms
................................ 251
9.2.5
Circular PGE Due to Inter-Sub-Band Transitions
.............. 251
9.2.6
Interband
Optical Transitions
.............................. 253
9.2.7
Spin-Sensitive Bleaching
.................................. 254
9.3
Spin-Galvanic Effect
............................................ 256
9.3.1
Microscopic Mechanisms
................................. 257
9.3.2
Spin-Galvanic Photocurrent Induced by the Hanle Effect
....... 259
9.3.3
Spin-Galvanic Effect at Zero Magnetic Field
................. 261
9.3.4
Determination of the Rashba/Dresselhaus Spin Splitting Ratio.
.. 262
9.4
Inverse Spin-Galvanic Effect
..................................... 263
9.4.1
Spin-Flip Mediated Current-Induced Polarization
............. 264
9.4.2
Precessional Mechanism
.................................. 265
9.4.3
Current Induced Spin Faraday Rotation
...................... 266
9.4.4
Current Induced Polarization of
Photoluminescence
........... 267
9.5
Pure Spin Currents
.............................................. 268
9.5.1
Pure Spin Current Injected by a Linearly Polarized Beam
....... 269
9.5.2
Pure Spin Currents Due to Spin-Dependent Scattering
.......... 271
xiv Contents
9.6
Concluding Remarks
............................................ 274
References
.................................................... 274
10
Spin Injection
................................................... 279
M. Johnson
...................................................... 279
10.1
Introduction
................................................... 279
10.1.1
History
................................................. 279
10.2
Theoretical Models of Spin Injection and Spin Accumulation
.......... 281
10.2.1
Heuristic Introduction
..................................... 281
10.2.2
Microscopic Transport Model
.............................. 285
10.2.3
Thermodynamic Theory of Spin Transport
................... 286
10.2.4
Hanle Effect
............................................. 292
10.3
Spin Injection Experiments in Metals
.............................. 292
10.4
Spin Injection in Semiconductors
................................. 295
10.4.1
Optical Experiments
...................................... 297
10.4.2
Transport Experiments
.................................... 301
10.5
Related Topics
................................................. 305
References
.................................................... 306
11
Dynamic Nuclear Polarization and Nuclear Fields
.................. 309
V.K. Kalevich, K.V. Kavokin and
I.A.
Merkulov
.......................... 309
11.1
Electron-Nuclear Spin System of the Semiconductor: Characteristic
Values of Effective Fields and Spin Precession Frequencies
............ 310
11.1.1
Zeeman
Splitting of Spin Levels
............................ 310
11.1.2
Quadrupole Interaction
.................................... 311
11.1.3
Hyperfine Interaction
..................................... 311
11.1.4
Nuclear
Dipole-Dipole
Interaction
.......................... 313
11.2
Electron Spin Relaxation by Nuclei: from Short to Long Correlation
Time
......................................................... 314
11.3
Dynamic Polarization of Nuclear Spins
............................ 316
11.3.1
Electron Spin Splitting in the Overhauser Field
............... 317
11.3.2
Stationary States of the Electron-Nuclear Spin System in
Faraday Geometry
....................................... 319
11.3.3
Dynamic Polarization by Localized Electrons
................. 320
11.3.4
Cooling of the Nuclear Spin System
......................... 322
11.3.5
Polarization of Nuclei by
Excitons
in Neutral Quantum Dots
.... 324
11.3.6
Current-Induced Dynamic Polarization in Tunnel-Coupled
Quantum Dots
........................................... 325
11.3.7
Self-Polarization of Nuclear Spins
.......................... 325
11.4
Dynamic Nuclear Polarization in Oblique Magnetic Field
............. 326
11.4.1
Larrnor Electron Spin Precession
........................... 327
11.4.2
Polarization of Electron-Nuclear Spin-System in an Oblique
Magnetic Field
.......................................... 329
11.4.3
Bistability of the Electron-Nuclear Spin System in Structures
with
Anisotropie
Electron g-Factor and Spin Relaxation Time
... 331
Contents xv
11.5
Optically Detected and Optically Induced Nuclear Magnetic
Resonances
.................................................... 333
11.5.1
Optically Detected Nuclear Magnetic Resonance
.............. 333
11.5.2
Multispin and Multiquantum NMR
......................... 333
11.5.3
Optically Induced NMR
................................... 335
11.6
Spin Conservation in the Electron-Nuclear Spin System of a Quantum
Dot
........................................................... 337
11.6.1
Time Scales for Preservation of Spin Direction and Spin
Temperature
............................................. 337
11.6.2
A Guide to Interpretation of Experiments on Spin Memory
.... 338
11.7
Conclusions
................................................... 342
References
.................................................... 343
12
Nuclear-Electron Spin Interactions in the Quantum Hall Regime
..... 347
Y.Q. LiandJ.H.
Smet
.............................................. 347
12.1
Introduction
................................................... 348
12.1.1
The Quantum Hall Effects in a Nutshell
...................... 348
12.1.2
Electron Spin Phenomena in the Quantum Hall Effects
......... 353
12.1.3
Nuclear Spins in
GaAs-Based 2D
Electron Systems
............ 356
12.2
Experimental Techniques
........................................ 360
12.3
Nuclear Spin Phenomena in the Quantum Hall Regime
............... 362
12.3.1
The Role of Disorder
..................................... 362
12.3.2
Edge Channel Scattering
.................................. 364
12.3.3
Skyrmions
.............................................. 367
12.3.4
Nuclear-Electron Spin Interactions at
v
= 2/3................ 369
12.3.5
Resistively Detected NMR at
v
= 2/3....................... 371
12.3.6
Composite Fermion Fermi Sea at
v
= 1/2.................... 379
12.3.7
Other Cases
............................................. 382
12.4
Summary and Outlook
.......................................... 384
References
.................................................... 384
13
Diluted Magnetic Semiconductors:
Basic Physics and Optical Properties
................................. 389
J. CibertandD. Scalbert
........................................... 389
13.1
Introduction
................................................... 389
13.2
Band Structure of II-VI and
ПІ
-V
DMS
............................ 390
13.3
Exchange Interactions in DMS
.................................... 392
13.3.1
s, p-d Exchange Interaction
............................... 392
13.3.2
d-d Exchange Interactions
................................ 394
13.4
Magnetic Properties
............................................. 396
13.4.1
UndopedDMS
.......................................... 396
13.4.2
Carrier-Induced Ferromagnetism
........................... 399
13.5
Basic Optical Properties
......................................... 402
13.5.1
Giant
Zeeman
Effect
...................................... 402
13.5.2
Optically Detected Ferromagnetism in II-VI DMS
............ 408
xvi Contents
13.5.3 Quantum
Dots...........................................
410
13.5.4
Spin-Light Emitting Diodes
................................ 412
13.5.5
ПІ
-V
Diluted Magnetic Semiconductors
..................... 412
13.6
Spin Dynamics
................................................. 414
13.6.1
Electron Spin Relaxation Induced by s-d Exchange
........... 415
13.6.2
Mn Spin Relaxation
...................................... 415
13.6.3
Collective Spin Excitations in CdMnTe Quantum Wells
........ 419
13.7
Advanced Time-Resolved Optical Experiments
...................... 422
13.7.1
Carrier Spin Dynamics
.................................... 423
13.7.2
Magnetization Dynamics
.................................. 424
References
.................................................... 427
Index
............................................................. 433
|
adam_txt |
Contents
Preface
.
vii
List of Contributors
. xvii
1
Basics of Semiconductor and Spin Physics
. 1
M.I. Dyakonov
. 1
1.1
Historical Background
. 1
1.2
Spin Interactions
. 2
1.2.1
The
Pauli
Principle
. 2
1.2.2
Exchange Interaction
. 3
1.2.3
Spin-Orbit Interaction
. 3
1.2.4
Hyperfine Interaction with Nuclear Spins
. 4
1.2.5
Magnetic Interaction
. 5
1.3
Basics of Semiconductor Physics
. 5
1.3.1
Electron Energy Spectrum in a Crystal
. 5
1.3.2
Effective Masses of Electrons and Holes
. 5
1.3.3
The Effective Mass Approximation
. 6
1.3.4
Role of Impurities
. 7
1.3.5
Excitons
. 8
1.3.6
The Structure of the Valence Band. Light and Heavy Holes
. 8
1.3.7
Band Structure of GaAs
. 11
1.3.8
Photo-generation of Carriers and Luminescence
. 11
1.3.9
Angular Momentum Conservation in Optical Transitions
. 12
1.3.10
Low Dimensional Semiconductor Structures
. 13
1.4
Overview of Spin Physics in Semiconductors
. 15
1.4.1
Optical Spin Orientation and Detection
. 15
1.4.2
Spin Relaxation
. 16
1.4.3
Hanle Effect
. 21
1.4.4
Mutual Transformations of Spin and Charge Currents
. 22
1.4.5
Interaction between the Electron and Nuclear Spin Systems
. 23
1.5
Overview of the Book Content
. 25
References
. 26
χ
Contents
2
Spin Dynamics of Free Carriers in Quantum Wells
. 29
R.T. Harley
. 29
2.1
Introduction
. 29
2.2
Optical Measurements of Spin Dynamics
. 29
2.3
Mechanisms of Spin Relaxation of Free Electrons
. 32
2.4
Electron Spin Relaxation in Bulk Semiconductors
. 35
2.5
Electron Spin Relaxation in
[001]
-Oriented Quantum Wells
. 37
2.5.1
Symmetrical [OOlJ-Oriented Quantum Wells
. 37
2.5.2
Structural Inversion Asymmetry in
[001]
-Oriented Quantum
Wells
. 40
2.5.3
Natural Interface Asymmetry in Quantum Wells
. 42
2.5.4
Oscillatory Spin-Dynamics in Two-dimensional Electron
Gases
. 45
2.6
Spin Dynamics of Free Holes in Bulk Material and Quantum Wells
. 47
2.7
Engineering and Controlling the Spin Dynamics in Quantum Wells
. 49
2.8
Conclusions
. 51
References
. 52
3
Exciton Spin Dynamics in Semiconductor Quantum Wells
. 55
T. Amand and X. Marie
. 55
3.1
Two-dimensional Exciton Fine Structure
. 55
3.1.1
Short-Range Electron-Hole Exchange
. 56
3.1.2
Long-Range Electron-Hole Exchange
. 57
3.2
Optical Orientation of Exciton Spin in Quantum Wells
. 58
3.3
Exciton Spin Dynamics in Quantum Wells
. 60
3.3.1
Exciton Formation in Quantum Wells
. 60
3.3.2
Spin Relaxation of Exciton-Bound Hole
. 62
3.3.3
Spin Relaxation of Exciton-Bound Electron
. 65
3.3.4
Exciton Spin Relaxation Mechanism
. 66
3.4
Exciton Exchange Energy and g-Factor in Quantum Wells
. 72
3.4.1
Exchange Interaction of
Excitons
and g-Factor Measured with
cw Magneto-Photoluminescence Spectroscopy
. 73
3.4.2
Exciton Spin Quantum Beats Spectroscopy
. 76
3.5
Exciton Spin Dynamics in Type II Quantum Wells
. 81
3.6
Spin Dynamics in Dense Excitonic Systems
. 83
References
. 86
4
Exciton Spin Dynamics in Semiconductor Quantum Dots
. 91
X. Marie, B. Urbaszek, O.
Krebs
and T. Amand
. 91
4.1
Introduction
. 91
4.2
Electron-Hole Complexes in Quantum Dots
. 92
4.2.1
Coulomb Corrections to the Single Particle Picture
. 93
4.2.2
Fine Structure of Neutral
Excitons
. 93
4.3
Exciton Spin Dynamics in Neutral Quantum Dots without Applied
Magnetic Fields
. 95
Contents xi
4.3.1 Exciton
Spin Dynamics under Resonant Excitation
. 95
4.3.2
Exciton Spin Quantum Beats: The Role of
Anisotropie
Exchange
. 97
4.4
Exciton Spin Dynamics in Neutral Quantum Dots in External Magnetic
Fields
. 98
4.4.1
Zeeman
Effect Versus
Anisotropie
Exchange Splittings in Single
Dot Spectroscopy
. 98
4.4.2
Exciton Spin Quantum Beats in Applied Magnetic Fields
. 100
4.5
Charged Exciton Complexes: Spin Dynamics without Applied Magnetic
Fields
. 101
4.5.1
Formation of
Trions:
Doped and Charge Tuneable Structures
. 102
4.5.2
Fine Structure and Polarization of X+ and X~
Excitons
. 103
4.5.3
Spin Dynamics in Negatively Charged Exciton
Complexes X"~
. 104
4.5.4
Spin Memory of Trapped Electrons
. 106
4.6
Charged Exciton Complexes: Spin Dynamics in Applied Magnetic
Fields
. 106
4.6.1
Electron Spin Polarization in Positively Charged
Excitons
in
Longitudinal Magnetic Fields
. 107
4.6.2
Electron Spin Coherence in Positively Charged
Excitons
in
Transverse Magnetic Fields
. 109
4.7
Conclusions
. 110
References
. 110
5
Time-Resolved Spin Dynamics and Spin Noise Spectroscopy
. 115
J.
Hübner
and
M. Oestreich
. 115
5.1
Introduction
. 115
5.2
Time- and Polarization-Resolved
Photoluminescence
. 116
5.2.1
Experimental Technique
. 117
5.2.2
Experimental Example I: Spin Relaxation in
(110)
Oriented
Quantum Wells
. 119
5.2.3
Experimental Example II: Coherent Dynamics of Coupled
Electron and Hole Spins in Semiconductors
. 122
5.2.4
Photoluminescence
and Spin-Optoelectronic Devices
. 123
5.3
Time-Resolved Faraday/Kerr Rotation
. 123
5.3.1
Experimental Set-Up
. 125
5.3.2
Experimental Example: Spin Amplification
. 127
5.4
Spin Noise Spectroscopy
. 129
5.4.1
Experimental Realization
. 129
5.5
Spin Noise Measurements in
и
-GaAs
.
131
5.6
Conclusions
. 132
References
. 133
xii Contents
6
Coherent Spin Dynamics of Carriers
. 135
D.R. Yakovlev andM. Bayer
. 135
6.1
Introduction
. 135
6.1.1
Spin Coherence and Spin Dephasing Times
. 136
6.1.2
Optical Generation of Spin Coherent Carriers
. 137
6.1.3
Experimental Technique
. 138
6.2
Spin Coherence in Quantum Wells
. 140
6.2.1
Electron Spin Coherence
. 141
6.2.2
Hole Spin Coherence
. 151
6.3
Spin Coherence in Singly Charged Quantum Dots
. 153
6.3.1
Excitan
and Electron Spin Beats Probed by Faraday Rotation
. 155
6.3.2
Generation of Electron Spin Coherence
. 157
6.3.3
Mode Locking of Spin Coherence in an Ensemble of Quantum
Dots
. 160
6.3.4
Nuclei Induced Frequency Focusing of Spin Coherence
. 169
6.4
Conclusions
. 174
References
. 175
7
Spin Properties of Confined Electrons in Si
. 179
W. Jantsch and Z. Wilamowski
. 179
7.1
Introduction
. 179
7.2
Spin-Orbit Effects in Si Quantum Wells
. 182
7.2.1
The Bychkov-Rashba Field
. 182
7.3
Spin Relaxation of Conduction Electrons in Si/SiGe Quantum Wells
. 186
7.3.1
Mechanisms of Spin Relaxation of Conduction Electrons
. 186
7.3.2
Linewidth and the Longitudinal Relaxation Time of the
Two-dimensional Electron Gas in Si/SiGe
. 187
7.3.3
Dephasing and Longitudinal Spin Relaxation
. 191
7.3.4
Comparison with Experiment
. 194
7.4
Current Induced Spin-Orbit Field
. 195
7.5
ESR Excited by an ac Current
. 197
7.5.1
Electric
Dipole
vs. Magnetic
Dipole
Spin Excitation
. 197
7.5.2
The ESR Signal Strength in Two-dimensional Si/SiGe
Structures
—
Experimental Results
. 198
7.5.3
Modeling the Current Induced Excitation and Detection
of ESR
. 199
7.5.4
Power Absorption, Line Shape
. 201
7.6
Spin Relaxation under Lateral Confinement
. 201
7.6.1
Shallow Donors
. 202
7.6.2
From the Two-dimensional Electron Gas to Quantum Dots
. 204
7.6.3
Spin Relaxation and Dephasing in Si Quantum Dots
. 205
7.7
Conclusions
. 206
References
. 207
Contents xiii
8
Spin Hall Effect
. 21
1
M.I. Dyakonov andA.V. Khaetskii
. 211
8.1
Background:
Magnetotransport in
Molecular Gases
. 211
8.2
Phenomenology (with Inversion Symmetry)
. 213
8.2.1
Preliminaries
. 213
8.2.2
Spin and Charge Current Coupling
. 213
8.2.3
Phenomenological Equations
. 214
8.2.4
Physical Consequences of Spin-Charge Coupling
. 215
8.2.5
Related Problems
. 218
8.2.6
Electrical Effects of Second Order in Spin-Orbit Interaction
. 219
8.3
Phenomenology (without Inversion Symmetry)
. 222
8.4
Microscopic Mechanisms
. 223
8.4.1
Spin Asymmetry in Electron Scattering
. 223
8.4.2
The Side Jump Mechanism
. 226
8.4.3
Intrinsic Mechanism
. 231
8.5
Experiments
. 235
8.6
Conclusion
. 239
Appendix A: The Generalized Kinetic Equation
. 239
References
. 241
9
Spin-Photogalvanics
. 245
E.L Ivchenko and S. Ganichev
. 245
9.1
Introduction. Phenomenological Description
. 245
9.2
Circular Photogalvanic Effect
. 247
9.2.1
Historical Background
. 247
9.2.2
Basic Experiments
. 248
9.2.3
Microscopic Model for Inter-Sub-Band Transitions
. 251
9.2.4
Relation to it-Linear Terms
. 251
9.2.5
Circular PGE Due to Inter-Sub-Band Transitions
. 251
9.2.6
Interband
Optical Transitions
. 253
9.2.7
Spin-Sensitive Bleaching
. 254
9.3
Spin-Galvanic Effect
. 256
9.3.1
Microscopic Mechanisms
. 257
9.3.2
Spin-Galvanic Photocurrent Induced by the Hanle Effect
. 259
9.3.3
Spin-Galvanic Effect at Zero Magnetic Field
. 261
9.3.4
Determination of the Rashba/Dresselhaus Spin Splitting Ratio.
. 262
9.4
Inverse Spin-Galvanic Effect
. 263
9.4.1
Spin-Flip Mediated Current-Induced Polarization
. 264
9.4.2
Precessional Mechanism
. 265
9.4.3
Current Induced Spin Faraday Rotation
. 266
9.4.4
Current Induced Polarization of
Photoluminescence
. 267
9.5
Pure Spin Currents
. 268
9.5.1
Pure Spin Current Injected by a Linearly Polarized Beam
. 269
9.5.2
Pure Spin Currents Due to Spin-Dependent Scattering
. 271
xiv Contents
9.6
Concluding Remarks
. 274
References
. 274
10
Spin Injection
. 279
M. Johnson
. 279
10.1
Introduction
. 279
10.1.1
History
. 279
10.2
Theoretical Models of Spin Injection and Spin Accumulation
. 281
10.2.1
Heuristic Introduction
. 281
10.2.2
Microscopic Transport Model
. 285
10.2.3
Thermodynamic Theory of Spin Transport
. 286
10.2.4
Hanle Effect
. 292
10.3
Spin Injection Experiments in Metals
. 292
10.4
Spin Injection in Semiconductors
. 295
10.4.1
Optical Experiments
. 297
10.4.2
Transport Experiments
. 301
10.5
Related Topics
. 305
References
. 306
11
Dynamic Nuclear Polarization and Nuclear Fields
. 309
V.K. Kalevich, K.V. Kavokin and
I.A.
Merkulov
. 309
11.1
Electron-Nuclear Spin System of the Semiconductor: Characteristic
Values of Effective Fields and Spin Precession Frequencies
. 310
11.1.1
Zeeman
Splitting of Spin Levels
. 310
11.1.2
Quadrupole Interaction
. 311
11.1.3
Hyperfine Interaction
. 311
11.1.4
Nuclear
Dipole-Dipole
Interaction
. 313
11.2
Electron Spin Relaxation by Nuclei: from Short to Long Correlation
Time
. 314
11.3
Dynamic Polarization of Nuclear Spins
. 316
11.3.1
Electron Spin Splitting in the Overhauser Field
. 317
11.3.2
Stationary States of the Electron-Nuclear Spin System in
Faraday Geometry
. 319
11.3.3
Dynamic Polarization by Localized Electrons
. 320
11.3.4
Cooling of the Nuclear Spin System
. 322
11.3.5
Polarization of Nuclei by
Excitons
in Neutral Quantum Dots
. 324
11.3.6
Current-Induced Dynamic Polarization in Tunnel-Coupled
Quantum Dots
. 325
11.3.7
Self-Polarization of Nuclear Spins
. 325
11.4
Dynamic Nuclear Polarization in Oblique Magnetic Field
. 326
11.4.1
Larrnor Electron Spin Precession
. 327
11.4.2
Polarization of Electron-Nuclear Spin-System in an Oblique
Magnetic Field
. 329
11.4.3
Bistability of the Electron-Nuclear Spin System in Structures
with
Anisotropie
Electron g-Factor and Spin Relaxation Time
. 331
Contents xv
11.5
Optically Detected and Optically Induced Nuclear Magnetic
Resonances
. 333
11.5.1
Optically Detected Nuclear Magnetic Resonance
. 333
11.5.2
Multispin and Multiquantum NMR
. 333
11.5.3
Optically Induced NMR
. 335
11.6
Spin Conservation in the Electron-Nuclear Spin System of a Quantum
Dot
. 337
11.6.1
Time Scales for Preservation of Spin Direction and Spin
Temperature
. 337
11.6.2
A Guide to Interpretation of Experiments on "Spin Memory"
. 338
11.7
Conclusions
. 342
References
. 343
12
Nuclear-Electron Spin Interactions in the Quantum Hall Regime
. 347
Y.Q. LiandJ.H.
Smet
. 347
12.1
Introduction
. 348
12.1.1
The Quantum Hall Effects in a Nutshell
. 348
12.1.2
Electron Spin Phenomena in the Quantum Hall Effects
. 353
12.1.3
Nuclear Spins in
GaAs-Based 2D
Electron Systems
. 356
12.2
Experimental Techniques
. 360
12.3
Nuclear Spin Phenomena in the Quantum Hall Regime
. 362
12.3.1
The Role of Disorder
. 362
12.3.2
Edge Channel Scattering
. 364
12.3.3
Skyrmions
. 367
12.3.4
Nuclear-Electron Spin Interactions at
v
= 2/3. 369
12.3.5
Resistively Detected NMR at
v
= 2/3. 371
12.3.6
Composite Fermion Fermi Sea at
v
= 1/2. 379
12.3.7
Other Cases
. 382
12.4
Summary and Outlook
. 384
References
. 384
13
Diluted Magnetic Semiconductors:
Basic Physics and Optical Properties
. 389
J. CibertandD. Scalbert
. 389
13.1
Introduction
. 389
13.2
Band Structure of II-VI and
ПІ
-V
DMS
. 390
13.3
Exchange Interactions in DMS
. 392
13.3.1
s, p-d Exchange Interaction
. 392
13.3.2
d-d Exchange Interactions
. 394
13.4
Magnetic Properties
. 396
13.4.1
UndopedDMS
. 396
13.4.2
Carrier-Induced Ferromagnetism
. 399
13.5
Basic Optical Properties
. 402
13.5.1
Giant
Zeeman
Effect
. 402
13.5.2
Optically Detected Ferromagnetism in II-VI DMS
. 408
xvi Contents
13.5.3 Quantum
Dots.
410
13.5.4
Spin-Light Emitting Diodes
. 412
13.5.5
ПІ
-V
Diluted Magnetic Semiconductors
. 412
13.6
Spin Dynamics
. 414
13.6.1
Electron Spin Relaxation Induced by s-d Exchange
. 415
13.6.2
Mn Spin Relaxation
. 415
13.6.3
Collective Spin Excitations in CdMnTe Quantum Wells
. 419
13.7
Advanced Time-Resolved Optical Experiments
. 422
13.7.1
Carrier Spin Dynamics
. 423
13.7.2
Magnetization Dynamics
. 424
References
. 427
Index
. 433 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Dyakonov, Mikhail I. |
author2_role | edt |
author2_variant | m i d mi mid |
author_facet | Dyakonov, Mikhail I. |
building | Verbundindex |
bvnumber | BV023387352 |
callnumber-first | Q - Science |
callnumber-label | QC611 |
callnumber-raw | QC611 TK7874.887 |
callnumber-search | QC611 TK7874.887 |
callnumber-sort | QC 3611 |
callnumber-subject | QC - Physics |
classification_rvk | UP 1100 UP 3150 |
classification_tum | PHY 685f PHY 749f |
ctrlnum | (OCoLC)222164414 (DE-599)DNB987805894 |
dewey-full | 537.22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.22 |
dewey-search | 537.22 |
dewey-sort | 3537.22 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02308nam a2200613 cb4500</leader><controlfield tag="001">BV023387352</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080709s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N12,0575</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987805894</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540788195</subfield><subfield code="c">Gb. : EUR 149.75 (freier Pr.), ca. sfr 244.00 (freier Pr.)</subfield><subfield code="9">978-3-540-78819-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540788190</subfield><subfield code="c">Gb. : ca. EUR 149.75 (freier Pr.), ca. sfr 244.00 (freier Pr.)</subfield><subfield code="9">3-540-78819-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540788195</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12037452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)222164414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987805894</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC611</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7874.887</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.22</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1100</subfield><subfield code="0">(DE-625)146344:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3150</subfield><subfield code="0">(DE-625)146377:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 685f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 749f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spin physics in semiconductors</subfield><subfield code="c">M. I. Dyakonov (Ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 439 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in solid state sciences</subfield><subfield code="v">157</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconducteurs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear spin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetoelektronik</subfield><subfield code="0">(DE-588)4532095-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spinpolarisation</subfield><subfield code="0">(DE-588)4182332-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spinpolarisation</subfield><subfield code="0">(DE-588)4182332-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Magnetoelektronik</subfield><subfield code="0">(DE-588)4532095-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dyakonov, Mikhail I.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in solid state sciences</subfield><subfield code="v">157</subfield><subfield code="w">(DE-604)BV000016582</subfield><subfield code="9">157</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016570353&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016570353</subfield></datafield></record></collection> |
id | DE-604.BV023387352 |
illustrated | Illustrated |
index_date | 2024-07-02T21:18:38Z |
indexdate | 2024-07-09T21:17:27Z |
institution | BVB |
isbn | 9783540788195 3540788190 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016570353 |
oclc_num | 222164414 |
open_access_boolean | |
owner | DE-703 DE-20 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-83 DE-11 DE-188 |
owner_facet | DE-703 DE-20 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-83 DE-11 DE-188 |
physical | XVIII, 439 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Springer series in solid state sciences |
series2 | Springer series in solid state sciences |
spelling | Spin physics in semiconductors M. I. Dyakonov (Ed.) Berlin [u.a.] Springer 2008 XVIII, 439 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in solid state sciences 157 Semiconducteurs Spin Nuclear spin Semiconductors Halbleiter (DE-588)4022993-2 gnd rswk-swf Magnetoelektronik (DE-588)4532095-0 gnd rswk-swf Spinpolarisation (DE-588)4182332-1 gnd rswk-swf Halbleiter (DE-588)4022993-2 s Spinpolarisation (DE-588)4182332-1 s DE-604 Magnetoelektronik (DE-588)4532095-0 s Dyakonov, Mikhail I. edt Springer series in solid state sciences 157 (DE-604)BV000016582 157 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016570353&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Spin physics in semiconductors Springer series in solid state sciences Semiconducteurs Spin Nuclear spin Semiconductors Halbleiter (DE-588)4022993-2 gnd Magnetoelektronik (DE-588)4532095-0 gnd Spinpolarisation (DE-588)4182332-1 gnd |
subject_GND | (DE-588)4022993-2 (DE-588)4532095-0 (DE-588)4182332-1 |
title | Spin physics in semiconductors |
title_auth | Spin physics in semiconductors |
title_exact_search | Spin physics in semiconductors |
title_exact_search_txtP | Spin physics in semiconductors |
title_full | Spin physics in semiconductors M. I. Dyakonov (Ed.) |
title_fullStr | Spin physics in semiconductors M. I. Dyakonov (Ed.) |
title_full_unstemmed | Spin physics in semiconductors M. I. Dyakonov (Ed.) |
title_short | Spin physics in semiconductors |
title_sort | spin physics in semiconductors |
topic | Semiconducteurs Spin Nuclear spin Semiconductors Halbleiter (DE-588)4022993-2 gnd Magnetoelektronik (DE-588)4532095-0 gnd Spinpolarisation (DE-588)4182332-1 gnd |
topic_facet | Semiconducteurs Spin Nuclear spin Semiconductors Halbleiter Magnetoelektronik Spinpolarisation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016570353&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000016582 |
work_keys_str_mv | AT dyakonovmikhaili spinphysicsinsemiconductors |