Engineering optics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Springer Series in Optical Sciences
35 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 525 S. Ill., graph. Darst. |
ISBN: | 9780387757247 9780387757230 0387757236 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023384771 | ||
003 | DE-604 | ||
005 | 20090811 | ||
007 | t | ||
008 | 080708s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 07,N43,0557 |2 dnb | ||
016 | 7 | |a 98587497X |2 DE-101 | |
020 | |a 9780387757247 |9 978-0-387-75724-7 | ||
020 | |a 9780387757230 |c Gb. |9 978-0-387-75723-0 | ||
020 | |a 0387757236 |c Gb. |9 0-387-75723-6 | ||
024 | 3 | |a 9780387757230 | |
028 | 5 | 2 | |a 10988718 |
035 | |a (OCoLC)254558528 | ||
035 | |a (DE-599)DNB98587497X | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-1050 |a DE-634 |a DE-1043 |a DE-573 |a DE-83 |a DE-11 |a DE-706 | ||
082 | 0 | |a 621.36 | |
084 | |a UH 5000 |0 (DE-625)145647: |2 rvk | ||
084 | |a UH 6700 |0 (DE-625)145770: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Iizuka, Keigo |d 1931- |e Verfasser |0 (DE-588)132355604 |4 aut | |
245 | 1 | 0 | |a Engineering optics |c Keigo Iizuka |
250 | |a 3. ed. | ||
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XX, 525 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer Series in Optical Sciences |v 35 | |
650 | 4 | |a Optics | |
650 | 4 | |a Photonics | |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Optik |0 (DE-588)4020241-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holografie |0 (DE-588)4025643-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommunikation |0 (DE-588)4031883-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrierte Optik |0 (DE-588)4027240-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beugung |0 (DE-588)4145094-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Technische Optik |0 (DE-588)4078181-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Photonik |0 (DE-588)4243979-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optik |0 (DE-588)4043650-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Technische Optik |0 (DE-588)4078181-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Photonik |0 (DE-588)4243979-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |D s |
689 | 2 | 1 | |a Optik |0 (DE-588)4043650-0 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Geometrische Optik |0 (DE-588)4020241-0 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
689 | 4 | 0 | |a Holografie |0 (DE-588)4025643-1 |D s |
689 | 4 | |8 3\p |5 DE-604 | |
689 | 5 | 0 | |a Integrierte Optik |0 (DE-588)4027240-0 |D s |
689 | 5 | |8 4\p |5 DE-604 | |
689 | 6 | 0 | |a Beugung |0 (DE-588)4145094-2 |D s |
689 | 6 | |8 5\p |5 DE-604 | |
689 | 7 | 0 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 7 | |8 6\p |5 DE-604 | |
689 | 8 | 0 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 8 | |8 7\p |5 DE-604 | |
689 | 9 | 0 | |a Kommunikation |0 (DE-588)4031883-7 |D s |
689 | 9 | |8 8\p |5 DE-604 | |
830 | 0 | |a Springer Series in Optical Sciences |v 35 |w (DE-604)BV000000237 |9 35 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016567807&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016567807 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 8\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137759109021696 |
---|---|
adam_text | KEIGO IIZUKA ENGINEERING OPTICS THIRD EDITION WITH 433 FIGURES 4U
SPRINGER CONTENTS PREFACE TO THE THIRD EDITION V PREFACE TO THE SECOND
EDITION VII PREFACE TO THE FIRST EDITION IX 1 HISTORY OF OPTICS 1 1.1
THE MYSTERIOUS ROCK CRYSTAL LENS 1 1.2 IDEAS GENERATED BY GREEK
PHILOSOPHERS 3 1.3 A MORNING STAR 6 1.4 RENAISSANCE 7 1.5 THE LENGTHY
PATH TO SNELL S LAW 10 1.6 A TIME BOMB TO MODERN OPTICS 11 1.7 NEWTON S
RINGS AND NEWTON S CORPUSCULAR THEORY 12 1.8 DOWNFALL OF THE CORPUSCLE
AND RISE OF THE WAVE 16 1.9 BUILDING BLOCKS OF MODERN OPTICS 17 1.10
QUANTA AND PHOTONS 20 1.11 RECONCILIATION BETWEEN WAVES AND PARTICLES 23
1.12 EVER GROWING OPTICS 24 PROBLEMS 24 2 MATHEMATICS USED FOR
EXPRESSING WAVES 25 2.1 SPHERICAL WAVES 25 2.2 CYLINDRICAL WAVES 27 2.3
PLANE WAVES 28 2.4 INTERFERENCE OF TWO WAVES 31 2.5 SPATIAL FREQUENCY 33
2.6 THE RELATIONSHIP BETWEEN ENGINEERING OPTICS AND FOURIER TRANSFORMS
34 2.7 SPECIAL FUNCTIONS USED IN ENGINEERING OPTICS AND THEIR FOURIER
TRANSFORMS : 37 XIN XIV CONTENTS 2.7.1 THE TRIANGLE FUNCTION 38 2.7.2
THE SIGN FUNCTION 38 2.7.3 THE STEP FUNCTION 39 2.7.4 THE DELTA FUNCTION
40 2.7.5 THE COMB FUNCTION 41 2.8 FOURIER TRANSFORM IN CYLINDRICAL
COORDINATES 43 2.8.1 HANKEL TRANSFORM 44 2.8.2 EXAMPLES INVOLVING HANKEL
TRANSFORMS 47 2.9 A HAND-ROTATING ARGUMENT OF THE FOURIER TRANSFORM 50
PROBLEMS 50 3 BASIC THEORY OF DIFFRACTION 53 3.1 KIRCHHOFF S INTEGRAL
THEOREM 53 3.2 FRESNEL-KIRCHHOFF DIFFRACTION FORMULA 57 3.3
FRESNEL-KIRCHHOFF S APPROXIMATE FORMULA 60 3.4 APPROXIMATION IN THE
FRAUNHOFER REGION 63 3.5 CALCULATION OF THE FRESNEL APPROXIMATION 63 3.6
ONE-DIMENSIONAL DIFFRACTION FORMULA 66 3.7 THE FRESNEL INTEGRAL 68
PROBLEMS 71 4 PRACTICAL EXAMPLES OF DIFFRACTION THEORY 73 4.1
DIFFRACTION PROBLEMS IN A RECTANGULAR COORDINATE SYSTEM 73 4.2 EDGE
DIFFRACTION 78 4.3 DIFFRACTION FROM A PERIODIC ARRAY OF SLITS 82 4.4
VIDEO DISK SYSTEM 85 4.4.1 REFLECTION GRATING 85 4.4.2 PRINCIPLE OF THE
VIDEO DISK SYSTEM 87 4.5 DIFFRACTION PATTERN OF A CIRCULAR APERTURE 89
4.6 ONE-DIMENSIONAL FRESNEL ZONE PLATE 91 4.7 TWO-DIMENSIONAL FRESNEL
ZONE PLATE 95 PROBLEMS 98 5 GEOMETRICAL OPTICS 101 5.1 EXPRESSIONS
FREQUENTLY USED FOR DESCRIBING THE PATH OF LIGHT .... 101 5.1.1 TANGENT
LINES 101 5.1.2 CURVATURE OF A CURVE 104 5.1.3 DERIVATIVE IN AN
ARBITRARY DIRECTION AND DERIVATIVE NORMAL TO A SURFACE 105 5.2 SOLUTION
OF THE WAVE EQUATION IN INHOMOGENEOUS MEDIA BY THE GEOMETRICAL-OPTICS
APPROXIMATION 107 5.3 PATH OF LIGHT IN AN INHOMOGENEOUS MEDIUM ILL 5.4
RELATIONSHIP BETWEEN INHOMOGENEITY AND RADIUS OF CURVATURE OF THE
OPTICAL PATH - .116 5.5 PATH OF LIGHT IN A SPHERICALLY SYMMETRIC MEDIUM
117 CONTENTS XV 5.6 PATH OF LIGHT IN A CYLINDRICALLY SYMMETRIC MEDIUM
122 5.7 SELFOC FIBER 125 5.7.1 MERIDIONAL RAY IN SELFOC FIBER 126 5.7.2
SKEW RAY IN SELFOC FIBER 127 5.8 QUANTIZED PROPAGATION CONSTANT 129
5.8.1 QUANTIZED PROPAGATION CONSTANT IN A SLAB GUIDE 129 5.8.2 QUANTIZED
PROPAGATION CONSTANT IN OPTICAL FIBER 131 5.9 GROUP VELOCITY 134
PROBLEMS 136 6 LENSES 139 6.1 DESIGN OF PIANO-CONVEX LENS 139 6.2
CONSIDERATION OF A LENS FROM THE VIEWPOINT OF WAVE OPTICS 141 6.3
FOURIER TRANSFORM BY A LENS 142 6.3.1 INPUT ON THE LENS SURFACE 142
6.3.2 INPUT AT THE FRONT FOCAL PLANE 143 6.3.3 INPUT BEHIND THE LENS 145
6.3.4 FOURIER TRANSFORM BY A GROUP OF LENSES 147 6.3.5 EFFECT OF LATERAL
TRANSLATION OF THE INPUT IMAGE ON THE FOURIER-TRANSFORM IMAGE 148 6.4
IMAGE FORMING CAPABILITY OF A LENS FROM THE VIEWPOINT OF WAVE OPTICS 149
6.5 EFFECTS OF THE FINITE SIZE OF THE LENS 152 6.5.1 INFLUENCE OF THE
FINITE SIZE OF THE LENS ON THE QUALITY OF THE FOURIER TRANSFORM 153
6.5.2 INFLUENCE OF THE FINITE SIZE OF THE LENS ON THE IMAGE QUALITY 154
PROBLEMS 158 7 THE FAST FOURIER TRANSFORM (FFT) 161 7.1 WHAT IS THE FAST
FOURIER TRANSFORM? 161 7.2 FFT BY THE METHOD OF DECIMATION IN FREQUENCY
164 7-3 FFT BY THE METHOD OF DECIMATION IN TIME 172 7.4 VALUES OF W K
174 PROBLEMS 177 8 HOLOGRAPHY 181 8.1 PICTORIAL ILLUSTRATION OF THE
PRINCIPLE OF HOLOGRAPHY 181 8.2 ANALYTICAL DESCRIPTION OF THE PRINCIPLE
OF HOLOGRAPHY 183 8.3 RELATIONSHIP BETWEEN THE INCIDENT ANGLE OF THE
RECONSTRUCTING BEAM AND THE BRIGHTNESS OF THE RECONSTRUCTED IMAGE 188
8.4 WAVE FRONT CLASSIFICATION OF HOLOGRAMS 190 8.4.1 FRESNEL HOLOGRAM
190 8.4.2 FOURIER TRANSFORM HOLOGRAM 190 8.4.3 IMAGE HOLOGRAM -. 190
8.4.4 LENSLESS FOURIER TRANSFORM HOLOGRAM 191 XVI CONTENTS 8.5 HOLOGRAMS
FABRICATED BY A COMPUTER 192 8.6 WHITE-LIGHT HOLOGRAM 197 8.7 SPECKLE
PATTERN 202 8.8 APPLICATIONS OF HOLOGRAPHY 204 8.8.1 PHOTOGRAPHS WITH
ENHANCED DEPTH OF FIELD 205 8.8.2 HIGH-DENSITY RECORDING 205 8.8.3
OPTICAL MEMORY FOR A COMPUTER 205 8.8.4 HOLOGRAPHIC DISK 209 8.8.5 LASER
MACHINING 209 8.8.6 OBSERVATION OF DEFORMATION BY MEANS OF AN
INTERFEROMETRIC HOLOGRAM 210 8.8.7 DETECTION OF THE DIFFERENCE BETWEEN
TWO PICTURES 212 8.8.8 OBSERVATION OF A VIBRATING OBJECT 213 8.8.9
GENERATION OF CONTOUR LINES OF AN OBJECT 214 PROBLEMS 215 9 LABORATORY
PROCEDURES FOR FABRICATING HOLOGRAMS 217 9.1 ISOLATING THE WORK AREA
FROM ENVIRONMENTAL NOISE 217 9.2 NECESSARY OPTICAL ELEMENTS FOR
FABRICATING HOLOGRAMS 218 9.2.1 OPTICAL BENCH 219 9.2.2 LASER 220 9.2.3
BEAM DIRECTOR 220 9.2.4 SPATIAL FILTER 220 9.2.5 BEAM SPLITTER 221 9.2.6
PHOTOGRAPHIC-PLATE HOLDER 221 9.2.7 FILM 221 9.3 PHOTOGRAPHIC
ILLUSTRATION OF THE EXPERIMENTAL PROCEDURES FOR HOLOGRAM FABRICATION 222
9.4 EXPOSURE TIME 227 9.5 DARK-ROOM PROCEDURES 229 9.5.1 DEVELOPING 229
9.5.2 STOP BATH 230 9.5.3 FIXER 231 9.5.4 WATER RINSING 231 9.5.5 DRYING
231 9.5.6 BLEACHING 231 9.6 VIEWING THE HOLOGRAM 232 10 ANALYSIS OF THE
OPTICAL SYSTEM IN THE SPATIAL FREQUENCY DOMAIN .... 233 10.1 TRANSFER
FUNCTION FOR COHERENT LIGHT 233 10.1.1 IMPULSE RESPONSE FUNCTION 233
10.1.2 COHERENT TRANSFER FUNCTION (CTF) 235 10.2 SPATIAL COHERENCE AND
TEMPORAL COHERENCE 237 10.3 DIFFERENCES BETWEEN THE USES OF COHERENT AND
INCOHERENT LIGHT .. 239 10.4 TRANSFER FUNCTION FOR INCOHERENT LIGHT 241
CONTENTS XVII 10.5 MODULATION TRANSFER FUNCTION (MTF) 246 10.6
RELATIONSHIP BETWEEN MTF AND OTF 246 PROBLEMS 248 11 OPTICAL SIGNAL
PROCESSING 251 11.1 CHARACTERISTICS OF A PHOTOGRAPHIC FILM 251 11.2
BASIC OPERATIONS OF COMPUTATION BY LIGHT 253 11.2.1 OPERATION OF
ADDITION AND SUBTRACTION 253 11.2.2 OPERATION OF MULTIPLICATION 254
11.2.3 OPERATION OF DIVISION 255 II.2 A OPERATION OF AVERAGING 255
11.2.5 OPERATION OF DIFFERENTIATION 257 11.3 OPTICAL SIGNAL PROCESSING
USING COHERENT LIGHT 259 11.3.1 DECODING BY FOURIER TRANSFORM 259 11.3.2
INVERSE FILTERS 260 11.3.3 WIENER FILTER 262 11.3.4 A FILTER FOR
RECOVERING THE IMAGE FROM A PERIODICALLY SAMPLED PICTURE 263 11.3.5
MATCHED FILTER : 265 11.4 CONVOLUTION FILTER 268 11.5 OPTICAL SIGNAL
PROCESSING USING INCOHERENT LIGHT 273 11.5.1 THE MULTIPLE PINHOLE CAMERA
274 11.5.2 TIME MODULATED MULTIPLE PINHOLE CAMERA 276 11.5.3 LOW-PASS
FILTER MADE OF RANDOMLY DISTRIBUTED SMALL PUPILS 278 11.6 INCOHERENT
LIGHT MATCHED FILTER 280 11.7 LOGARITHMIC FILTERING 283 11.8 TOMOGRAPHY
285 11.8.1 PLANIGRAPHIC TOMOGRAPHY 285 11.8.2 COMPUTED TOMOGRAPHY (CT)
287 PROBLEMS 303 12 APPLICATIONS OF MICROWAVE HOLOGRAPHY 305 12.1
RECORDING MICROWAVE FIELD INTENSITY DISTRIBUTIONS 305 12.1.1 SCANNING
PROBE METHOD 306 12.1.2 METHOD BASED ON CHANGES IN COLOR INDUCED BY
MICROWAVE HEATING 307 12.1.3 METHOD BY THERMAL VISION 308 12.1.4 METHOD
BY MEASURING SURFACE EXPANSION 309 12.2 MICROWAVE HOLOGRAPHY APPLIED TO
DIAGNOSTICS AND ANTENNA INVESTIGATIONS 311 12.2.1 SEEING THROUGH BY
MEANS OF MICROWAVE HOLOGRAPHY .311 12.2.2 VISUALIZATION OF THE MICROWAVE
PHENOMENA 313 12.2.3 SUBTRACTIVE MICROWAVE HOLOGRAPHY 314 XVIII CONTENTS
12.2.4 HOLOGRAPHIC ANTENNA 316 12.2.5 A METHOD OF OBTAINING THE
FAR-FIELD PATTERN FROM THE NEAR FIELD PATTERN 316 12.3 SIDE LOOKING
SYNTHETIC APERTURE RADAR 318 12.3.1 MATHEMATICAL ANALYSIS OF SIDE
LOOKING SYNTHETIC APERTURE RADAR 320 12.4 HISS RADAR 325 12.4.1 HOLOGRAM
MATRIX 327 13 FIBER OPTICAL COMMUNICATION 333 13.1 ADVANTAGES OF OPTICAL
FIBER SYSTEMS 334 13.1.1 LARGE INFORMATION TRANSMISSION CAPABILITY 334
13.1.2 LOW TRANSMISSION LOSS 334 13.1.3 NON-METALLIC CABLE 335 13.2
OPTICAL FIBER 335 13.3 DISPERSION OF THE OPTICAL FIBER 336 13.4 FIBER
TRANSMISSION LOSS CHARACTERISTICS 339 13.5 TYPES OF FIBER USED FOR FIBER
OPTICAL COMMUNICATION 342 13.6 RECEIVERS FOR FIBER OPTICAL
COMMUNICATIONS 343 13.6.1 PIN PHOTODIODE 343 13.6.2 AVALANCHE PHOTODIODE
346 13.6.3 COMPARISON BETWEEN PIN PHOTODIODE AND APD 347 13.7
TRANSMITTERS FOR FIBER OPTICAL COMMUNICATIONS 348 13.7.1 LIGHT EMITTING
DIODE (LED) 348 13.7.2 LASER DIODE (LD) 351 13.7.3 LASER CAVITY AND
LASER ACTION 352 13.7.4 TEMPERATURE DEPENDENCE OF THE LASER DIODE (LD)
357 13.7.5 COMPARISON BETWEEN LED AND LD 357 13.8 CONNECTORS, SPLICES,
AND COUPLERS 358 13.8.1 OPTICAL FIBER CONNECTOR 358 13.8.2 SPLICING 359
13.8.3 FIBER OPTIC COUPLERS 360 13.9 WAVELENGTH DIVISION MULTIPLEXING
(WDM) 362 13.10 OPTICAL ATTENUATORS 364 13.11 DESIGN PROCEDURE FOR FIBER
OPTICAL COMMUNICATION SYSTEMS 365 PROBLEMS 368 14 ELECTRO AND ACCOUSTO
OPTICS 371 14.1 PROPAGATION OF LIGHT IN A UNIAXIAL CRYSTAL 371 14.2
FIELD IN AN ELECTROOPTIC MEDIUM 375 14.2.1 EXAMPLES FOR CALCULATING THE
FIELD IN AN ELECTROOPTIC MEDIUM 376 14.2.2 APPLICATIONS OF THE
ELECTROOPTIC BULK EFFECT 383 14.3 ELASTOOPTIC EFFECT *. 386 14.3.1
ELASTOOPTIC EFFECT IN AN ISOTROPIC MEDIUM 386 14.3.2 ELASTOOPTIC EFFECT
IN AN ANISOTROPIC MEDIUM 388 CONTENTS XIX 14.4 MISCELLANEOUS EFFECTS 393
14.4.1 OPTICAL ACTIVITY 393 14.4.2 FARADAY EFFECT 394 14.4.3 OTHER
MAGNETOOPTIC EFFECTS 396 14.4.4 FRANZ-KELDYSH EFFECT 396 PROBLEMS 397 15
INTEGRATED OPTICS 399 15.1 ANALYSIS OF THE SLAB OPTICAL GUIDE 399 15.1.1
DIFFERENTIAL EQUATIONS OF WAVE OPTICS 400 15.1.2 GENERAL SOLUTION FOR
THE TE MODES 401 15.1.3 BOUNDARY CONDITIONS 402 15.1.4 TM MODES 406
15.1.5 TREATMENT BY GEOMETRICAL OPTICS 407 15.1.6 COMPARISON BETWEEN THE
RESULTS BY GEOMETRICAL OPTICS AND BY WAVE OPTICS 409 15.2 COUPLED-MODE
THEORY 409 15.3 BASIC DEVICES IN INTEGRATED OPTICS 416 15.3.1
DIRECTIONAL COUPLER SWITCH 416 15.3.2 REVERSED AFI DIRECTIONAL COUPLER
419 15.3.3 TUNABLE DIRECTIONAL COUPLER FILTER 423 15.3.4 Y JUNCTION 423
15.3.5 MACH-ZEHNDER INTERFEROMETRIC MODULATOR 425 15.3.6 WAVEGUIDE
MODULATOR 427 15.3.7 ACOUSTOOPTIC MODULATOR 427 15.4 BISTABLE OPTICAL
DEVICES 433 15.4.1 OPTICALLY SWITCHABLE DIRECTIONAL COUPLER 433 15.4.2
OPTICAL TRIODE 437 15.4.3 OPTICAL AND AND OR GATES 437 15.4.4 OTHER
TYPES OF BISTABLE OPTICAL DEVICES 438 15.4.5 SELF-FOCUSING ACTION AND
NON-LINEAR OPTICS 440 15.5 CONSIDERATION OF POLARIZATION 441 15.6
INTEGRATED OPTICAL LENSES AND THE SPECTRUM ANALYZER 444 15.6.1 MODE
INDEX LENS 444 15.6.2 GEODESIC LENS 446 15.6.3 FRESNEL ZONE LENS 446
15.6.4 INTEGRATED OPTICAL SPECTRUM ANALYZER 448 15.7 METHODS OF
FABRICATION 449 15.7.1 FABRICATION OF OPTICAL GUIDES 449 15.7.2
FABRICATION OF PATTERNS 451 15.7.3 SUMMARY OF STRIP GUIDES 453 15.7.4
SUMMARY OF GEOMETRIES OF ELECTRODES 454 PROBLEMS 455 XX CONTENTS 16 3D
IMAGING 459 16.1 HISTORICAL DEVELOPMENT OF 3D DISPLAYS 459 16.2
PHYSIOLOGICAL FACTORS CONTRIBUTING TO 3D VISION 464 16.3 HOW PARALLAX
AND CONVERGENCE GENERATE A 3D EFFECT 466 16.3.1 PROJECTION TYPE 466
16.3.2 INTERCEPTION TYPE 470 16.4 DETAILS OF THE MEANS USED FOR
REALIZING THE 3D EFFECT 471 16.4.1 METHODS BASED ON POLARIZED LIGHT 471
16.4.2 3D MOVIES 472 16.4.3 WHEATSTONE S STEREOSCOPE 473 16.4.4
BREWSTER S STEREOSCOPE 474 16.4.5 ANAGLYPH 475 16.4.6 TIME SHARING
METHOD 479 16.4.7 HEAD MOUNTED DISPLAY (HMD) 479 16.4.8 VOLUMETRIC
METHODS 481 16.4.9 VARIFOCAL MIRROR 482 16.4.10 PARALLAX BARRIER 485
16.4.11 HORSE BLINDER BARRIER METHOD 487 16.4.12 LENTICULAR SHEET METHOD
488 16.4.13 INTEGRAL PHOTOGRAPHY (IP) 489 16.5 CONCLUDING REMARKS 492
PROBLEMS 492 REFERENCES 497 INDEX 515
|
adam_txt |
KEIGO IIZUKA ENGINEERING OPTICS THIRD EDITION WITH 433 FIGURES 4U
SPRINGER CONTENTS PREFACE TO THE THIRD EDITION V PREFACE TO THE SECOND
EDITION VII PREFACE TO THE FIRST EDITION IX 1 HISTORY OF OPTICS 1 1.1
THE MYSTERIOUS ROCK CRYSTAL LENS 1 1.2 IDEAS GENERATED BY GREEK
PHILOSOPHERS 3 1.3 A MORNING STAR 6 1.4 RENAISSANCE 7 1.5 THE LENGTHY
PATH TO SNELL'S LAW 10 1.6 A TIME BOMB TO MODERN OPTICS 11 1.7 NEWTON'S
RINGS AND NEWTON'S CORPUSCULAR THEORY 12 1.8 DOWNFALL OF THE CORPUSCLE
AND RISE OF THE WAVE 16 1.9 BUILDING BLOCKS OF MODERN OPTICS 17 1.10
QUANTA AND PHOTONS 20 1.11 RECONCILIATION BETWEEN WAVES AND PARTICLES 23
1.12 EVER GROWING OPTICS 24 PROBLEMS 24 2 MATHEMATICS USED FOR
EXPRESSING WAVES 25 2.1 SPHERICAL WAVES 25 2.2 CYLINDRICAL WAVES 27 2.3
PLANE WAVES 28 2.4 INTERFERENCE OF TWO WAVES 31 2.5 SPATIAL FREQUENCY 33
2.6 THE RELATIONSHIP BETWEEN ENGINEERING OPTICS AND FOURIER TRANSFORMS
34 2.7 SPECIAL FUNCTIONS USED IN ENGINEERING OPTICS AND THEIR FOURIER
TRANSFORMS : 37 XIN XIV CONTENTS 2.7.1 THE TRIANGLE FUNCTION 38 2.7.2
THE SIGN FUNCTION 38 2.7.3 THE STEP FUNCTION 39 2.7.4 THE DELTA FUNCTION
40 2.7.5 THE COMB FUNCTION 41 2.8 FOURIER TRANSFORM IN CYLINDRICAL
COORDINATES 43 2.8.1 HANKEL TRANSFORM 44 2.8.2 EXAMPLES INVOLVING HANKEL
TRANSFORMS 47 2.9 A HAND-ROTATING ARGUMENT OF THE FOURIER TRANSFORM 50
PROBLEMS 50 3 BASIC THEORY OF DIFFRACTION 53 3.1 KIRCHHOFF'S INTEGRAL
THEOREM 53 3.2 FRESNEL-KIRCHHOFF DIFFRACTION FORMULA 57 3.3
FRESNEL-KIRCHHOFF S APPROXIMATE FORMULA 60 3.4 APPROXIMATION IN THE
FRAUNHOFER REGION 63 3.5 CALCULATION OF THE FRESNEL APPROXIMATION 63 3.6
ONE-DIMENSIONAL DIFFRACTION FORMULA 66 3.7 THE FRESNEL INTEGRAL 68
PROBLEMS 71 4 PRACTICAL EXAMPLES OF DIFFRACTION THEORY 73 4.1
DIFFRACTION PROBLEMS IN A RECTANGULAR COORDINATE SYSTEM 73 4.2 EDGE
DIFFRACTION 78 4.3 DIFFRACTION FROM A PERIODIC ARRAY OF SLITS 82 4.4
VIDEO DISK SYSTEM 85 4.4.1 REFLECTION GRATING 85 4.4.2 PRINCIPLE OF THE
VIDEO DISK SYSTEM 87 4.5 DIFFRACTION PATTERN OF A CIRCULAR APERTURE 89
4.6 ONE-DIMENSIONAL FRESNEL ZONE PLATE 91 4.7 TWO-DIMENSIONAL FRESNEL
ZONE PLATE 95 PROBLEMS 98 5 GEOMETRICAL OPTICS 101 5.1 EXPRESSIONS
FREQUENTLY USED FOR DESCRIBING THE PATH OF LIGHT . 101 5.1.1 TANGENT
LINES 101 5.1.2 CURVATURE OF A CURVE 104 5.1.3 DERIVATIVE IN AN
ARBITRARY DIRECTION AND DERIVATIVE NORMAL TO A SURFACE 105 5.2 SOLUTION
OF THE WAVE EQUATION IN INHOMOGENEOUS MEDIA BY THE GEOMETRICAL-OPTICS
APPROXIMATION 107 5.3 PATH OF LIGHT IN AN INHOMOGENEOUS MEDIUM ILL 5.4
RELATIONSHIP BETWEEN INHOMOGENEITY AND RADIUS OF CURVATURE OF THE
OPTICAL PATH - .116 5.5 PATH OF LIGHT IN A SPHERICALLY SYMMETRIC MEDIUM
117 CONTENTS XV 5.6 PATH OF LIGHT IN A CYLINDRICALLY SYMMETRIC MEDIUM
122 5.7 SELFOC FIBER 125 5.7.1 MERIDIONAL RAY IN SELFOC FIBER 126 5.7.2
SKEW RAY IN SELFOC FIBER 127 5.8 QUANTIZED PROPAGATION CONSTANT 129
5.8.1 QUANTIZED PROPAGATION CONSTANT IN A SLAB GUIDE 129 5.8.2 QUANTIZED
PROPAGATION CONSTANT IN OPTICAL FIBER 131 5.9 GROUP VELOCITY 134
PROBLEMS 136 6 LENSES 139 6.1 DESIGN OF PIANO-CONVEX LENS 139 6.2
CONSIDERATION OF A LENS FROM THE VIEWPOINT OF WAVE OPTICS 141 6.3
FOURIER TRANSFORM BY A LENS 142 6.3.1 INPUT ON THE LENS SURFACE 142
6.3.2 INPUT AT THE FRONT FOCAL PLANE 143 6.3.3 INPUT BEHIND THE LENS 145
6.3.4 FOURIER TRANSFORM BY A GROUP OF LENSES 147 6.3.5 EFFECT OF LATERAL
TRANSLATION OF THE INPUT IMAGE ON THE FOURIER-TRANSFORM IMAGE 148 6.4
IMAGE FORMING CAPABILITY OF A LENS FROM THE VIEWPOINT OF WAVE OPTICS 149
6.5 EFFECTS OF THE FINITE SIZE OF THE LENS 152 6.5.1 INFLUENCE OF THE
FINITE SIZE OF THE LENS ON THE QUALITY OF THE FOURIER TRANSFORM 153
6.5.2 INFLUENCE OF THE FINITE SIZE OF THE LENS ON THE IMAGE QUALITY 154
PROBLEMS 158 7 THE FAST FOURIER TRANSFORM (FFT) 161 7.1 WHAT IS THE FAST
FOURIER TRANSFORM? 161 7.2 FFT BY THE METHOD OF DECIMATION IN FREQUENCY
164 7-3 FFT BY THE METHOD OF DECIMATION IN TIME 172 7.4 VALUES OF W K
174 PROBLEMS 177 8 HOLOGRAPHY 181 8.1 PICTORIAL ILLUSTRATION OF THE
PRINCIPLE OF HOLOGRAPHY 181 8.2 ANALYTICAL DESCRIPTION OF THE PRINCIPLE
OF HOLOGRAPHY 183 8.3 RELATIONSHIP BETWEEN THE INCIDENT ANGLE OF THE
RECONSTRUCTING BEAM AND THE BRIGHTNESS OF THE RECONSTRUCTED IMAGE 188
8.4 WAVE FRONT CLASSIFICATION OF HOLOGRAMS 190 8.4.1 FRESNEL HOLOGRAM
190 8.4.2 FOURIER TRANSFORM HOLOGRAM 190 8.4.3 IMAGE HOLOGRAM -. 190
8.4.4 LENSLESS FOURIER TRANSFORM HOLOGRAM 191 XVI CONTENTS 8.5 HOLOGRAMS
FABRICATED BY A COMPUTER 192 8.6 WHITE-LIGHT HOLOGRAM 197 8.7 SPECKLE
PATTERN 202 8.8 APPLICATIONS OF HOLOGRAPHY 204 8.8.1 PHOTOGRAPHS WITH
ENHANCED DEPTH OF FIELD 205 8.8.2 HIGH-DENSITY RECORDING 205 8.8.3
OPTICAL MEMORY FOR A COMPUTER 205 8.8.4 HOLOGRAPHIC DISK 209 8.8.5 LASER
MACHINING 209 8.8.6 OBSERVATION OF DEFORMATION BY MEANS OF AN
INTERFEROMETRIC HOLOGRAM 210 8.8.7 DETECTION OF THE DIFFERENCE BETWEEN
TWO PICTURES 212 8.8.8 OBSERVATION OF A VIBRATING OBJECT 213 8.8.9
GENERATION OF CONTOUR LINES OF AN OBJECT 214 PROBLEMS 215 9 LABORATORY
PROCEDURES FOR FABRICATING HOLOGRAMS 217 9.1 ISOLATING THE WORK AREA
FROM ENVIRONMENTAL NOISE 217 9.2 NECESSARY OPTICAL ELEMENTS FOR
FABRICATING HOLOGRAMS 218 9.2.1 OPTICAL BENCH 219 9.2.2 LASER 220 9.2.3
BEAM DIRECTOR 220 9.2.4 SPATIAL FILTER 220 9.2.5 BEAM SPLITTER 221 9.2.6
PHOTOGRAPHIC-PLATE HOLDER 221 9.2.7 FILM 221 9.3 PHOTOGRAPHIC
ILLUSTRATION OF THE EXPERIMENTAL PROCEDURES FOR HOLOGRAM FABRICATION 222
9.4 EXPOSURE TIME 227 9.5 DARK-ROOM PROCEDURES 229 9.5.1 DEVELOPING 229
9.5.2 STOP BATH 230 9.5.3 FIXER 231 9.5.4 WATER RINSING 231 9.5.5 DRYING
231 9.5.6 BLEACHING 231 9.6 VIEWING THE HOLOGRAM 232 10 ANALYSIS OF THE
OPTICAL SYSTEM IN THE SPATIAL FREQUENCY DOMAIN . 233 10.1 TRANSFER
FUNCTION FOR COHERENT LIGHT 233 10.1.1 IMPULSE RESPONSE FUNCTION 233
10.1.2 COHERENT TRANSFER FUNCTION (CTF) 235 10.2 SPATIAL COHERENCE AND
TEMPORAL COHERENCE 237 10.3 DIFFERENCES BETWEEN THE USES OF COHERENT AND
INCOHERENT LIGHT . 239 10.4 TRANSFER FUNCTION FOR INCOHERENT LIGHT 241
CONTENTS XVII 10.5 MODULATION TRANSFER FUNCTION (MTF) 246 10.6
RELATIONSHIP BETWEEN MTF AND OTF 246 PROBLEMS 248 11 OPTICAL SIGNAL
PROCESSING 251 11.1 CHARACTERISTICS OF A PHOTOGRAPHIC FILM 251 11.2
BASIC OPERATIONS OF COMPUTATION BY LIGHT 253 11.2.1 OPERATION OF
ADDITION AND SUBTRACTION 253 11.2.2 OPERATION OF MULTIPLICATION 254
11.2.3 OPERATION OF DIVISION 255 II.2 A OPERATION OF AVERAGING 255
11.2.5 OPERATION OF DIFFERENTIATION 257 11.3 OPTICAL SIGNAL PROCESSING
USING COHERENT LIGHT 259 11.3.1 DECODING BY FOURIER TRANSFORM 259 11.3.2
INVERSE FILTERS 260 11.3.3 WIENER FILTER 262 11.3.4 A FILTER FOR
RECOVERING THE IMAGE FROM A PERIODICALLY SAMPLED PICTURE 263 11.3.5
MATCHED FILTER : 265 11.4 CONVOLUTION FILTER 268 11.5 OPTICAL SIGNAL
PROCESSING USING INCOHERENT LIGHT 273 11.5.1 THE MULTIPLE PINHOLE CAMERA
274 11.5.2 TIME MODULATED MULTIPLE PINHOLE CAMERA 276 11.5.3 LOW-PASS
FILTER MADE OF RANDOMLY DISTRIBUTED SMALL PUPILS 278 11.6 INCOHERENT
LIGHT MATCHED FILTER 280 11.7 LOGARITHMIC FILTERING 283 11.8 TOMOGRAPHY
285 11.8.1 PLANIGRAPHIC TOMOGRAPHY 285 11.8.2 COMPUTED TOMOGRAPHY (CT)
287 PROBLEMS 303 12 APPLICATIONS OF MICROWAVE HOLOGRAPHY 305 12.1
RECORDING MICROWAVE FIELD INTENSITY DISTRIBUTIONS 305 12.1.1 SCANNING
PROBE METHOD 306 12.1.2 METHOD BASED ON CHANGES IN COLOR INDUCED BY
MICROWAVE HEATING 307 12.1.3 METHOD BY THERMAL VISION 308 12.1.4 METHOD
BY MEASURING SURFACE EXPANSION 309 12.2 MICROWAVE HOLOGRAPHY APPLIED TO
DIAGNOSTICS AND ANTENNA INVESTIGATIONS 311 12.2.1 "SEEING THROUGH" BY
MEANS OF MICROWAVE HOLOGRAPHY .311 12.2.2 VISUALIZATION OF THE MICROWAVE
PHENOMENA 313 12.2.3 SUBTRACTIVE MICROWAVE HOLOGRAPHY 314 XVIII CONTENTS
12.2.4 HOLOGRAPHIC ANTENNA 316 12.2.5 A METHOD OF OBTAINING THE
FAR-FIELD PATTERN FROM THE NEAR FIELD PATTERN 316 12.3 SIDE LOOKING
SYNTHETIC APERTURE RADAR 318 12.3.1 MATHEMATICAL ANALYSIS OF SIDE
LOOKING SYNTHETIC APERTURE RADAR 320 12.4 HISS RADAR 325 12.4.1 HOLOGRAM
MATRIX 327 13 FIBER OPTICAL COMMUNICATION 333 13.1 ADVANTAGES OF OPTICAL
FIBER SYSTEMS 334 13.1.1 LARGE INFORMATION TRANSMISSION CAPABILITY 334
13.1.2 LOW TRANSMISSION LOSS 334 13.1.3 NON-METALLIC CABLE 335 13.2
OPTICAL FIBER 335 13.3 DISPERSION OF THE OPTICAL FIBER 336 13.4 FIBER
TRANSMISSION LOSS CHARACTERISTICS 339 13.5 TYPES OF FIBER USED FOR FIBER
OPTICAL COMMUNICATION 342 13.6 RECEIVERS FOR FIBER OPTICAL
COMMUNICATIONS 343 13.6.1 PIN PHOTODIODE 343 13.6.2 AVALANCHE PHOTODIODE
346 13.6.3 COMPARISON BETWEEN PIN PHOTODIODE AND APD 347 13.7
TRANSMITTERS FOR FIBER OPTICAL COMMUNICATIONS 348 13.7.1 LIGHT EMITTING
DIODE (LED) 348 13.7.2 LASER DIODE (LD) 351 13.7.3 LASER CAVITY AND
LASER ACTION 352 13.7.4 TEMPERATURE DEPENDENCE OF THE LASER DIODE (LD)
357 13.7.5 COMPARISON BETWEEN LED AND LD 357 13.8 CONNECTORS, SPLICES,
AND COUPLERS 358 13.8.1 OPTICAL FIBER CONNECTOR 358 13.8.2 SPLICING 359
13.8.3 FIBER OPTIC COUPLERS 360 13.9 WAVELENGTH DIVISION MULTIPLEXING
(WDM) 362 13.10 OPTICAL ATTENUATORS 364 13.11 DESIGN PROCEDURE FOR FIBER
OPTICAL COMMUNICATION SYSTEMS 365 PROBLEMS 368 14 ELECTRO AND ACCOUSTO
OPTICS 371 14.1 PROPAGATION OF LIGHT IN A UNIAXIAL CRYSTAL 371 14.2
FIELD IN AN ELECTROOPTIC MEDIUM 375 14.2.1 EXAMPLES FOR CALCULATING THE
FIELD IN AN ELECTROOPTIC MEDIUM 376 14.2.2 APPLICATIONS OF THE
ELECTROOPTIC BULK EFFECT 383 14.3 ELASTOOPTIC EFFECT *. 386 14.3.1
ELASTOOPTIC EFFECT IN AN ISOTROPIC MEDIUM 386 14.3.2 ELASTOOPTIC EFFECT
IN AN ANISOTROPIC MEDIUM 388 CONTENTS XIX 14.4 MISCELLANEOUS EFFECTS 393
14.4.1 OPTICAL ACTIVITY 393 14.4.2 FARADAY EFFECT 394 14.4.3 OTHER
MAGNETOOPTIC EFFECTS 396 14.4.4 FRANZ-KELDYSH EFFECT 396 PROBLEMS 397 15
INTEGRATED OPTICS 399 15.1 ANALYSIS OF THE SLAB OPTICAL GUIDE 399 15.1.1
DIFFERENTIAL EQUATIONS OF WAVE OPTICS 400 15.1.2 GENERAL SOLUTION FOR
THE TE MODES 401 15.1.3 BOUNDARY CONDITIONS 402 15.1.4 TM MODES 406
15.1.5 TREATMENT BY GEOMETRICAL OPTICS 407 15.1.6 COMPARISON BETWEEN THE
RESULTS BY GEOMETRICAL OPTICS AND BY WAVE OPTICS 409 15.2 COUPLED-MODE
THEORY 409 15.3 BASIC DEVICES IN INTEGRATED OPTICS 416 15.3.1
DIRECTIONAL COUPLER SWITCH 416 15.3.2 REVERSED AFI DIRECTIONAL COUPLER
419 15.3.3 TUNABLE DIRECTIONAL COUPLER FILTER 423 15.3.4 Y JUNCTION 423
15.3.5 MACH-ZEHNDER INTERFEROMETRIC MODULATOR 425 15.3.6 WAVEGUIDE
MODULATOR 427 15.3.7 ACOUSTOOPTIC MODULATOR 427 15.4 BISTABLE OPTICAL
DEVICES 433 15.4.1 OPTICALLY SWITCHABLE DIRECTIONAL COUPLER 433 15.4.2
OPTICAL TRIODE 437 15.4.3 OPTICAL AND AND OR GATES 437 15.4.4 OTHER
TYPES OF BISTABLE OPTICAL DEVICES 438 15.4.5 SELF-FOCUSING ACTION AND
NON-LINEAR OPTICS 440 15.5 CONSIDERATION OF POLARIZATION 441 15.6
INTEGRATED OPTICAL LENSES AND THE SPECTRUM ANALYZER 444 15.6.1 MODE
INDEX LENS 444 15.6.2 GEODESIC LENS 446 15.6.3 FRESNEL ZONE LENS 446
15.6.4 INTEGRATED OPTICAL SPECTRUM ANALYZER 448 15.7 METHODS OF
FABRICATION 449 15.7.1 FABRICATION OF OPTICAL GUIDES 449 15.7.2
FABRICATION OF PATTERNS 451 15.7.3 SUMMARY OF STRIP GUIDES 453 15.7.4
SUMMARY OF GEOMETRIES OF ELECTRODES 454 PROBLEMS 455 XX " CONTENTS 16 3D
IMAGING 459 16.1 HISTORICAL DEVELOPMENT OF 3D DISPLAYS 459 16.2
PHYSIOLOGICAL FACTORS CONTRIBUTING TO 3D VISION 464 16.3 HOW PARALLAX
AND CONVERGENCE GENERATE A 3D EFFECT 466 16.3.1 PROJECTION TYPE 466
16.3.2 INTERCEPTION TYPE 470 16.4 DETAILS OF THE MEANS USED FOR
REALIZING THE 3D EFFECT 471 16.4.1 METHODS BASED ON POLARIZED LIGHT 471
16.4.2 3D MOVIES 472 16.4.3 WHEATSTONE'S STEREOSCOPE 473 16.4.4
BREWSTER'S STEREOSCOPE 474 16.4.5 ANAGLYPH 475 16.4.6 TIME SHARING
METHOD 479 16.4.7 HEAD MOUNTED DISPLAY (HMD) 479 16.4.8 VOLUMETRIC
METHODS 481 16.4.9 VARIFOCAL MIRROR 482 16.4.10 PARALLAX BARRIER 485
16.4.11 HORSE BLINDER BARRIER METHOD 487 16.4.12 LENTICULAR SHEET METHOD
488 16.4.13 INTEGRAL PHOTOGRAPHY (IP) 489 16.5 CONCLUDING REMARKS 492
PROBLEMS 492 REFERENCES 497 INDEX 515 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Iizuka, Keigo 1931- |
author_GND | (DE-588)132355604 |
author_facet | Iizuka, Keigo 1931- |
author_role | aut |
author_sort | Iizuka, Keigo 1931- |
author_variant | k i ki |
building | Verbundindex |
bvnumber | BV023384771 |
classification_rvk | UH 5000 UH 6700 |
ctrlnum | (OCoLC)254558528 (DE-599)DNB98587497X |
dewey-full | 621.36 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36 |
dewey-search | 621.36 |
dewey-sort | 3621.36 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03904nam a2200937 cb4500</leader><controlfield tag="001">BV023384771</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090811 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080708s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N43,0557</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98587497X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387757247</subfield><subfield code="9">978-0-387-75724-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387757230</subfield><subfield code="c">Gb.</subfield><subfield code="9">978-0-387-75723-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387757236</subfield><subfield code="c">Gb.</subfield><subfield code="9">0-387-75723-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387757230</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10988718</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254558528</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB98587497X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5000</subfield><subfield code="0">(DE-625)145647:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6700</subfield><subfield code="0">(DE-625)145770:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Iizuka, Keigo</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132355604</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering optics</subfield><subfield code="c">Keigo Iizuka</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 525 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series in Optical Sciences</subfield><subfield code="v">35</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Optik</subfield><subfield code="0">(DE-588)4020241-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holografie</subfield><subfield code="0">(DE-588)4025643-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommunikation</subfield><subfield code="0">(DE-588)4031883-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrierte Optik</subfield><subfield code="0">(DE-588)4027240-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beugung</subfield><subfield code="0">(DE-588)4145094-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Optik</subfield><subfield code="0">(DE-588)4078181-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photonik</subfield><subfield code="0">(DE-588)4243979-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Optik</subfield><subfield code="0">(DE-588)4078181-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Photonik</subfield><subfield code="0">(DE-588)4243979-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Geometrische Optik</subfield><subfield code="0">(DE-588)4020241-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Holografie</subfield><subfield code="0">(DE-588)4025643-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Integrierte Optik</subfield><subfield code="0">(DE-588)4027240-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Beugung</subfield><subfield code="0">(DE-588)4145094-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="7" ind2="0"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="7" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="8" ind2="0"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="8" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="9" ind2="0"><subfield code="a">Kommunikation</subfield><subfield code="0">(DE-588)4031883-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="9" ind2=" "><subfield code="8">8\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series in Optical Sciences</subfield><subfield code="v">35</subfield><subfield code="w">(DE-604)BV000000237</subfield><subfield code="9">35</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016567807&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016567807</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">8\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023384771 |
illustrated | Illustrated |
index_date | 2024-07-02T21:17:44Z |
indexdate | 2024-07-09T21:17:24Z |
institution | BVB |
isbn | 9780387757247 9780387757230 0387757236 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016567807 |
oclc_num | 254558528 |
open_access_boolean | |
owner | DE-703 DE-1050 DE-634 DE-1043 DE-573 DE-83 DE-11 DE-706 |
owner_facet | DE-703 DE-1050 DE-634 DE-1043 DE-573 DE-83 DE-11 DE-706 |
physical | XX, 525 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Springer Series in Optical Sciences |
series2 | Springer Series in Optical Sciences |
spelling | Iizuka, Keigo 1931- Verfasser (DE-588)132355604 aut Engineering optics Keigo Iizuka 3. ed. New York, NY Springer 2008 XX, 525 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer Series in Optical Sciences 35 Optics Photonics Fourier-Transformation (DE-588)4018014-1 gnd rswk-swf Geometrische Optik (DE-588)4020241-0 gnd rswk-swf Holografie (DE-588)4025643-1 gnd rswk-swf Kommunikation (DE-588)4031883-7 gnd rswk-swf Integrierte Optik (DE-588)4027240-0 gnd rswk-swf Ingenieurwissenschaften (DE-588)4137304-2 gnd rswk-swf Beugung (DE-588)4145094-2 gnd rswk-swf Technische Optik (DE-588)4078181-1 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Photonik (DE-588)4243979-6 gnd rswk-swf Optik (DE-588)4043650-0 gnd rswk-swf Technische Optik (DE-588)4078181-1 s DE-604 Photonik (DE-588)4243979-6 s Ingenieurwissenschaften (DE-588)4137304-2 s Optik (DE-588)4043650-0 s 1\p DE-604 Geometrische Optik (DE-588)4020241-0 s 2\p DE-604 Holografie (DE-588)4025643-1 s 3\p DE-604 Integrierte Optik (DE-588)4027240-0 s 4\p DE-604 Beugung (DE-588)4145094-2 s 5\p DE-604 Mathematische Methode (DE-588)4155620-3 s 6\p DE-604 Fourier-Transformation (DE-588)4018014-1 s 7\p DE-604 Kommunikation (DE-588)4031883-7 s 8\p DE-604 Springer Series in Optical Sciences 35 (DE-604)BV000000237 35 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016567807&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 8\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Iizuka, Keigo 1931- Engineering optics Springer Series in Optical Sciences Optics Photonics Fourier-Transformation (DE-588)4018014-1 gnd Geometrische Optik (DE-588)4020241-0 gnd Holografie (DE-588)4025643-1 gnd Kommunikation (DE-588)4031883-7 gnd Integrierte Optik (DE-588)4027240-0 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd Beugung (DE-588)4145094-2 gnd Technische Optik (DE-588)4078181-1 gnd Mathematische Methode (DE-588)4155620-3 gnd Photonik (DE-588)4243979-6 gnd Optik (DE-588)4043650-0 gnd |
subject_GND | (DE-588)4018014-1 (DE-588)4020241-0 (DE-588)4025643-1 (DE-588)4031883-7 (DE-588)4027240-0 (DE-588)4137304-2 (DE-588)4145094-2 (DE-588)4078181-1 (DE-588)4155620-3 (DE-588)4243979-6 (DE-588)4043650-0 |
title | Engineering optics |
title_auth | Engineering optics |
title_exact_search | Engineering optics |
title_exact_search_txtP | Engineering optics |
title_full | Engineering optics Keigo Iizuka |
title_fullStr | Engineering optics Keigo Iizuka |
title_full_unstemmed | Engineering optics Keigo Iizuka |
title_short | Engineering optics |
title_sort | engineering optics |
topic | Optics Photonics Fourier-Transformation (DE-588)4018014-1 gnd Geometrische Optik (DE-588)4020241-0 gnd Holografie (DE-588)4025643-1 gnd Kommunikation (DE-588)4031883-7 gnd Integrierte Optik (DE-588)4027240-0 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd Beugung (DE-588)4145094-2 gnd Technische Optik (DE-588)4078181-1 gnd Mathematische Methode (DE-588)4155620-3 gnd Photonik (DE-588)4243979-6 gnd Optik (DE-588)4043650-0 gnd |
topic_facet | Optics Photonics Fourier-Transformation Geometrische Optik Holografie Kommunikation Integrierte Optik Ingenieurwissenschaften Beugung Technische Optik Mathematische Methode Photonik Optik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016567807&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000237 |
work_keys_str_mv | AT iizukakeigo engineeringoptics |