Toroidal Dehn fillings on hyperbolic 3-manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, R.I.
American Mathematical Society
2008
|
Schriftenreihe: | Memoirs of the American Mathematical Society
909 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | "Volume 194, number 909 (end of volume)." Includes bibliographical references |
Beschreibung: | VI, 140 S. graph. Darst. |
ISBN: | 9780821841679 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023373677 | ||
003 | DE-604 | ||
005 | 20150324 | ||
007 | t | ||
008 | 080702s2008 xxud||| |||| 00||| eng d | ||
010 | |a 2008008511 | ||
020 | |a 9780821841679 |c alk. paper |9 978-0-8218-4167-9 | ||
035 | |a (OCoLC)212627202 | ||
035 | |a (DE-599)BVBBV023373677 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-29T |a DE-11 |a DE-188 |a DE-83 | ||
050 | 0 | |a QA649 | |
082 | 0 | |a 514/.3 | |
100 | 1 | |a Gordon, Cameron |e Verfasser |4 aut | |
245 | 1 | 0 | |a Toroidal Dehn fillings on hyperbolic 3-manifolds |c Cameron McA. Gordon ; Ying-Qing Wu |
264 | 1 | |a Providence, R.I. |b American Mathematical Society |c 2008 | |
300 | |a VI, 140 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v 909 | |
500 | |a "Volume 194, number 909 (end of volume)." | ||
500 | |a Includes bibliographical references | ||
650 | 4 | |a Dehn surgery (Topology) | |
650 | 4 | |a Three-manifolds (Topology) | |
650 | 4 | |a Geometry, Hyperbolic | |
650 | 0 | 7 | |a Hyperbolische Mannigfaltigkeit |0 (DE-588)4161044-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Mannigfaltigkeit |0 (DE-588)4161044-1 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wu, Ying-Qing |d 1956- |e Sonstige |0 (DE-588)135750512 |4 oth | |
830 | 0 | |a Memoirs of the American Mathematical Society |v 909 |w (DE-604)BV008000141 |9 909 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016556898&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016556898 |
Datensatz im Suchindex
_version_ | 1804137742548860928 |
---|---|
adam_text | Contents
1. Introduction 1
2. Preliminary lemmas 5
3. F+ has no interior vertex 18
4. Possible components of F+ 20
5. The case ni, n2 4 26
6. Kleinian graphs 34
7. If na = 4, rib 4 and F+ has a small component then ra is kleinian. 37
8. If na = 4, n 4 and Tb is non-positive then F+ has no small
component 41
9. If Tb is non-positive and na = 4 then rib 4 46
10. The case ni = n2 = 4 and Fi,r2 non-positive 51
11. The case na == 4, and F;, positive 54
12. The case na = 2, n 3, and F positive 64
13. The case na = 2, rib 4, Fi, F2 non-positive, and max(u)i + W2, 1V3 +
w4) = 2n6 - 2 74
14. The case na = 2, n 4, Fi, F2 non-positive, and wi = w2 == nb 78
15. Fo with na 2 85
16. The case na = 2, n = 3 or 4, and F1,F2 non-positive 86
17. Equidistance classes 94
18. The case nb = 1 and na = 2 96
19. The case ni = n2 = 2 and Tb positive 97
20. The case n = n2 = 2 and both Fi, F2 non-positive 103
21. The main theorems 108
22. The construction of Mi as a double branched cover 111
23. The manifolds Mi are hyperbolic 122
24. Toroidal surgery on knots in S3 131
Bibliography 139
V
|
adam_txt |
Contents
1. Introduction 1
2. Preliminary lemmas 5
3. F+ has no interior vertex 18
4. Possible components of F+ 20
5. The case ni, n2 4 26
6. Kleinian graphs 34
7. If na = 4, rib 4 and F+ has a small component then ra is kleinian. 37
8. If na = 4, n 4 and Tb is non-positive then F+ has no small
component 41
9. If Tb is non-positive and na = 4 then rib 4 46
10. The case ni = n2 = 4 and Fi,r2 non-positive 51
11. The case na == 4, and F;, positive 54
12. The case na = 2, n 3, and F positive 64
13. The case na = 2, rib 4, Fi, F2 non-positive, and max(u)i + W2, 1V3 +
w4) = 2n6 - 2 74
14. The case na = 2, n 4, Fi, F2 non-positive, and wi = w2 == nb 78
15. Fo with na 2 85
16. The case na = 2, n = 3 or 4, and F1,F2 non-positive 86
17. Equidistance classes 94
18. The case nb = 1 and na = 2 96
19. The case ni = n2 = 2 and Tb positive 97
20. The case n\ = n2 = 2 and both Fi, F2 non-positive 103
21. The main theorems 108
22. The construction of Mi as a double branched cover 111
23. The manifolds Mi are hyperbolic 122
24. Toroidal surgery on knots in S3 131
Bibliography 139
V |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Gordon, Cameron |
author_GND | (DE-588)135750512 |
author_facet | Gordon, Cameron |
author_role | aut |
author_sort | Gordon, Cameron |
author_variant | c g cg |
building | Verbundindex |
bvnumber | BV023373677 |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)212627202 (DE-599)BVBBV023373677 |
dewey-full | 514/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.3 |
dewey-search | 514/.3 |
dewey-sort | 3514 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01896nam a2200469 cb4500</leader><controlfield tag="001">BV023373677</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150324 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080702s2008 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008008511</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821841679</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8218-4167-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)212627202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023373677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.3</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gordon, Cameron</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toroidal Dehn fillings on hyperbolic 3-manifolds</subfield><subfield code="c">Cameron McA. Gordon ; Ying-Qing Wu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 140 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">909</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Volume 194, number 909 (end of volume)."</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dehn surgery (Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Hyperbolic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4161044-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4161044-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Ying-Qing</subfield><subfield code="d">1956-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135750512</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">909</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">909</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016556898&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016556898</subfield></datafield></record></collection> |
id | DE-604.BV023373677 |
illustrated | Illustrated |
index_date | 2024-07-02T21:13:33Z |
indexdate | 2024-07-09T21:17:08Z |
institution | BVB |
isbn | 9780821841679 |
language | English |
lccn | 2008008511 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016556898 |
oclc_num | 212627202 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-11 DE-188 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-11 DE-188 DE-83 |
physical | VI, 140 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | American Mathematical Society |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Gordon, Cameron Verfasser aut Toroidal Dehn fillings on hyperbolic 3-manifolds Cameron McA. Gordon ; Ying-Qing Wu Providence, R.I. American Mathematical Society 2008 VI, 140 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society 909 "Volume 194, number 909 (end of volume)." Includes bibliographical references Dehn surgery (Topology) Three-manifolds (Topology) Geometry, Hyperbolic Hyperbolische Mannigfaltigkeit (DE-588)4161044-1 gnd rswk-swf Dimension 3 (DE-588)4321722-9 gnd rswk-swf Hyperbolische Mannigfaltigkeit (DE-588)4161044-1 s Dimension 3 (DE-588)4321722-9 s DE-604 Wu, Ying-Qing 1956- Sonstige (DE-588)135750512 oth Memoirs of the American Mathematical Society 909 (DE-604)BV008000141 909 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016556898&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gordon, Cameron Toroidal Dehn fillings on hyperbolic 3-manifolds Memoirs of the American Mathematical Society Dehn surgery (Topology) Three-manifolds (Topology) Geometry, Hyperbolic Hyperbolische Mannigfaltigkeit (DE-588)4161044-1 gnd Dimension 3 (DE-588)4321722-9 gnd |
subject_GND | (DE-588)4161044-1 (DE-588)4321722-9 |
title | Toroidal Dehn fillings on hyperbolic 3-manifolds |
title_auth | Toroidal Dehn fillings on hyperbolic 3-manifolds |
title_exact_search | Toroidal Dehn fillings on hyperbolic 3-manifolds |
title_exact_search_txtP | Toroidal Dehn fillings on hyperbolic 3-manifolds |
title_full | Toroidal Dehn fillings on hyperbolic 3-manifolds Cameron McA. Gordon ; Ying-Qing Wu |
title_fullStr | Toroidal Dehn fillings on hyperbolic 3-manifolds Cameron McA. Gordon ; Ying-Qing Wu |
title_full_unstemmed | Toroidal Dehn fillings on hyperbolic 3-manifolds Cameron McA. Gordon ; Ying-Qing Wu |
title_short | Toroidal Dehn fillings on hyperbolic 3-manifolds |
title_sort | toroidal dehn fillings on hyperbolic 3 manifolds |
topic | Dehn surgery (Topology) Three-manifolds (Topology) Geometry, Hyperbolic Hyperbolische Mannigfaltigkeit (DE-588)4161044-1 gnd Dimension 3 (DE-588)4321722-9 gnd |
topic_facet | Dehn surgery (Topology) Three-manifolds (Topology) Geometry, Hyperbolic Hyperbolische Mannigfaltigkeit Dimension 3 |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016556898&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT gordoncameron toroidaldehnfillingsonhyperbolic3manifolds AT wuyingqing toroidaldehnfillingsonhyperbolic3manifolds |