Nonlinear oscillations of Hamiltonian PDEs:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2007
|
Schriftenreihe: | Progress in non-linear differential equations and their applications
74 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 180 S. graph. Darst. |
ISBN: | 9780817646806 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023369927 | ||
003 | DE-604 | ||
005 | 20080820 | ||
007 | t | ||
008 | 080630s2007 d||| |||| 00||| eng d | ||
015 | |a 07,N14,0701 |2 dnb | ||
020 | |a 9780817646806 |c Pp. : EUR 64.09 |9 978-0-8176-4680-6 | ||
024 | 3 | |a 9780817646806 | |
028 | 5 | 2 | |a 11981206 |
035 | |a (OCoLC)166362219 | ||
035 | |a (DE-599)HBZHT015358619 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 | ||
050 | 0 | |a QC174.17.H3 | |
082 | 0 | |a 515.39 |2 22/ger | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
100 | 1 | |a Berti, Massimiliano |e Verfasser |0 (DE-588)133631656 |4 aut | |
245 | 1 | 0 | |a Nonlinear oscillations of Hamiltonian PDEs |c Massimiliano Berti |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2007 | |
300 | |a XIV, 180 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in non-linear differential equations and their applications |v 74 | |
650 | 4 | |a Opérateur hamiltonien | |
650 | 4 | |a Oscillations non linéaires | |
650 | 4 | |a Systèmes hamiltoniens | |
650 | 4 | |a Équations aux dérivées partielles | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Hamiltonian operator | |
650 | 4 | |a Hamiltonian systems | |
650 | 4 | |a Nonlinear oscillations | |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Periodische Lösung |0 (DE-588)4199269-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Wellengleichung |0 (DE-588)4042104-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Nichtlineare Wellengleichung |0 (DE-588)4042104-1 |D s |
689 | 0 | 2 | |a Periodische Lösung |0 (DE-588)4199269-6 |D s |
689 | 0 | 3 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Progress in non-linear differential equations and their applications |v 74 |w (DE-604)BV007934389 |9 74 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016553218&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016553218 |
Datensatz im Suchindex
_version_ | 1804137737019719680 |
---|---|
adam_text | Contents
1
Finite
Dimension............................................... 1
1.1 The Lyapunov Center Theorem............................... 4
1.2 The Weinstein-Moser and Fadell-Rabinowitz
Resonant
Center
Theorems................................................. 7
1.2.1 The Variational Lyapunov-Schmidt
Reduction
............ 13
1.2.2
Solution of the Range Equation
........................ 14
1.2.3
Solution of the Bifurcation Equation
.................... 15
1.2.4
Proof of the
Weinstein-Moser
Theorem
................. 16
1.2.5
Proof of the Fadell-Rabinowitz Theorem
................ 20
2
Infinite Dimension
............................................. 29
2.1
The Lyapunov Center Theorem for PDEs
....................... 31
2.2
Completely Resonant Wave Equations
......................... 33
2.3
The Case
ρ
Odd
........................................... 35
2.3.1
The Variational Lyapunov-Schmidt Reduction
............ 36
2.3.2
The Range Equation
.................................. 37
2.3.3
The Bifurcation Equation
............................. 41
2.3.4
The Mountain Pass Argument
.......................... 43
2.4
The Case
ρ
Even
........................................... 48
2.5
Multiplicity
............................................... 53
2.6
The Small-Divisor Problem
.................................. 54
3
A Tutorial in Nash-Moser Theory
................................ 59
3.1
Introduction
............................................... 59
3.2
An Analytic Nash-Moser Theorem
............................ 60
3.3
A Differentiable Nash-Moser Theorem
........................ 66
4
Application to the Nonlinear Wave Equation
...................... 73
4.1
The Zeroth-Order Bifurcation Equation
........................ 75
4.2
The Finite-Dimensional Reduction
............................ 77
4.2.1
Solution of the (£>2)-Equation
......................... 77
4.3
Solution of the Range Equation
............................... 80
xiv Contents
4.3.1 The Nash-Moser
Scheme
............................. 83
4.4
Solution of the (^l)-Equation
................................ 94
4.5
The Linearized Operator
..................................... 98
4.5.1
Decomposition of
C„................................. 98
4.5.2
Step
1 :
Inversion of
D
................................ 100
4.5.3
Step
2:
Inversion of Cn
............................... 104
5
Forced Vibrations
..............................................
Ill
5.1
The Forcing Frequency
ω
є
Q
...............................
Ill
5.2
The Variational Lyapunov-Schmidt Reduction
.................. 113
5.2.1
The Range Equation
.................................. 115
5.2.2
The Bifurcation Equation
............................. 117
5.3
Monotone
ƒ............................................... 119
5.3.1
Step
1:
the L°° Estimate
.............................. 119
5.3.2
Step
2:
the
Я1
Estimate
............................... 122
5.4
Nonmonotone
ƒ........................................... 124
5.4.1
Step
1 :
the L2k Estimate
.............................. 129
5.4.2
Step
2:
the L°° Estimate
............................... 130
5.4.3
Step
3:
The
#
Estimate
.............................. 132
5.4.4
The Maximum Principle
............................ 133
Appendix A Hamiltonian PDEs
.................................... 139
A.
1
The Nonlinear
Schrödinger
Equation
.......................... 139
A.2 The Beam Equation
......................................... 139
A.3 The KdV Equation
......................................... 140
A.4 The
Euler
Equations of Hydrodynamics
........................ 140
Appendix
В
Critical Point Theory
.................................. 145
B.
1
Preliminaries
.............................................. 145
B.2 Minima
................................................... 146
B.3 The Minimax Idea
.......................................... 147
B.4 The Mountain Pass Theorem
................................. 149
Appendix
С
Free Vibrations of Nonlinear Wave Equations: A Global
Result
............................................... 155
Appendix
Đ
Approximation of Irrationals by Rationals
............... 161
D.
1
Continued Fractions
........................................ 163
Appendix
E
The Banach Algebra Property of XOiS
................... 167
Solutions
.......................................................... 169
References
......................................................... 171
List of Symbols
.................................................... 177
Index
............................................................. 179
|
adam_txt |
Contents
1
Finite
Dimension. 1
1.1 The Lyapunov Center Theorem. 4
1.2 The Weinstein-Moser and Fadell-Rabinowitz
Resonant
Center
Theorems. 7
1.2.1 The Variational Lyapunov-Schmidt
Reduction
. 13
1.2.2
Solution of the Range Equation
. 14
1.2.3
Solution of the Bifurcation Equation
. 15
1.2.4
Proof of the
Weinstein-Moser
Theorem
. 16
1.2.5
Proof of the Fadell-Rabinowitz Theorem
. 20
2
Infinite Dimension
. 29
2.1
The Lyapunov Center Theorem for PDEs
. 31
2.2
Completely Resonant Wave Equations
. 33
2.3
The Case
ρ
Odd
. 35
2.3.1
The Variational Lyapunov-Schmidt Reduction
. 36
2.3.2
The Range Equation
. 37
2.3.3
The Bifurcation Equation
. 41
2.3.4
The Mountain Pass Argument
. 43
2.4
The Case
ρ
Even
. 48
2.5
Multiplicity
. 53
2.6
The Small-Divisor Problem
. 54
3
A Tutorial in Nash-Moser Theory
. 59
3.1
Introduction
. 59
3.2
An Analytic Nash-Moser Theorem
. 60
3.3
A Differentiable Nash-Moser Theorem
. 66
4
Application to the Nonlinear Wave Equation
. 73
4.1
The Zeroth-Order Bifurcation Equation
. 75
4.2
The Finite-Dimensional Reduction
. 77
4.2.1
Solution of the (£>2)-Equation
. 77
4.3
Solution of the Range Equation
. 80
xiv Contents
4.3.1 The Nash-Moser
Scheme
. 83
4.4
Solution of the (^l)-Equation
. 94
4.5
The Linearized Operator
. 98
4.5.1
Decomposition of
C„. 98
4.5.2
Step
1 :
Inversion of
D
. 100
4.5.3
Step
2:
Inversion of Cn
. 104
5
Forced Vibrations
.
Ill
5.1
The Forcing Frequency
ω
є
Q
.
Ill
5.2
The Variational Lyapunov-Schmidt Reduction
. 113
5.2.1
The Range Equation
. 115
5.2.2
The Bifurcation Equation
. 117
5.3
Monotone
ƒ. 119
5.3.1
Step
1:
the L°° Estimate
. 119
5.3.2
Step
2:
the
Я1
Estimate
. 122
5.4
Nonmonotone
ƒ. 124
5.4.1
Step
1 :
the L2k Estimate
. 129
5.4.2
Step
2:
the L°° Estimate
. 130
5.4.3
Step
3:
The
#'
Estimate
. 132
5.4.4
The "Maximum Principle"
. 133
Appendix A Hamiltonian PDEs
. 139
A.
1
The Nonlinear
Schrödinger
Equation
. 139
A.2 The Beam Equation
. 139
A.3 The KdV Equation
. 140
A.4 The
Euler
Equations of Hydrodynamics
. 140
Appendix
В
Critical Point Theory
. 145
B.
1
Preliminaries
. 145
B.2 Minima
. 146
B.3 The Minimax Idea
. 147
B.4 The Mountain Pass Theorem
. 149
Appendix
С
Free Vibrations of Nonlinear Wave Equations: A Global
Result
. 155
Appendix
Đ
Approximation of Irrationals by Rationals
. 161
D.
1
Continued Fractions
. 163
Appendix
E
The Banach Algebra Property of XOiS
. 167
Solutions
. 169
References
. 171
List of Symbols
. 177
Index
. 179 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Berti, Massimiliano |
author_GND | (DE-588)133631656 |
author_facet | Berti, Massimiliano |
author_role | aut |
author_sort | Berti, Massimiliano |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV023369927 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.H3 |
callnumber-search | QC174.17.H3 |
callnumber-sort | QC 3174.17 H3 |
callnumber-subject | QC - Physics |
classification_rvk | SK 520 |
ctrlnum | (OCoLC)166362219 (DE-599)HBZHT015358619 |
dewey-full | 515.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.39 |
dewey-search | 515.39 |
dewey-sort | 3515.39 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02324nam a2200565 cb4500</leader><controlfield tag="001">BV023369927</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080820 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080630s2007 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N14,0701</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817646806</subfield><subfield code="c">Pp. : EUR 64.09</subfield><subfield code="9">978-0-8176-4680-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780817646806</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11981206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)166362219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015358619</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.17.H3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berti, Massimiliano</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133631656</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear oscillations of Hamiltonian PDEs</subfield><subfield code="c">Massimiliano Berti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 180 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in non-linear differential equations and their applications</subfield><subfield code="v">74</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Opérateur hamiltonien</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oscillations non linéaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systèmes hamiltoniens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations aux dérivées partielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear oscillations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Periodische Lösung</subfield><subfield code="0">(DE-588)4199269-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Wellengleichung</subfield><subfield code="0">(DE-588)4042104-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Wellengleichung</subfield><subfield code="0">(DE-588)4042104-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Periodische Lösung</subfield><subfield code="0">(DE-588)4199269-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in non-linear differential equations and their applications</subfield><subfield code="v">74</subfield><subfield code="w">(DE-604)BV007934389</subfield><subfield code="9">74</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016553218&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016553218</subfield></datafield></record></collection> |
id | DE-604.BV023369927 |
illustrated | Illustrated |
index_date | 2024-07-02T21:12:14Z |
indexdate | 2024-07-09T21:17:02Z |
institution | BVB |
isbn | 9780817646806 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016553218 |
oclc_num | 166362219 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-11 |
physical | XIV, 180 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in non-linear differential equations and their applications |
series2 | Progress in non-linear differential equations and their applications |
spelling | Berti, Massimiliano Verfasser (DE-588)133631656 aut Nonlinear oscillations of Hamiltonian PDEs Massimiliano Berti Boston [u.a.] Birkhäuser 2007 XIV, 180 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in non-linear differential equations and their applications 74 Opérateur hamiltonien Oscillations non linéaires Systèmes hamiltoniens Équations aux dérivées partielles Differential equations, Partial Hamiltonian operator Hamiltonian systems Nonlinear oscillations Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Periodische Lösung (DE-588)4199269-6 gnd rswk-swf Nichtlineare Wellengleichung (DE-588)4042104-1 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 s Nichtlineare Wellengleichung (DE-588)4042104-1 s Periodische Lösung (DE-588)4199269-6 s Verzweigung Mathematik (DE-588)4078889-1 s DE-604 Progress in non-linear differential equations and their applications 74 (DE-604)BV007934389 74 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016553218&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Berti, Massimiliano Nonlinear oscillations of Hamiltonian PDEs Progress in non-linear differential equations and their applications Opérateur hamiltonien Oscillations non linéaires Systèmes hamiltoniens Équations aux dérivées partielles Differential equations, Partial Hamiltonian operator Hamiltonian systems Nonlinear oscillations Hamiltonsches System (DE-588)4139943-2 gnd Periodische Lösung (DE-588)4199269-6 gnd Nichtlineare Wellengleichung (DE-588)4042104-1 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd |
subject_GND | (DE-588)4139943-2 (DE-588)4199269-6 (DE-588)4042104-1 (DE-588)4078889-1 |
title | Nonlinear oscillations of Hamiltonian PDEs |
title_auth | Nonlinear oscillations of Hamiltonian PDEs |
title_exact_search | Nonlinear oscillations of Hamiltonian PDEs |
title_exact_search_txtP | Nonlinear oscillations of Hamiltonian PDEs |
title_full | Nonlinear oscillations of Hamiltonian PDEs Massimiliano Berti |
title_fullStr | Nonlinear oscillations of Hamiltonian PDEs Massimiliano Berti |
title_full_unstemmed | Nonlinear oscillations of Hamiltonian PDEs Massimiliano Berti |
title_short | Nonlinear oscillations of Hamiltonian PDEs |
title_sort | nonlinear oscillations of hamiltonian pdes |
topic | Opérateur hamiltonien Oscillations non linéaires Systèmes hamiltoniens Équations aux dérivées partielles Differential equations, Partial Hamiltonian operator Hamiltonian systems Nonlinear oscillations Hamiltonsches System (DE-588)4139943-2 gnd Periodische Lösung (DE-588)4199269-6 gnd Nichtlineare Wellengleichung (DE-588)4042104-1 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd |
topic_facet | Opérateur hamiltonien Oscillations non linéaires Systèmes hamiltoniens Équations aux dérivées partielles Differential equations, Partial Hamiltonian operator Hamiltonian systems Nonlinear oscillations Hamiltonsches System Periodische Lösung Nichtlineare Wellengleichung Verzweigung Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016553218&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV007934389 |
work_keys_str_mv | AT bertimassimiliano nonlinearoscillationsofhamiltonianpdes |