A geometry of approximation: Rough Set Theory: logic, algebra and topology of conceptual patterns
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
2008
|
Schriftenreihe: | Trends in Logic
27 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | LXXXII, 704 S. graph. Darst. |
ISBN: | 9781402086212 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023369618 | ||
003 | DE-604 | ||
005 | 20090505 | ||
007 | t | ||
008 | 080630s2008 gw d||| |||| 00||| eng d | ||
015 | |a 08,N19,0087 |2 dnb | ||
016 | 7 | |a 988348802 |2 DE-101 | |
020 | |a 9781402086212 |c Gb. : ca. EUR 214.00 (freier Pr.), ca. sfr 348.50 (freier Pr.) |9 978-1-402-08621-2 | ||
024 | 3 | |a 9781402086212 | |
028 | 5 | 2 | |a 11975328 |
035 | |a (OCoLC)634012191 | ||
035 | |a (DE-599)DNB988348802 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29 |a DE-703 | ||
084 | |a CC 2500 |0 (DE-625)17609: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a 100 |2 sdnb | ||
084 | |a 5,1 |2 ssgn | ||
100 | 1 | |a Pagliani, Piero |e Verfasser |4 aut | |
245 | 1 | 0 | |a A geometry of approximation |b Rough Set Theory: logic, algebra and topology of conceptual patterns |c Piero Pagliani ; Mihir Chakraborty |
264 | 1 | |a Berlin |b Springer |c 2008 | |
300 | |a LXXXII, 704 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Trends in Logic |v 27 | |
650 | 0 | 7 | |a Grobmenge |0 (DE-588)4362502-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Heyting-Arithmetik |0 (DE-588)4576522-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Frame |g Mathematik |0 (DE-588)4528312-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Epistemologischer Kontextualismus |0 (DE-588)4998367-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modelltheoretische Semantik |0 (DE-588)4221369-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Semitopologische Halbgruppe |0 (DE-588)4180976-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grothendieck-Topologie |0 (DE-588)4158325-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informationssystem |0 (DE-588)4072806-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Heyting-Arithmetik |0 (DE-588)4576522-4 |D s |
689 | 0 | 1 | |a Informationssystem |0 (DE-588)4072806-7 |D s |
689 | 0 | 2 | |a Modelltheoretische Semantik |0 (DE-588)4221369-1 |D s |
689 | 0 | 3 | |a Grothendieck-Topologie |0 (DE-588)4158325-5 |D s |
689 | 0 | 4 | |a Semitopologische Halbgruppe |0 (DE-588)4180976-2 |D s |
689 | 0 | 5 | |a Epistemologischer Kontextualismus |0 (DE-588)4998367-2 |D s |
689 | 0 | 6 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | 7 | |a Frame |g Mathematik |0 (DE-588)4528312-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Grobmenge |0 (DE-588)4362502-2 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Chakraborty, Mihir |e Verfasser |4 aut | |
830 | 0 | |a Trends in Logic |v 27 |w (DE-604)BV011512969 |9 27 | |
856 | 4 | 2 | |m Digitalisierung UB Erlangen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016552902&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016552902 |
Datensatz im Suchindex
_version_ | 1804137736490188800 |
---|---|
adam_text | CONTENTS PREFACE LIST OF FIGURES NOTATION ABBREVIATIONS INTRODUCTION 1
PERCEPTION AND CONCEPTS: A PHENOMENOLOGICAL APPROACH . 1.1 MONOLOGICAL
APPROACH AND DIALOGICAL APPROACH . 2 MONOLOGICAL APPROACH TO PERCEPTION
AND CONCEPTS . 3 PHENOMENOLOGY AND LOGIC . 3.1 SEMANTICS VS SYNTAX . 3.2
INFORMATION AND INTERPRETATION: CORRESPONDENCE THEORY OF TRUTH VS
PRAGMATISM . 3.2.1 MEANING-CONDITIONS VS TRUTH-CONDITIONS . 3.2.2 LOGIC,
MEANING AND ROUGH SET THEORY . 4 THE LOGIC(}- ALGEBRAIC INTERPRETATION
OF ROUGH SET SYSTEMS . 5 EQUIVALENCE CLASSES, ABSTRACTION AND MEANING .
5.1 TYPES, TOKENS AND ABSTRACT POINTS . 5.2 ABSTRACT POINTS AND MEANING
. V XXIV XXIX XXXI XXXIII XXXIII XXXVI XXXVIII I I LVI LVII LXII LXIV
!XVIII LXVIII !XXVI XIII XIV 6 7 5.3 ABSTRACT POINTS AND ROUGH SETS .
ROUGH SETS AND LOGIE . CONCLUDING REMARKS . CONTENTS !XXVI !XXVII !XXXI
I A MATHEMATICS OF PERCEPTION 1 1 OBSERVATIONS, NOUMENA AND PHENOMENA 3
1.1 FOREWORD . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 3 1.2 FORMAL RELATIONSHIPS BETWEEN NOUMENA AND
PHENOMENA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 6 1.2.1 PROPERTY SYSTEMS - P-SYSTEMS . . . . . . .. . . 8 1.2.1.1
FUNCTIONAL PROPERTY SYSTEMS . . . 11 1.2.1.2 RELATIONAL PROPERTY SYSTEMS
... 12 1.2.1.3 DICHOTOMIE PROPERTY SYSTEMS .. 13 1.2.2 ATTRIBUTE SYSTEMS
- A-SYSTEMS. .. . . . . . . . 13 1.3 FUNCTIONAL P-SYSTEMS AND
CONCEPTUALISATION . . . . . . 14 1.3.1 CATEGORIZING THROUGH FUNCTIONAL
P-SYSTEMS 15 1.4 CATEGORIZING THROUGH RELATIONAL P-SYSTEMS 20 1.4.1
TYPES AND APPROXIMATION . . . . . . . . . . . . . . 23 1.4.2 DIVISORS
AND RESIDUALS 24 1.4.3 GALOIS ADJUNCTIONS AND GALOIS CONNECTIONS 29
1.4.4 AIGEBRAIC PROPERTIES OF ADJOINT MAPS ... . 33 2 CONCRETE AND
FORMAL INFORMATION CONSTRUCTIONS 43 2.1 CONCRETE AND FORMAL OBSERVATION
SPACES. .. . . . . . . 43 2.1.1 OBSERVATIONS AND PARTIAL OBSERVATIONS. .
. 45 2.1.2 RELATIONS ANDGALOIS ADJUNCTIONS. . . . . . . . 47 2.2 THE
BASIC PHENOMENOLOGICAL CONSTRUCTORS . . . . . . . . 50 2.2.1 A MODAL
READING OF THE BASIC CONSTRUCTORS 53 2.3 FORMAL OPERATORS ON POINTS AND
ON OBSERVABLES . . . 58 2.3.1 AIGEBRAIC PROPERTIES OF FORMAL PERCEPTION
SYSTEMS . . . . . . . . . . . . . . . . . . . . 63 2.3.2 MULTI-AGENT
PRE-TOPOLOGICAL APPROXIMATION SYSTEMS .... . . . . . . . . . . . . 70 3
PRE-TOPOLOGICALAND TOPOLOGICALAPPROXIMATION OPERATORS 73 3.1
INFORMATION, CONCEPTS AND FORMAL OPERATORS. . . . . 73 CONTENTS XV 3.1.1
CHOOSING THE INITIAL PERCEPTION ACT . . . . . . 75 3.1.2 INFORMATION
QUANTUM RELATIONAL SYSTEMS 81 3.2 COMPARING PERCEPTION SYSTEMS. . . . .
. . . . . . . . . . . . . 85 3.3 HIGHER LEVEL OPERATORS 90 3.4
TRANSFORMING PERCEPTION SYSTEMS 97 3.5 TOPOLOGICAL APPROXIMATION
OPERATORS. . . . . . . . . . . . 100 3.6 TOPOLOGICAL APPROXIMATION
SYSTEMS 103 4 FRAMES(PART I) 107 4.1 FRAME - APPROXIMATION . . . . . . .
. . . . . . . . . . . . . . . . . 107 4.2 FRAME - CLASSIFIEATION. . . .
. . . . . . . . . . . . . . . . .. . . . . 108 4.3 FRAME - CATEGORIZING
THROUGH POINTLESS TOPOLOGY . 110 4.4 FRAME - OBSERVABLE PROPERTIES . . .
. . . . . . . . . . . . . . . 113 4.4.1 DEEIDABLE AND SEMI-DECIDABLE
PROPERTIES . 113 4.4.2 DECIDABLE PROPERTIES, TOPOLOGY, DOMAINS AND
GEOMETRIE LOGIE . . . . . .. . . . . . . . . . . . . 115 4.5 FRAME -
FINITE OBSERVATIONS: THE BINARY MACHINE EXAMPLE 116 4.6 FRAME - QUANTA
OF INFORMATION 120 4.6.1 QUANTA AT A LOEATION AND ORTHOLATTIEES . . 120
4.6.2 A TOPO-ALGEBRAIC READING OF IQRSS . .. . . 123 4.6.3 DUALITY
BETWEEN P-SYSTEMS AND PREORDERS . . . . . . . . . . . . . . . . . . . .
. . . . . 124 4.7 FRAME - INFORMATION SYSTEMS . . . . . . . . . . . . .
. . . . . . 126 4.7.1 GENERALISING INFORMATION RELATIONS 126 4.7.2
GENERALIZING INDISEERNIBILITY RELATION 127 4.7.3 GENERALISING FROM SETS
TO RELATIONS. . . . . . 128 4.8 FRAME - DICHOTOMIE, COMPLEMENTARY AND
FUNETIONAL SYSTEMS. . . . . . . . . . . . . . . . . .. . . . . . 129
4.8.1 DIEHOTOMIE SYSTEMS. . . . . . . . . . . . . . . . . . . 129 4.8.2
COMPLEMENTARY SYSTEMS I . . . . . . . . . . . . . . 130 4.8.3
COMPLEMENTARY SYSTEMS II 130 4.8.4 COMPLEMENTARY SYSTEMS III.
............ 131 4.8.5 DICHOTOMIE SYSTEMS AND FUNETIONAL SYSTEMS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.8.6 FUNETIONAL
SYSTEMS AND APPROXIMATIONS. . 132 4.8.7 DICHOTOMIE SYSTEMS AND
APPROXIMATIONS . 132 XVI CONTENTS 4.9 FRAME - CONCEPT LATTICES 133 4.9.1
FORMAL CONTEXTS AND FORMAL CONCEPT ANALYSIS. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 133 4.9.2 FORMAL CONCEPTS AND
APPROXIMATION OPERATORS 135 4.9.3 COMBINING CLASSICAL APPROXIMATION
SYSTEMS AND CONCEPT LATTICES. . . . . . . . . . . 137 4.9.4 COMBINING
NON-CLASSICAL APPROXIMATION SYSTEMS AND CONCEPT LATTICES .. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 140 4.9.5 NOMINAL SYSTEMS
AND CONCEPTUAL SCALING. 140 4.10 FRAME - NEIGHBORHOOD SYSTEMS.. . . . .
. . . . . . . . . . . 142 4.11 FRAME - BASIC PAIRS AND POINT-FREE
TOPOLOGY . . . . . 143 4.12 FRAME - CHU SPACES. . . . . . . . . . . . .
. . . . . . . . . . . . . . 144 4.13 FRAME - INTUITIONISM, MODALITIES
AND RELATIONAL SEMANTIES. . .. . . . . .. . . . .. . . .. . . . . . . .
. . . . . . . . . . 145 4.13.1 NECESSITY AND POSSIBILITY 146 4.13.2
BASIC OPERATORS AS MODAL OPERATORS. .. . . 147 4.13.3 RAMIFIED TENSE
LOGIC 148 4.13.4 NECESSITY AND SUFFICIENEY OPERATORS. . . . . . 148
4.13.5 MODAL OPERATORS AND INFORMATION SYSTEMS 149 4.14 FRAME -
GAJOISADJUNCTIONS 151 4.14.1 GALOIS ADJUNETIONS IN COMPUTER SCIENCE. .
152 4.14.2 GALOIS ADJUNCTIONS AND DEDEKIND CUTS.. . 154 4.14.3 GALOIS
ADJUNETIONS AT LARGE 155 4.14.4 GALOIS CONNECTIONS AND REPRESENTATION
THEOREMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.14.5 GALOIS ADJUNCTIONS, ISOMORPHISMS AND APPROXIMATION: A NOTE 157
4.15 FRAME - CATEGORIES AND ADJOINT FTMCTORS. . . . . . . . . 158 4.16
SOLUTIONS..................................... 161 11 THE
LOGICO-ALGEBRAICTHEORY OF ROUGH SETS 167 5 LOGIC AND ROUGH SETS: AN
OVERVIEW 169 5.1 FOREWORD . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 169 5.2 ROUGH SET SYSTEMS AND THREE- VALUED
LOGIES. . . . . . 172 CONTENTS XVII 5.3 EXACT AND INEXACT LOCAL
BEHAVIOURS IN ROUGH SET SYSTEMS 174 5.4 REPRESENTING ROUGH SETS . . . .
. . . . . . . . . . . . . . . . . . . 177 5.5 ROUGH SET SYSTEMS, LOCAL
VALIDITY, AND LOGICO-ALGEBRAIC STRUCTURES. . . . . . . . . . . . . .. .
. 181 6 BASIC LOGICO-ALGEBRAIC STRUCTURES 193 6.1 HEYTING AIGEBRAS. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.2 NELSON
AIGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
198 6.3 N-VALUED LUKASIEWICZ AIGEBRAS 203 6.4 CHAIN- BASED LATTICES 204
6.5 RELATIONSHIPS, ANALOGIES AND DIFFERENCES BETWEEN STRUCTURES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7
LOCAL VALIDITY, GROTHENDIECK TOPOLOGIES AND ROUGH SETS 211 7.1
REPRESENTING ROUGH SETS. . . . . . . . . . . . . . . . . . . . . . . 211
7.1.1 LOCAL LOGICAL BEHAVIOURS IN ROUGH SET SYSTEMS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 212 7.2 SOME DUALITY OF
DISTRIBUTIVE LATTICES . . . . . . . . . . . . 216 7.2.1 DUALITY FOR
HEYTING AIGEBRAS. . . . . . . . . . . . 218 7.3 GROTHENDIECK TOPOLOGIES
219 7.3.1 A FUNDAMENTAL EXAMPLE: THE DENSE TOPOLOGY . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 221 7.4 LAWVERE-TIERNEY OPERATORS
AND ROUGH SET SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 223 8 APPROXIMATION AND AIGEBRAIC LOGIC 237
8.1 APPROXIMATION OPERATORS. . . . . . . . . . . . . . . . . . . . . .
237 8.2 ADJOINTNESS, APPROXIMATIONS AND THE CENTER OF A ROUGH SET SYSTEM
. . . . . . . . . . . . . . . . . . . . . . . . . . . 238 8.3 MULTI-
VALUED LOGICS: A KNOWLEDGE-ORIENTED INTERPRETATION. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 242 8.3.1 A TAXONOMY OF
LOGICAL SYSTEMS. . . . . . . . . 242 8.3.2 EXACT AND INEXACT INFORMATION
IN LOGICO-ALGEBRAIC SYSTEMS 247 XVIII CONTENTS 9 A
LOGICO-PHILOSOPHICEXCURSUS 255 9.1 TRUTH-ORIENTED AND KNOWLEDGE-ORIENTED
APPROACHES IN LOGIC . .. . . . . . . . . . . . . . . . . . . . . . . . .
255 9.2 UNDERSTANDING THE KNOWLEDGE-ORIENTED POINT OF VIEW . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 256 9.3 SOME PROBLEMS
ARISING FROM THE KNOWLEDGE- ORIENTED POINT OF VIEW . . . . . . . . . . .
. . . . . . . . . . . . . . 259 9.3.1 POSSIBLE SOLUTIONS 1: MAKING
CLASSICAL AND CONSTRUCTIVE ATTITUDES COEXIST . . . . . . 260 9.3.2
POSSIBLE SOLUTIONS 2: STRENGTHENING INT WITH CLASSICAL PRINCIPLES . . .
. . . . . . . . . . . . 261 9.4 A MIXED-RADIX ATTITUDE IN LOGIC. . . .
. . . . . . . . . . 262 9.5 A MAXIMAL INTERMEDIATE CONSTRUCTIVE LOGIC
266 9.6 MIXED-RADIX INFORMATION SYSTEMS. . . . . . . .. . . . . . . 269
9.6.1 LOCAL VALIDITY IN NELSON LATTICES FROM HEYTING AIGEBRAS . . . . .
. . . . . . . . . . . . . . . . . 269 9.6.2 LOCAL VALIDITY AND MIXED
LOGICAL BEHAVIOUR 276 9.7 CONCLUSIONS. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 278 10 FRAMES (PART 11) 281 10.1 FRAME
~ ROUGH SET SYSTEMS AND CHAIN-BASED LATTICES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 281 10.2 FRAME - ROUGH
SET SYSTEMS AS REGULAR DOUBLE STONE AIGEBRAS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 283 10.3 FRAME -
INFORMATION-ORIENTED DUALITY THEOREMS. . 284 10.3.1 INFORMATION-ORIENTED
INTERPRETATION OF DUALITY. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 284 10.3.2 DUALITY OF LOGIC(}-ALGEBRAIC STRUCTURES ... 286
10.3.3 COLLAPSE OF MAXIMAL ELEMENTS AND ATOMIC DECIDABILITY . . . . . .
. . . . . . . . . . 290 10.3.4 ROUGH SETS, DUALITY AND DECIDABILITY ....
291 10.3.5 ROUGH SET SYSTEMS, POST AIGEBRAS AND TOTAL ATOMIC
UNDECIDABILITY .... . . . . 294 10.4 FRAME - REPRESENTATION OF THREE-
VALUED LUKASIEWICZ AIGEBRAS AS ROUGH SET SYSTEM. . . . . . . 296 10.5
FRAME - PROOF OF THE FACTS STATED IN WINDOW 7.1. . 299 10.6 FRAME -
PROOF OF PROPOSITION 8.3.1 300 CONTENTS XIX 10.7 FRAME - GROTHENDIECK
TOPOLOGIES AND LAWVERE-TIERNEY OPERATORS. . . . . . . . . . . . . . . .
. 302 10.8 FRAME ~ REPRESENTATION OF ROUGH SETS . . . . . . . . . . .
303 10.9 FRAME - ROUGH SETS AND NON CLASSIEAL LOGIEO-ALGEBRAIE SYSTEMS.
. . . . . . . . . . . . . . . . . . . . . . 304 10.9.1 ROUGH SETS AND
BROUWER-ZADEH LATTICES . . 305 10.9.2 LATTICES AND NON-CLASSIEAL
LOGIES................................ 305 10.9.3 LATTIEES WITH STRONG
NEGATION. . . . . . . . . . . 306 10.10 FRAME - REPRESENTATION THEOREMS
AND DECOMPOSITION OF DISTRIBUTIVE LATTIEES . . . . . . . 307 10.11 FRAME
- REPRESENTATION OF LOGICAL VALUES BY ORDERED PAIRS , . . . . . . . . .
. . . . . 311 10.12 FRAME - NEGATION 312 10.12.1 CLASSIFYING FORMAL
NEGATIONS. . . . . . . . . . . . 314 10.12.2 A GEOMETRIE INTERPRETATION
OF NEGATION. . 316 10.12.3 STRONG NEGATIONS AND KNOWLEDGE STATES IN
ARTIFICIAL INTELLIGENCE 317 10.12.4 NEGATIONS, BODIES AND BOUNDARIES. .
. . . . . . 318 10.12.5 NEGATIONS, MODALITIES AND STALK SPACES. . . 320
10.13 FRAME - INTUITIONISTIC LOGIC: NATURAL DEDUCTION SYSTEM INT ...
.............................. 323 10.14 FRAME - CLASSIEAL LOGIE:
NATURAL DEDUCTION SYSTEM CF:, 324 10.14,1 DERIVING THE PRINCIPLE OF
EXCLUDED MIDDLE FROM CF:, . . . . . . . . . . . . . . . . . . . . . . .
324 10.15 FRAME - NELSON LOGIC: NATURAL DEDUCTION SYSTEM CLSN 324
10.15.1 CONSTRUETIVE LOGICS WITH STRONG NEGATION 324 10.15.2 NATURAL
DEDUETION SYSTEM FOR CF:,SN . . . . . 325 10.16 FRAME - THE SYSTEM &0 .
. . . .. . . . . . . . . . . . . . . . . . . 326 10.16.1 THE NATURAL
DEDUETION SYSTEM &0 . . . . . . . 327 10.16.2 RELATIONAL MODELS FOR
NELSON LOGIE 327 10.16.2.1 RELATIONAL MODELS FUER &0 . * . . . . . 327
10.16.3 LOGIE AND ALGEBRA IN PARTNERSHIP . . . . . . . . 327 10.16.4
ALGEBRAIE ANALYSIS OF THE CHARACTERISTIE PROOFS OF T:O . . . . . . . . .
. . . . . 328 10.17 FRAME - THE LOGIE FA ........................ 332 XX
CONTENTS 10.17.1 THE NATURAL DEDUCTION SYSTEM E* - ALIAS FA.
............................ 333 10.17.2 EVALUATION FORM SEMANTIES. . .
. . . . . . . . . . 333 10.18 FRAME - MEDVEDEV S LOGIC OF FINITE
PROBLEMS. . . . . 337 10.19 FRAME - ATOMICDECIDABILITY AND NON-STANDARD
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 338 10.19.1 ATOMIC DECIDABILITY AND THE FAILURE OF UNIFORM
SUBSTITUTION . . . . . . . . . . . . . . . . 340 10.20 FRAME - AN
APPLICATIONS OF THE ALGEBRAIC APPROACH TO PARTIAL INFORMATION SYSTEMS
, . . . . . . . . 341 10.20.1 P-SLLSTEMS WITH PARTIAL INFORMATION. . .
. . . 345 10.20.2 ADEQUACY OFTHE KLEENE FRAGMENT W.R.T. DEFINITE ANSWERS
351 10.21 FRAME - LOGICAL OPERATIONS IN A PURE ALGEBRAIC SETTING. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35~ 10.22 SOLUTIONS..................................... 355 III THE
MODAL LOGIC OF ROUGH SETS 361 11 MODALITY AND KNOWLEDGE 363 11.1
FOREWORD..................................... 363 11.2 MODALITIES AND
ASSERTIONS 365 11.3 INTERNAL MODALITIES VS EXTERNAL MODALITIES . . . . .
. . . 367 11.4 KNOWLEDGE AND INFORMATION. . . . . . . . . . . . . . . .
. . . . . 371 11.5 KNOWLEDGE AND MODAL SYSTEMS. . . . . . . . . . . . .
. . . . . 375 11.5.1 INTERNAL MODALITIES AND NON-DISTRIBUTIVITY . . . .
. . . . . . . . . . . . . 381 11.5.2 EXTERNAL MODALITIES, DISTRIBUTIVITY
AND POSSIBLE WORLDS SEMANTICS . . . . . . . . . . . . . . 382 11.5.3
REPRESENTING MODAL SYSTEMS. . . . . . . . . .. . 383 12 MODALITIES AND
RELATIONS 389 12.1 MODAL SYSTEMS AND BINARY RELATIONS. . . . . . . . .
.. . 389 12.2 FROM LOOSELY STRUCTURED SPACES TO STRUCTURED SPACES: A
VARIETY OF MODAL PROPERTIES . . . .. . . . . . . 402 12.3 RELATIONS,
PRE- TOPOLOGIES AND TOPOLOGIES . . . . . . . . . 406 12.4 PRE-
TOPOLOGIEAL SPACES. . . . . . . . . . . . . . . . . . . . . . . . . 407
CONTENTS XXI 12.4.1 EXCURSUS. DYNAMICS 1: THE FAILURE OF THE ISOTONICITY
LAW . . . . . . . . . . . . . . . . . . 423 12.5 TOWARDS TOPOLOGY 1 426
12.5.1 EXCURSUS: REFLEXIVITY, DISTRIBUTION AND PERCEPTION . . . . . . .
. . . . . . . . . . . . . . . . . 430 12.6 TOWARDS TOPOLOGY 2 431 12.6.1
BASES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
12.6.2 EXCURSUS. DYNAMICS 2: THE FAILURE OF THE DISTRIBUTIVITY LAWS . .
. . . . . . . . . . . . . . . 437 12.7 PRE-TOPOLOGICAL SPACES AND BINARY
RELATIONS ..... 441 12.7.1 EXCURSUS: PRE-TOPOLOGICAL SPACES AND MODAL
AIGEBRAS 449 12.7.2 EXCURSUS. PRE-TOPOLOGICAL SPACES AND APPROXIMATION
SPACES 453 12.8 TOPOLOGICAL SPACES AND BINARY RELATIONS . . . . . . . .
. 458 13 MODALITIES, TOPOLOGIES AND AIGEBRAS 471 13.1 TOPOLOGICAL
BOOLEAN AIGEBRAS . . . . . . . . . . . . . . . . . . . 471 13.2 MONADIE
TOPOLOGICAL BOOLEAN AIGEBRAS . . . . . . . . . . . 472 14 THE
PROPOSITIONAL MODAL LOGIC OF ROUGH SETS 479 14.1
INTRODUCTION.................................. 479 14.2 FROM SYNTAX TO
SEMANTIES. . . . . . . . . . . . . . . . . . . . . . 480 14.3 ROUGH
ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
488 14.4 THE SYSTEMS LI, L2 . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 492 14.4.1 THE SYSTEM L1 . . . . . . . . . . . . . . . . . .
. . . . . . 492 14.4.2 THE SYSTEM L2 .. . . . . . . . . . . . . . . . .
. . . . . . 497 14.4.3 ROUGH SET SEMANTICS FOR L2 . . . . . . . . . . .
. . 499 14.5 AIGEBRAIC INTERPRETATION AND MODAL INTERPRETATION OF ROUGH
SET SYSTEMS . . . . . . . . . . . . . 502 15 FRAMES (PART III) 505 15.1
FRAME - PROOF OF THE DUALITY BETWEEN LR(X) = U{Z : R(Z) 5; X} AND MR(X)
= N{-Z: R(Z) 5; -X}............. 505 15.2 FRAME - RELATIONAL PROPERTIES
AND LOGICAL CHARACTERISTICS . . . . . . . . .. . . . . . . . . . . . 506
15.2.1 PROOF OF KT5 = KTB4 . . . . . . . . . . . . . . . . . . 506
15.2.2 PROOF OF KDB4 = KTB4 . . . . . . . . . . . . . . . . 507 XXII
CONTENTS 15.3 FRAME - PROOF OF PROPOSITION 12.7.10 507 15.4 FRAME --
PROOFS OF THE PROPOSITIONS ABOUT THE UNIQUENESS OF P(RT(P)) AND P(RB(P))
508 15.5 FRAME - ALTERNATIVE PROOFS OF COROLLARY 12.8.2.(1) . 508 15.6
FRAME - DIRECTPROOF OF MR(X) = MR(X), FOR R A PREORDER RELATION 509 15.7
FRAME - TRANSFORMING APRE- TOPOLOGICAL SPACE OF TYPE M SINTO A
TOPOLOGICAL SPACE. . . . . . . . . . . . . 509 15.8 FRAME - MODAL
INTERPRETATIONS OF APPROXIMATION SPACES AND ROUGH SETS. . . . . . . . .
511 15.9 FRAME - KRIPKE-JOYAL MODELS . . . . . . . . . . . . . . . . . .
. 512 15.10 FRAME - QUANTUM LOGIC AND INTERNAL MODALITIES .. 513 15.11
FRAME - PERSISTENCE OF MODALISED FORMULAS . . . . . . . 515 15.12 FRAME
- COHERENCE BETWEEN INFORMATION AND KNOWLEDGE 518 15.13 FRAME -
NEIGHBORHOOD SYSTEMS. . . . . . . . . . . . . . . . . 522 15.13.1 SOME
HISTORY AND RECENT APPLICATIONS ... 522 15.13.2 NEIGHBORHOOD SYSTEMS AND
APPROXIMATION OF INFORMATION. . . . . . . 525 15.13.3 NEIGHBORHOOD
SYSTEMS AND MODAL SYSTEMS . . . . . . . . . . . . . . . . . . . . 526
15.13.4 THE OMNISCIENCE PROBLEM IN EPISTEMIC AND DOXASTIC LOGICS . . .
. . . . . 529 15.14 FRAME - PRE-TOPOLOGIES AND INTUITIONISTIC FORMAL
SPACES 530 15.14.1 FORMAL COVERING RELATIONS. . . . . . . . . . . . . .
531 15.14.2 SEMI-TOPOLOGICAL FORMAL SYSTEMS AND NEIGHBORHOOD SYSTEMS . .
. . . . . . . . . . . . . . . 541 15.14.3 A NEW AGE: GETTING RID OF .
AND 1.. ..... 549 15.14.4 THE LOGICAL INTERPRETATION OF THE PRE-
TOPOLOGY FORMAL APPROACH 552 15.14.5 A SAMPIE FORMAL NEIGHBORHOOD
SYSTEM. . 555 15.14.6 A PSEUD(}- TOPOLOGICAL NEIGHBORHOOD SYSTEM. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 558 15.14.7 A
TOPOLOGICAL FORMAL NEIGHBORHOOD SYSTEM IN WHICH N3 DOES NOT HOLD 559
15.14.8 A TOPOLOGICAL FORMAL NEIGHBORHOOD SYSTEM IN WHICH NI DOES NOT
HOLD. . . . . . . 560 CONTENTS XXIUE 15.14.9 A NON-TOPOLOGIEAL FORMAL
NEIGHBORHOOD SYSTEM SUEH THAT OINT(U) IS A HEYTING ALGEBRA OF SETS. . .
. . . . . . . . . . . . . . . . . . . . . 561 15.14.10 A LOGICAL
INTERPRETATION OF CONERETE PROPERTIES . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 563 15.15 FRAME - MODAL STRUETURES AND PRE-
TOPOLOGIEAL SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 564 15.15.1 MODAL AIGEBRAS AND NEIGHBORHOOD
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
15.15.2 MODAL SYSTEMS, PRE-MONADIE BOOLEAN ALGEBRAS AND KRIPKE FRAMES .
. . . . . . . . . . . 569 15.16 FRAME - DUALITY OF OPERATIONS AND
AIGEBRAIE STRUETURES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 570 15.17 FRAME - COMPUTING DEPENDENEY RELATIONS IN
A FRAGMENT OF INTUITIONISTIE LOGIC . . . . . . . . . . . . . . . . . 571
15.18 FRAME - APPROXIMATION, FORMAL CONEEPTS, MODALITIES AND RELATION
AIGEBRAS. . . . . . . . . . . . . . . . 574 15.18.1 RELATION AIGEBRAS
575 15.18.2 MODALIZING RELATIONS BY MEANS OF RELATIONS. . . . . . . . .
. . . . . . . . . . . . . . . . . . 577 15.18.3 COMPARING FORMAL
CONEEPTS AND ROUGH SETS. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 583 15.18.4 APPROXIMATION OF RELATIONS. . . . . . . .
. . . . . 588 15.18.5 MAKING FORMAL CONEEPTS AND ROUGH SETS INTERACT . .
. . . . . . . .. . . . . . . . . . . . . . . . 589 15.18.6 WHAT THIS
APPROACH MAY SUGGEST 590 15.18.7 COMPUTING DEPENDENCIES IN RELATION
AIGEBRAS 591 15.19 FRAME - RELATIONAL PROOF THEORY. . . . . . . . . . .
. . . . . 595 15.20 FRAME - SOME HISTORY OF THE AIGEBRAIE CONEEPTS USED
IN THIS PART 600 15.21 SOLUTIONS.....................................
601 16 MATHEMATIEAL TOOLKITS 615 16.1 A MATHEMATICAL TOOLKIT: ORDERS. .
. . . . . . . . . . . . . . . 615 16.2 A MATHEMATIEAL TOOLKIT: FUNCTIONS
. . . . . . . . . . . . . . 616 16.3 A MATHEMATIEAL TOOLKIT: LATTIEES. .
. . . . . . . . . . . . . . 618 16.4 A MATHEMATIEAL TOOLKIT: TOPOL~GY
621 16.5 A MATHEMATIEAL TOOLKIT: RELATIONS 623 XXIV CONTENTS 16.5.1
PULL-BACKS AND KERNELS. . . . . .. . . . . . . . . . . 625 16.5.1.1
CATEGORIZATION AND KERNEIS . . . . . 625 16.5.1.2 CATEGORIZATION AND
PULL-BACKS . . 627 BIBLIOGRAPHY INDEX 631 681
|
adam_txt |
CONTENTS PREFACE LIST OF FIGURES NOTATION ABBREVIATIONS INTRODUCTION 1
PERCEPTION AND CONCEPTS: A PHENOMENOLOGICAL APPROACH . 1.1 MONOLOGICAL
APPROACH AND DIALOGICAL APPROACH . 2 MONOLOGICAL APPROACH TO PERCEPTION
AND CONCEPTS . 3 PHENOMENOLOGY AND LOGIC . 3.1 SEMANTICS VS SYNTAX . 3.2
INFORMATION AND INTERPRETATION: CORRESPONDENCE THEORY OF TRUTH VS
PRAGMATISM . 3.2.1 MEANING-CONDITIONS VS TRUTH-CONDITIONS . 3.2.2 LOGIC,
MEANING AND ROUGH SET THEORY . 4 THE LOGIC(}- ALGEBRAIC INTERPRETATION
OF ROUGH SET SYSTEMS . 5 EQUIVALENCE CLASSES, ABSTRACTION AND MEANING .
5.1 TYPES, TOKENS AND ABSTRACT POINTS . 5.2 ABSTRACT POINTS AND MEANING
. V XXIV XXIX XXXI XXXIII XXXIII XXXVI XXXVIII I I LVI LVII LXII LXIV
!XVIII LXVIII !XXVI XIII XIV 6 7 5.3 ABSTRACT POINTS AND ROUGH SETS .
ROUGH SETS AND LOGIE . CONCLUDING REMARKS . CONTENTS !XXVI !XXVII !XXXI
I A MATHEMATICS OF PERCEPTION 1 1 OBSERVATIONS, NOUMENA AND PHENOMENA 3
1.1 FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 3 1.2 FORMAL RELATIONSHIPS BETWEEN "NOUMENA" AND
"PHENOMENA" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 6 1.2.1 PROPERTY SYSTEMS - P-SYSTEMS . . . . . . . . . 8 1.2.1.1
FUNCTIONAL PROPERTY SYSTEMS . . . 11 1.2.1.2 RELATIONAL PROPERTY SYSTEMS
. 12 1.2.1.3 DICHOTOMIE PROPERTY SYSTEMS . 13 1.2.2 ATTRIBUTE SYSTEMS
- A-SYSTEMS. . . . . . . . . 13 1.3 FUNCTIONAL P-SYSTEMS AND
CONCEPTUALISATION . . . . . . 14 1.3.1 CATEGORIZING THROUGH FUNCTIONAL
P-SYSTEMS 15 1.4 CATEGORIZING THROUGH RELATIONAL P-SYSTEMS 20 1.4.1
TYPES AND APPROXIMATION . . . . . . . . . . . . . . 23 1.4.2 DIVISORS
AND RESIDUALS 24 1.4.3 GALOIS ADJUNCTIONS AND GALOIS CONNECTIONS 29
1.4.4 AIGEBRAIC PROPERTIES OF ADJOINT MAPS . . 33 2 CONCRETE AND
FORMAL INFORMATION CONSTRUCTIONS 43 2.1 CONCRETE AND FORMAL OBSERVATION
SPACES. . . . . . . . 43 2.1.1 OBSERVATIONS AND PARTIAL OBSERVATIONS. .
. 45 2.1.2 RELATIONS ANDGALOIS ADJUNCTIONS. . . . . . . . 47 2.2 THE
BASIC PHENOMENOLOGICAL CONSTRUCTORS . . . . . . . . 50 2.2.1 A MODAL
READING OF THE BASIC CONSTRUCTORS 53 2.3 FORMAL OPERATORS ON POINTS AND
ON OBSERVABLES . . . 58 2.3.1 AIGEBRAIC PROPERTIES OF FORMAL PERCEPTION
SYSTEMS . . . . . . . . . . . . . . . . . . . . 63 2.3.2 MULTI-AGENT
PRE-TOPOLOGICAL APPROXIMATION SYSTEMS . . . . . . . . . . . . . 70 3
PRE-TOPOLOGICALAND TOPOLOGICALAPPROXIMATION OPERATORS 73 3.1
INFORMATION, CONCEPTS AND FORMAL OPERATORS. . . . . 73 CONTENTS XV 3.1.1
CHOOSING THE INITIAL PERCEPTION ACT . . . . . . 75 3.1.2 INFORMATION
QUANTUM RELATIONAL SYSTEMS 81 3.2 COMPARING PERCEPTION SYSTEMS. . . . .
. . . . . . . . . . . . . 85 3.3 HIGHER LEVEL OPERATORS 90 3.4
TRANSFORMING PERCEPTION SYSTEMS 97 3.5 TOPOLOGICAL APPROXIMATION
OPERATORS. . . . . . . . . . . . 100 3.6 TOPOLOGICAL APPROXIMATION
SYSTEMS 103 4 FRAMES(PART I) 107 4.1 FRAME - APPROXIMATION . . . . . . .
. . . . . . . . . . . . . . . . . 107 4.2 FRAME - CLASSIFIEATION. . . .
. . . . . . . . . . . . . . . . . . . . . 108 4.3 FRAME - CATEGORIZING
THROUGH POINTLESS TOPOLOGY . 110 4.4 FRAME - OBSERVABLE PROPERTIES . . .
. . . . . . . . . . . . . . . 113 4.4.1 DEEIDABLE AND SEMI-DECIDABLE
PROPERTIES . 113 4.4.2 DECIDABLE PROPERTIES, TOPOLOGY, DOMAINS AND
GEOMETRIE LOGIE . . . . . . . . . . . . . . . . . . 115 4.5 FRAME -
FINITE OBSERVATIONS: THE BINARY MACHINE EXAMPLE 116 4.6 FRAME - QUANTA
OF INFORMATION 120 4.6.1 QUANTA AT A LOEATION AND ORTHOLATTIEES . . 120
4.6.2 A TOPO-ALGEBRAIC READING OF IQRSS . . . . 123 4.6.3 DUALITY
BETWEEN P-SYSTEMS AND PREORDERS . . . . . . . . . . . . . . . . . . . .
. . . . . 124 4.7 FRAME - INFORMATION SYSTEMS . . . . . . . . . . . . .
. . . . . . 126 4.7.1 GENERALISING INFORMATION RELATIONS 126 4.7.2
GENERALIZING INDISEERNIBILITY RELATION 127 4.7.3 GENERALISING FROM SETS
TO RELATIONS. . . . . . 128 4.8 FRAME - DICHOTOMIE, COMPLEMENTARY AND
FUNETIONAL SYSTEMS. . . . . . . . . . . . . . . . . . . . . . . 129
4.8.1 DIEHOTOMIE SYSTEMS. . . . . . . . . . . . . . . . . . . 129 4.8.2
COMPLEMENTARY SYSTEMS I . . . . . . . . . . . . . . 130 4.8.3
COMPLEMENTARY SYSTEMS II 130 4.8.4 COMPLEMENTARY SYSTEMS III.
. 131 4.8.5 DICHOTOMIE SYSTEMS AND FUNETIONAL SYSTEMS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.8.6 FUNETIONAL
SYSTEMS AND APPROXIMATIONS. . 132 4.8.7 DICHOTOMIE SYSTEMS AND
APPROXIMATIONS . 132 XVI CONTENTS 4.9 FRAME - CONCEPT LATTICES 133 4.9.1
FORMAL CONTEXTS AND FORMAL CONCEPT ANALYSIS. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 133 4.9.2 FORMAL CONCEPTS AND
APPROXIMATION OPERATORS 135 4.9.3 COMBINING CLASSICAL APPROXIMATION
SYSTEMS AND CONCEPT LATTICES. . . . . . . . . . . 137 4.9.4 COMBINING
NON-CLASSICAL APPROXIMATION SYSTEMS AND CONCEPT LATTICES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 140 4.9.5 NOMINAL SYSTEMS
AND CONCEPTUAL SCALING. 140 4.10 FRAME - NEIGHBORHOOD SYSTEMS. . . . .
. . . . . . . . . . . 142 4.11 FRAME - BASIC PAIRS AND POINT-FREE
TOPOLOGY . . . . . 143 4.12 FRAME - CHU SPACES. . . . . . . . . . . . .
. . . . . . . . . . . . . . 144 4.13 FRAME - INTUITIONISM, MODALITIES
AND RELATIONAL SEMANTIES. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 145 4.13.1 NECESSITY AND POSSIBILITY 146 4.13.2
BASIC OPERATORS AS MODAL OPERATORS. . . . 147 4.13.3 RAMIFIED TENSE
LOGIC 148 4.13.4 NECESSITY AND SUFFICIENEY OPERATORS. . . . . . 148
4.13.5 MODAL OPERATORS AND INFORMATION SYSTEMS 149 4.14 FRAME -
GAJOISADJUNCTIONS 151 4.14.1 GALOIS ADJUNETIONS IN COMPUTER SCIENCE. .
152 4.14.2 GALOIS ADJUNCTIONS AND DEDEKIND CUTS. . 154 4.14.3 GALOIS
ADJUNETIONS AT LARGE 155 4.14.4 GALOIS CONNECTIONS AND REPRESENTATION
THEOREMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.14.5 GALOIS ADJUNCTIONS, ISOMORPHISMS AND APPROXIMATION: A NOTE 157
4.15 FRAME - CATEGORIES AND ADJOINT FTMCTORS. . . . . . . . . 158 4.16
SOLUTIONS. 161 11 THE
LOGICO-ALGEBRAICTHEORY OF ROUGH SETS 167 5 LOGIC AND ROUGH SETS: AN
OVERVIEW 169 5.1 FOREWORD . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 169 5.2 ROUGH SET SYSTEMS AND THREE- VALUED
LOGIES. . . . . . 172 CONTENTS XVII 5.3 EXACT AND INEXACT LOCAL
BEHAVIOURS IN ROUGH SET SYSTEMS 174 5.4 REPRESENTING ROUGH SETS . . . .
. . . . . . . . . . . . . . . . . . . 177 5.5 ROUGH SET SYSTEMS, LOCAL
VALIDITY, AND LOGICO-ALGEBRAIC STRUCTURES. . . . . . . . . . . . . . .
. 181 6 BASIC LOGICO-ALGEBRAIC STRUCTURES 193 6.1 HEYTING AIGEBRAS. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.2 NELSON
AIGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
198 6.3 N-VALUED LUKASIEWICZ AIGEBRAS 203 6.4 CHAIN- BASED LATTICES 204
6.5 RELATIONSHIPS, ANALOGIES AND DIFFERENCES BETWEEN STRUCTURES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 7
LOCAL VALIDITY, GROTHENDIECK TOPOLOGIES AND ROUGH SETS 211 7.1
REPRESENTING ROUGH SETS. . . . . . . . . . . . . . . . . . . . . . . 211
7.1.1 LOCAL LOGICAL BEHAVIOURS IN ROUGH SET SYSTEMS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 212 7.2 SOME DUALITY OF
DISTRIBUTIVE LATTICES . . . . . . . . . . . . 216 7.2.1 DUALITY FOR
HEYTING AIGEBRAS. . . . . . . . . . . . 218 7.3 GROTHENDIECK TOPOLOGIES
219 7.3.1 A FUNDAMENTAL EXAMPLE: THE DENSE TOPOLOGY . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 221 7.4 LAWVERE-TIERNEY OPERATORS
AND ROUGH SET SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 223 8 APPROXIMATION AND AIGEBRAIC LOGIC 237
8.1 APPROXIMATION OPERATORS. . . . . . . . . . . . . . . . . . . . . .
237 8.2 ADJOINTNESS, APPROXIMATIONS AND THE CENTER OF A ROUGH SET SYSTEM
. . . . . . . . . . . . . . . . . . . . . . . . . . . 238 8.3 MULTI-
VALUED LOGICS: A KNOWLEDGE-ORIENTED INTERPRETATION. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 242 8.3.1 A TAXONOMY OF
LOGICAL SYSTEMS. . . . . . . . . 242 8.3.2 EXACT AND INEXACT INFORMATION
IN LOGICO-ALGEBRAIC SYSTEMS 247 XVIII CONTENTS 9 A
LOGICO-PHILOSOPHICEXCURSUS 255 9.1 TRUTH-ORIENTED AND KNOWLEDGE-ORIENTED
APPROACHES IN LOGIC . . . . . . . . . . . . . . . . . . . . . . . . . .
255 9.2 UNDERSTANDING THE KNOWLEDGE-ORIENTED POINT OF VIEW " . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 256 9.3 SOME PROBLEMS
ARISING FROM THE KNOWLEDGE- ORIENTED POINT OF VIEW . . . . . . . . . . .
. . . . . . . . . . . . . . 259 9.3.1 POSSIBLE SOLUTIONS 1: MAKING
CLASSICAL AND CONSTRUCTIVE ATTITUDES COEXIST . . . . . . 260 9.3.2
POSSIBLE SOLUTIONS 2: STRENGTHENING INT WITH CLASSICAL PRINCIPLES . . .
. . . . . . . . . . . . 261 9.4 A "MIXED-RADIX" ATTITUDE IN LOGIC. . . .
. . . . . . . . . . 262 9.5 A MAXIMAL INTERMEDIATE CONSTRUCTIVE LOGIC
266 9.6 MIXED-RADIX INFORMATION SYSTEMS. . . . . . . . . . . . . . 269
9.6.1 LOCAL VALIDITY IN NELSON LATTICES FROM HEYTING AIGEBRAS . . . . .
. . . . . . . . . . . . . . . . . 269 9.6.2 LOCAL VALIDITY AND MIXED
LOGICAL BEHAVIOUR 276 9.7 CONCLUSIONS. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 278 10 FRAMES (PART 11) 281 10.1 FRAME
~ ROUGH SET SYSTEMS AND CHAIN-BASED LATTICES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 281 10.2 FRAME - ROUGH
SET SYSTEMS AS REGULAR DOUBLE STONE AIGEBRAS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 283 10.3 FRAME -
INFORMATION-ORIENTED DUALITY THEOREMS. . 284 10.3.1 INFORMATION-ORIENTED
INTERPRETATION OF DUALITY. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 284 10.3.2 DUALITY OF LOGIC(}-ALGEBRAIC STRUCTURES . 286
10.3.3 COLLAPSE OF MAXIMAL ELEMENTS AND ATOMIC DECIDABILITY . . . . . .
. . . . . . . . . . 290 10.3.4 ROUGH SETS, DUALITY AND DECIDABILITY .
291 10.3.5 ROUGH SET SYSTEMS, POST AIGEBRAS AND TOTAL ATOMIC
UNDECIDABILITY . . . . . 294 10.4 FRAME - REPRESENTATION OF THREE-
VALUED LUKASIEWICZ AIGEBRAS AS ROUGH SET SYSTEM. . . . . . . 296 10.5
FRAME - PROOF OF THE FACTS STATED IN WINDOW 7.1. . 299 10.6 FRAME -
PROOF OF PROPOSITION 8.3.1 300 CONTENTS XIX 10.7 FRAME - GROTHENDIECK
TOPOLOGIES AND LAWVERE-TIERNEY OPERATORS. . . . . . . . . . . . . . . .
. 302 10.8 FRAME ~ REPRESENTATION OF ROUGH SETS . . . . . . . . . . .
303 10.9 FRAME - ROUGH SETS AND NON CLASSIEAL LOGIEO-ALGEBRAIE SYSTEMS.
. . . . . . . . . . . . . . . . . . . . . . 304 10.9.1 ROUGH SETS AND
BROUWER-ZADEH LATTICES . . 305 10.9.2 LATTICES AND NON-CLASSIEAL
LOGIES. 305 10.9.3 LATTIEES WITH STRONG
NEGATION. . . . . . . . . . . 306 10.10 FRAME - REPRESENTATION THEOREMS
AND DECOMPOSITION OF DISTRIBUTIVE LATTIEES . . . . . . . 307 10.11 FRAME
- REPRESENTATION OF LOGICAL VALUES BY ORDERED PAIRS , . . . . . . . . .
. . . . . 311 10.12 FRAME - NEGATION 312 10.12.1 CLASSIFYING FORMAL
NEGATIONS. . . . . . . . . . . . 314 10.12.2 A GEOMETRIE INTERPRETATION
OF NEGATION. . 316 10.12.3 STRONG NEGATIONS AND KNOWLEDGE STATES IN
ARTIFICIAL INTELLIGENCE 317 10.12.4 NEGATIONS, BODIES AND BOUNDARIES. .
. . . . . . 318 10.12.5 NEGATIONS, MODALITIES AND STALK SPACES. . . 320
10.13 FRAME - INTUITIONISTIC LOGIC: NATURAL DEDUCTION SYSTEM INT .
. 323 10.14 FRAME - CLASSIEAL LOGIE:
NATURAL DEDUCTION SYSTEM CF:, 324 10.14,1 DERIVING THE PRINCIPLE OF
EXCLUDED MIDDLE FROM CF:, . . . . . . . . . . . . . . . . . . . . . . .
324 10.15 FRAME - NELSON LOGIC: NATURAL DEDUCTION SYSTEM CLSN 324
10.15.1 CONSTRUETIVE LOGICS WITH STRONG NEGATION 324 10.15.2 NATURAL
DEDUETION SYSTEM FOR CF:,SN . . . . . 325 10.16 FRAME - THE SYSTEM &0 .
. . . . . . . . . . . . . . . . . . . . . . 326 10.16.1 THE NATURAL
DEDUETION SYSTEM &0 . . . . . . . 327 10.16.2 RELATIONAL MODELS FOR
NELSON LOGIE 327 10.16.2.1 RELATIONAL MODELS FUER &0 . * . . . . . 327
10.16.3 LOGIE AND ALGEBRA IN PARTNERSHIP . . . . . . . . 327 10.16.4
ALGEBRAIE ANALYSIS OF THE CHARACTERISTIE PROOFS OF T:O . . . . . . . . .
. . . . . 328 10.17 FRAME - THE LOGIE FA . 332 XX
CONTENTS 10.17.1 THE NATURAL DEDUCTION SYSTEM E* - ALIAS FA.
. 333 10.17.2 EVALUATION FORM SEMANTIES. . .
. . . . . . . . . . 333 10.18 FRAME - MEDVEDEV'S LOGIC OF FINITE
PROBLEMS. . . . . 337 10.19 FRAME - ATOMICDECIDABILITY AND NON-STANDARD
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 338 10.19.1 ATOMIC DECIDABILITY AND THE FAILURE OF UNIFORM
SUBSTITUTION . . . . . . . . . . . . . . . . 340 10.20 FRAME - AN
APPLICATIONS OF THE ALGEBRAIC APPROACH TO PARTIAL INFORMATION SYSTEMS
',' . . . . . . . . 341 10.20.1 P-SLLSTEMS WITH PARTIAL INFORMATION. . .
. . . 345 10.20.2 ADEQUACY OFTHE KLEENE FRAGMENT W.R.T. DEFINITE ANSWERS
351 10.21 FRAME - LOGICAL OPERATIONS IN A PURE ALGEBRAIC SETTING. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35~ 10.22 SOLUTIONS. 355 III THE
MODAL LOGIC OF ROUGH SETS 361 11 MODALITY AND KNOWLEDGE 363 11.1
FOREWORD. 363 11.2 MODALITIES AND
ASSERTIONS 365 11.3 INTERNAL MODALITIES VS EXTERNAL MODALITIES . . . . .
. . . 367 11.4 KNOWLEDGE AND INFORMATION. . . . . . . . . . . . . . . .
. . . . . 371 11.5 KNOWLEDGE AND MODAL SYSTEMS. . . . . . . . . . . . .
. . . . . 375 11.5.1 INTERNAL MODALITIES AND NON-DISTRIBUTIVITY . . . .
. . . . . . . . . . . . . 381 11.5.2 EXTERNAL MODALITIES, DISTRIBUTIVITY
AND POSSIBLE WORLDS SEMANTICS . . . . . . . . . . . . . . 382 11.5.3
REPRESENTING MODAL SYSTEMS. . . . . . . . . . . 383 12 MODALITIES AND
RELATIONS '389 12.1 MODAL SYSTEMS AND BINARY RELATIONS. . . . . . . . .
. . 389 12.2 FROM LOOSELY STRUCTURED SPACES TO STRUCTURED SPACES: A
VARIETY OF MODAL PROPERTIES . . . . . . . . . . 402 12.3 RELATIONS,
PRE- TOPOLOGIES AND TOPOLOGIES . . . . . . . . . 406 12.4 PRE-
TOPOLOGIEAL SPACES. . . . . . . . . . . . . . . . . . . . . . . . . 407
CONTENTS XXI 12.4.1 EXCURSUS. DYNAMICS 1: THE FAILURE OF THE ISOTONICITY
LAW . . . . . . . . . . . . . . . . . . 423 12.5 TOWARDS TOPOLOGY 1 426
12.5.1 EXCURSUS: REFLEXIVITY, DISTRIBUTION AND PERCEPTION . . . . . . .
. . . . . . . . . . . . . . . . . 430 12.6 TOWARDS TOPOLOGY 2 431 12.6.1
BASES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
12.6.2 EXCURSUS. DYNAMICS 2: THE FAILURE OF THE DISTRIBUTIVITY LAWS . .
. . . . . . . . . . . . . . . 437 12.7 PRE-TOPOLOGICAL SPACES AND BINARY
RELATIONS . 441 12.7.1 EXCURSUS: PRE-TOPOLOGICAL SPACES AND MODAL
AIGEBRAS 449 12.7.2 EXCURSUS. PRE-TOPOLOGICAL SPACES AND APPROXIMATION
SPACES 453 12.8 TOPOLOGICAL SPACES AND BINARY RELATIONS . . . . . . . .
. 458 13 MODALITIES, TOPOLOGIES AND AIGEBRAS 471 13.1 TOPOLOGICAL
BOOLEAN AIGEBRAS . . . . . . . . . . . . . . . . . . . 471 13.2 MONADIE
TOPOLOGICAL BOOLEAN AIGEBRAS . . . . . . . . . . . 472 14 THE
PROPOSITIONAL MODAL LOGIC OF ROUGH SETS 479 14.1
INTRODUCTION. 479 14.2 FROM SYNTAX TO
SEMANTIES. . . . . . . . . . . . . . . . . . . . . . 480 14.3 ROUGH
ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
488 14.4 THE SYSTEMS LI, L2 . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 492 14.4.1 THE SYSTEM L1 . . . . . . . . . . . . . . . . . .
. . . . . . 492 14.4.2 THE SYSTEM L2 . . . . . . . . . . . . . . . . .
. . . . . . 497 14.4.3 ROUGH SET SEMANTICS FOR L2 . . . . . . . . . . .
. . 499 14.5 AIGEBRAIC INTERPRETATION AND MODAL INTERPRETATION OF ROUGH
SET SYSTEMS . . . . . . . . . . . . . 502 15 FRAMES (PART III) 505 15.1
FRAME - PROOF OF THE DUALITY BETWEEN LR(X) = U{Z : R(Z) 5; X} AND MR(X)
= N{-Z: R(Z) 5; -X}. 505 15.2 FRAME - RELATIONAL PROPERTIES
AND LOGICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . 506
15.2.1 PROOF OF KT5 = KTB4 . . . . . . . . . . . . . . . . . . 506
15.2.2 PROOF OF KDB4 = KTB4 . . . . . . . . . . . . . . . . 507 XXII
CONTENTS 15.3 FRAME - PROOF OF PROPOSITION 12.7.10 507 15.4 FRAME --
PROOFS OF THE PROPOSITIONS ABOUT THE UNIQUENESS OF P(RT(P)) AND P(RB(P))
508 15.5 FRAME - ALTERNATIVE PROOFS OF COROLLARY 12.8.2.(1) . 508 15.6
FRAME - DIRECTPROOF OF MR(X) = MR(X), FOR R A PREORDER RELATION 509 15.7
FRAME - TRANSFORMING APRE- TOPOLOGICAL SPACE OF TYPE M SINTO A
TOPOLOGICAL SPACE. . . . . . . . . . . . . 509 15.8 FRAME - MODAL
INTERPRETATIONS OF APPROXIMATION SPACES AND ROUGH SETS. . . . . . . . .
511 15.9 FRAME - KRIPKE-JOYAL MODELS . . . . . . . . . . . . . . . . . .
. 512 15.10 FRAME - QUANTUM LOGIC AND INTERNAL MODALITIES . 513 15.11
FRAME - PERSISTENCE OF MODALISED FORMULAS . . . . . . . 515 15.12 FRAME
- COHERENCE BETWEEN INFORMATION AND KNOWLEDGE 518 15.13 FRAME -
NEIGHBORHOOD SYSTEMS. . . . . . . . . . . . . . . . . 522 15.13.1 SOME
HISTORY AND RECENT APPLICATIONS . 522 15.13.2 NEIGHBORHOOD SYSTEMS AND
APPROXIMATION OF INFORMATION. . . . . . . 525 15.13.3 NEIGHBORHOOD
SYSTEMS AND MODAL SYSTEMS . . . . . . . . . . . . . . . . . . . . 526
15.13.4 THE "OMNISCIENCE PROBLEM" IN EPISTEMIC AND DOXASTIC LOGICS . . .
. . . . . 529 15.14 FRAME - PRE-TOPOLOGIES AND INTUITIONISTIC FORMAL
SPACES 530 15.14.1 FORMAL COVERING RELATIONS. . . . . . . . . . . . . .
531 15.14.2 SEMI-TOPOLOGICAL FORMAL SYSTEMS AND NEIGHBORHOOD SYSTEMS . .
. . . . . . . . . . . . . . . 541 15.14.3 A NEW AGE: GETTING RID OF .
AND 1. . 549 15.14.4 THE LOGICAL INTERPRETATION OF THE PRE-
TOPOLOGY FORMAL APPROACH 552 15.14.5 A SAMPIE FORMAL NEIGHBORHOOD
SYSTEM. . 555 15.14.6 A PSEUD(}- TOPOLOGICAL NEIGHBORHOOD SYSTEM. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 558 15.14.7 A
TOPOLOGICAL FORMAL NEIGHBORHOOD SYSTEM IN WHICH N3 DOES NOT HOLD 559
15.14.8 A TOPOLOGICAL FORMAL NEIGHBORHOOD SYSTEM IN WHICH NI DOES NOT
HOLD. . . . . . . 560 CONTENTS XXIUE 15.14.9 A NON-TOPOLOGIEAL FORMAL
NEIGHBORHOOD SYSTEM SUEH THAT OINT(U) IS A HEYTING ALGEBRA OF SETS. . .
. . . . . . . . . . . . . . . . . . . . . 561 15.14.10 A LOGICAL
INTERPRETATION OF CONERETE PROPERTIES . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 563 15.15 FRAME - MODAL STRUETURES AND PRE-
TOPOLOGIEAL SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 564 15.15.1 MODAL AIGEBRAS AND NEIGHBORHOOD
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
15.15.2 MODAL SYSTEMS, PRE-MONADIE BOOLEAN ALGEBRAS AND KRIPKE FRAMES .
. . . . . . . . . . . 569 15.16 FRAME - DUALITY OF OPERATIONS AND
AIGEBRAIE STRUETURES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 570 15.17 FRAME - COMPUTING DEPENDENEY RELATIONS IN
A FRAGMENT OF INTUITIONISTIE LOGIC . . . . . . . . . . . . . . . . . 571
15.18 FRAME - APPROXIMATION, FORMAL CONEEPTS, MODALITIES AND RELATION
AIGEBRAS. . . . . . . . . . . . . . . . 574 15.18.1 RELATION AIGEBRAS
575 15.18.2 MODALIZING RELATIONS BY MEANS OF RELATIONS. . . . . . . . .
. . . . . . . . . . . . . . . . . . 577 15.18.3 COMPARING FORMAL
CONEEPTS AND ROUGH SETS. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 583 15.18.4 APPROXIMATION OF RELATIONS. . . . . . . .
. . . . . 588 15.18.5 MAKING FORMAL CONEEPTS AND ROUGH SETS INTERACT . .
. . . . . . . . . . . . . . . . . . . . . . . 589 15.18.6 WHAT THIS
APPROACH MAY SUGGEST 590 15.18.7 COMPUTING DEPENDENCIES IN RELATION
AIGEBRAS 591 15.19 FRAME - RELATIONAL PROOF THEORY. . . . . . . . . . .
. . . . . 595 15.20 FRAME - SOME HISTORY OF THE AIGEBRAIE CONEEPTS USED
IN THIS PART 600 15.21 SOLUTIONS.
601 16 MATHEMATIEAL TOOLKITS 615 16.1 A MATHEMATICAL TOOLKIT: ORDERS. .
. . . . . . . . . . . . . . . 615 16.2 A MATHEMATIEAL TOOLKIT: FUNCTIONS
. . . . . . . . . . . . . . 616 16.3 A MATHEMATIEAL TOOLKIT: LATTIEES. .
. . . . . . . . . . . . . . 618 16.4 A MATHEMATIEAL TOOLKIT: TOPOL~GY
621 16.5 A MATHEMATIEAL TOOLKIT: RELATIONS 623 XXIV CONTENTS 16.5.1
PULL-BACKS AND KERNELS. . . . . . . . . . . . . . . . 625 16.5.1.1
CATEGORIZATION AND KERNEIS . . . . . 625 16.5.1.2 CATEGORIZATION AND
PULL-BACKS . . 627 BIBLIOGRAPHY INDEX 631 681 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Pagliani, Piero Chakraborty, Mihir |
author_facet | Pagliani, Piero Chakraborty, Mihir |
author_role | aut aut |
author_sort | Pagliani, Piero |
author_variant | p p pp m c mc |
building | Verbundindex |
bvnumber | BV023369618 |
classification_rvk | CC 2500 ST 301 |
ctrlnum | (OCoLC)634012191 (DE-599)DNB988348802 |
discipline | Informatik Philosophie |
discipline_str_mv | Informatik Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02784nam a2200649 cb4500</leader><controlfield tag="001">BV023369618</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090505 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080630s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N19,0087</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">988348802</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402086212</subfield><subfield code="c">Gb. : ca. EUR 214.00 (freier Pr.), ca. sfr 348.50 (freier Pr.)</subfield><subfield code="9">978-1-402-08621-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781402086212</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11975328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634012191</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB988348802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2500</subfield><subfield code="0">(DE-625)17609:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">100</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pagliani, Piero</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A geometry of approximation</subfield><subfield code="b">Rough Set Theory: logic, algebra and topology of conceptual patterns</subfield><subfield code="c">Piero Pagliani ; Mihir Chakraborty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LXXXII, 704 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Trends in Logic</subfield><subfield code="v">27</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grobmenge</subfield><subfield code="0">(DE-588)4362502-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Heyting-Arithmetik</subfield><subfield code="0">(DE-588)4576522-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Frame</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4528312-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Epistemologischer Kontextualismus</subfield><subfield code="0">(DE-588)4998367-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modelltheoretische Semantik</subfield><subfield code="0">(DE-588)4221369-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semitopologische Halbgruppe</subfield><subfield code="0">(DE-588)4180976-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grothendieck-Topologie</subfield><subfield code="0">(DE-588)4158325-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informationssystem</subfield><subfield code="0">(DE-588)4072806-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Heyting-Arithmetik</subfield><subfield code="0">(DE-588)4576522-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informationssystem</subfield><subfield code="0">(DE-588)4072806-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modelltheoretische Semantik</subfield><subfield code="0">(DE-588)4221369-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Grothendieck-Topologie</subfield><subfield code="0">(DE-588)4158325-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Semitopologische Halbgruppe</subfield><subfield code="0">(DE-588)4180976-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Epistemologischer Kontextualismus</subfield><subfield code="0">(DE-588)4998367-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Frame</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4528312-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Grobmenge</subfield><subfield code="0">(DE-588)4362502-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, Mihir</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Trends in Logic</subfield><subfield code="v">27</subfield><subfield code="w">(DE-604)BV011512969</subfield><subfield code="9">27</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Erlangen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016552902&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016552902</subfield></datafield></record></collection> |
id | DE-604.BV023369618 |
illustrated | Illustrated |
index_date | 2024-07-02T21:12:08Z |
indexdate | 2024-07-09T21:17:02Z |
institution | BVB |
isbn | 9781402086212 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016552902 |
oclc_num | 634012191 |
open_access_boolean | |
owner | DE-29 DE-703 |
owner_facet | DE-29 DE-703 |
physical | LXXXII, 704 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Trends in Logic |
series2 | Trends in Logic |
spelling | Pagliani, Piero Verfasser aut A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns Piero Pagliani ; Mihir Chakraborty Berlin Springer 2008 LXXXII, 704 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Trends in Logic 27 Grobmenge (DE-588)4362502-2 gnd rswk-swf Heyting-Arithmetik (DE-588)4576522-4 gnd rswk-swf Frame Mathematik (DE-588)4528312-6 gnd rswk-swf Epistemologischer Kontextualismus (DE-588)4998367-2 gnd rswk-swf Modelltheoretische Semantik (DE-588)4221369-1 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Semitopologische Halbgruppe (DE-588)4180976-2 gnd rswk-swf Grothendieck-Topologie (DE-588)4158325-5 gnd rswk-swf Informationssystem (DE-588)4072806-7 gnd rswk-swf Heyting-Arithmetik (DE-588)4576522-4 s Informationssystem (DE-588)4072806-7 s Modelltheoretische Semantik (DE-588)4221369-1 s Grothendieck-Topologie (DE-588)4158325-5 s Semitopologische Halbgruppe (DE-588)4180976-2 s Epistemologischer Kontextualismus (DE-588)4998367-2 s Approximation (DE-588)4002498-2 s Frame Mathematik (DE-588)4528312-6 s DE-604 Grobmenge (DE-588)4362502-2 s Chakraborty, Mihir Verfasser aut Trends in Logic 27 (DE-604)BV011512969 27 Digitalisierung UB Erlangen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016552902&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pagliani, Piero Chakraborty, Mihir A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns Trends in Logic Grobmenge (DE-588)4362502-2 gnd Heyting-Arithmetik (DE-588)4576522-4 gnd Frame Mathematik (DE-588)4528312-6 gnd Epistemologischer Kontextualismus (DE-588)4998367-2 gnd Modelltheoretische Semantik (DE-588)4221369-1 gnd Approximation (DE-588)4002498-2 gnd Semitopologische Halbgruppe (DE-588)4180976-2 gnd Grothendieck-Topologie (DE-588)4158325-5 gnd Informationssystem (DE-588)4072806-7 gnd |
subject_GND | (DE-588)4362502-2 (DE-588)4576522-4 (DE-588)4528312-6 (DE-588)4998367-2 (DE-588)4221369-1 (DE-588)4002498-2 (DE-588)4180976-2 (DE-588)4158325-5 (DE-588)4072806-7 |
title | A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns |
title_auth | A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns |
title_exact_search | A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns |
title_exact_search_txtP | A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns |
title_full | A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns Piero Pagliani ; Mihir Chakraborty |
title_fullStr | A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns Piero Pagliani ; Mihir Chakraborty |
title_full_unstemmed | A geometry of approximation Rough Set Theory: logic, algebra and topology of conceptual patterns Piero Pagliani ; Mihir Chakraborty |
title_short | A geometry of approximation |
title_sort | a geometry of approximation rough set theory logic algebra and topology of conceptual patterns |
title_sub | Rough Set Theory: logic, algebra and topology of conceptual patterns |
topic | Grobmenge (DE-588)4362502-2 gnd Heyting-Arithmetik (DE-588)4576522-4 gnd Frame Mathematik (DE-588)4528312-6 gnd Epistemologischer Kontextualismus (DE-588)4998367-2 gnd Modelltheoretische Semantik (DE-588)4221369-1 gnd Approximation (DE-588)4002498-2 gnd Semitopologische Halbgruppe (DE-588)4180976-2 gnd Grothendieck-Topologie (DE-588)4158325-5 gnd Informationssystem (DE-588)4072806-7 gnd |
topic_facet | Grobmenge Heyting-Arithmetik Frame Mathematik Epistemologischer Kontextualismus Modelltheoretische Semantik Approximation Semitopologische Halbgruppe Grothendieck-Topologie Informationssystem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016552902&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011512969 |
work_keys_str_mv | AT paglianipiero ageometryofapproximationroughsettheorylogicalgebraandtopologyofconceptualpatterns AT chakrabortymihir ageometryofapproximationroughsettheorylogicalgebraandtopologyofconceptualpatterns |