Introduction to group theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German English Russian |
Veröffentlicht: |
Zürich
European Math. Soc.
2008
|
Schriftenreihe: | EMS textbooks in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Aus dem Russ. übers. |
Beschreibung: | X, 177 S. Ill., graph. Darst. |
ISBN: | 9783037190418 3037190418 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023369215 | ||
003 | DE-604 | ||
005 | 20170817 | ||
007 | t | ||
008 | 080630s2008 ad|| |||| 00||| ger d | ||
016 | 7 | |a 987815652 |2 DE-101 | |
020 | |a 9783037190418 |c Print |9 978-3-03-719041-8 | ||
020 | |a 3037190418 |c Print |9 3-03-719041-8 | ||
024 | 3 | |a 9783037190418 | |
035 | |a (OCoLC)226390713 | ||
035 | |a (DE-599)DNB987815652 | ||
040 | |a DE-604 |b ger | ||
041 | 1 | |a ger |a eng |h rus | |
049 | |a DE-20 |a DE-355 |a DE-824 |a DE-91G |a DE-11 |a DE-188 |a DE-384 |a DE-83 | ||
050 | 0 | |a QA174.2 | |
082 | 0 | |a 512/.2 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 20-01 |2 msc | ||
084 | |a MAT 200f |2 stub | ||
100 | 1 | |a Bogopol'skij, Oleg V. |e Verfasser |0 (DE-588)140917632 |4 aut | |
240 | 1 | 0 | |a Vvedenie v teoriju grupii |
245 | 1 | 0 | |a Introduction to group theory |c Oleg Bogopolski |
264 | 1 | |a Zürich |b European Math. Soc. |c 2008 | |
300 | |a X, 177 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a EMS textbooks in mathematics | |
500 | |a Aus dem Russ. übers. | ||
650 | 4 | |a Combinatorial group theory | |
650 | 4 | |a Finite groups | |
650 | 4 | |a Group theory | |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n ebook |a Bogopol'skij, Oleg V. |t Introduction to group theory |z 978-3-03719-541-3 |w (DE-604)BV036713243 |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3078001&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016552509&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016552509 |
Datensatz im Suchindex
_version_ | 1805090664817360896 |
---|---|
adam_text |
Contents
Preface
v
Preface
to the Russian Edition
vi
1
Introduction to finite group theory
1
1
Main definitions
. 1
2
Lagrange's theorem. Normal subgroups and factor groups
. 4
3
Homomorphism theorems
. 6
4
Cayley's theorem
. 7
5
Double cosets
. 9
6
Actions of groups on sets
. 10
7
Normalizers and centralizers. The centers of finite p-groups
. 12
8
Sylow's theorem
. 13
9
Direct products of groups
. 15
10
Finite simple groups
. 16
11
The simplicity of the alternating group An for
η
> 5 . 18
12
As as the rotation group of an icosahedron
. 19
13
As as the first noncyclic simple group
. 20
14
As as a projective special linear group
. 22
15
A theorem of Jordan and
Dickson
. 23
16
Mathieu's group
Міг
. 25
17
The
Mathieu
groups,
Steiner
systems and coding theory
. 32
18
Extension theory
. 35
19
Schur's theorem
. 37
20
The Higman-Sims group
. 39
2
Introduction to combinatorial group theory
45
1
Graphs and Cayley's graphs
. 45
2
Automorphisms of trees
. 50
3
Free groups
. 52
4
The fundamental group of a graph
. 56
5
Presentation of groups by generators and relations
. 58
6
Tietze transformations
. 60
7
A presentation of the group Sn
. 63
8
Trees and free groups
. 64
9
The rewriting process of Reidemeister-Schreier
. 69
10
Free products
. 71
11
Amalgamated free products
. 72
X
Contents
12
Trees and amalgamated free products
. 74
13
Action of the group SL2(Z) on the hyperbolic plane
. 76
14
HNN extensions
. 81
15
Trees and HNN extensions
. 84
16
Graphs of groups and their fundamental groups
. 84
17
The relationship between amalgamated products
and HNN extensions
. 87
18
The structure of a group acting on a tree
. 88
19
Kurosh's theorem
. 92
20
Coverings of graphs
. 93
21
S
-graphs and subgroups of free groups
. 96
22
Foldings
. 98
23
The intersection of two subgroups of a free group
. 101
24
Complexes
. 104
25
Coverings of complexes
. 106
26
Surfaces
. 109
27
The theorem of
Seifert
and van
Kampen. 115
28
Grushko's Theorem
. 115
29
Hopfian groups and residually finite groups
. 117
3
Automorphisms of free groups and train tracks
121
1
Nielsen's method and generators of Aut(Fn)
. 123
2
Maps of graphs. Tightening, collapsing and expanding
. 126
3
Homotopy equivalences
. 128
4
Topological representatives
. 129
5
The transition matrix. Irreducible maps and automorphisms
. 130
6
Train tracks
. 132
7
Transformations of maps
. 132
8
The metric induced on a graph by an irreducible map
. 137
9
Proof of the main theorem
. 138
10
Examples of the construction of train tracks
. 141
11
Two applications of train tracks
. 151
Appendix. The Perron-Frobenius Theorem
153
Solutions to selected exercises
157
Bibliography
169
Index
173 |
adam_txt |
Contents
Preface
v
Preface
to the Russian Edition
vi
1
Introduction to finite group theory
1
1
Main definitions
. 1
2
Lagrange's theorem. Normal subgroups and factor groups
. 4
3
Homomorphism theorems
. 6
4
Cayley's theorem
. 7
5
Double cosets
. 9
6
Actions of groups on sets
. 10
7
Normalizers and centralizers. The centers of finite p-groups
. 12
8
Sylow's theorem
. 13
9
Direct products of groups
. 15
10
Finite simple groups
. 16
11
The simplicity of the alternating group An for
η
> 5 . 18
12
As as the rotation group of an icosahedron
. 19
13
As as the first noncyclic simple group
. 20
14
As as a projective special linear group
. 22
15
A theorem of Jordan and
Dickson
. 23
16
Mathieu's group
Міг
. 25
17
The
Mathieu
groups,
Steiner
systems and coding theory
. 32
18
Extension theory
. 35
19
Schur's theorem
. 37
20
The Higman-Sims group
. 39
2
Introduction to combinatorial group theory
45
1
Graphs and Cayley's graphs
. 45
2
Automorphisms of trees
. 50
3
Free groups
. 52
4
The fundamental group of a graph
. 56
5
Presentation of groups by generators and relations
. 58
6
Tietze transformations
. 60
7
A presentation of the group Sn
. 63
8
Trees and free groups
. 64
9
The rewriting process of Reidemeister-Schreier
. 69
10
Free products
. 71
11
Amalgamated free products
. 72
X
Contents
12
Trees and amalgamated free products
. 74
13
Action of the group SL2(Z) on the hyperbolic plane
. 76
14
HNN extensions
. 81
15
Trees and HNN extensions
. 84
16
Graphs of groups and their fundamental groups
. 84
17
The relationship between amalgamated products
and HNN extensions
. 87
18
The structure of a group acting on a tree
. 88
19
Kurosh's theorem
. 92
20
Coverings of graphs
. 93
21
S
-graphs and subgroups of free groups
. 96
22
Foldings
. 98
23
The intersection of two subgroups of a free group
. 101
24
Complexes
. 104
25
Coverings of complexes
. 106
26
Surfaces
. 109
27
The theorem of
Seifert
and van
Kampen. 115
28
Grushko's Theorem
. 115
29
Hopfian groups and residually finite groups
. 117
3
Automorphisms of free groups and train tracks
121
1
Nielsen's method and generators of Aut(Fn)
. 123
2
Maps of graphs. Tightening, collapsing and expanding
. 126
3
Homotopy equivalences
. 128
4
Topological representatives
. 129
5
The transition matrix. Irreducible maps and automorphisms
. 130
6
Train tracks
. 132
7
Transformations of maps
. 132
8
The metric induced on a graph by an irreducible map
. 137
9
Proof of the main theorem
. 138
10
Examples of the construction of train tracks
. 141
11
Two applications of train tracks
. 151
Appendix. The Perron-Frobenius Theorem
153
Solutions to selected exercises
157
Bibliography
169
Index
173 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bogopol'skij, Oleg V. |
author_GND | (DE-588)140917632 |
author_facet | Bogopol'skij, Oleg V. |
author_role | aut |
author_sort | Bogopol'skij, Oleg V. |
author_variant | o v b ov ovb |
building | Verbundindex |
bvnumber | BV023369215 |
callnumber-first | Q - Science |
callnumber-label | QA174 |
callnumber-raw | QA174.2 |
callnumber-search | QA174.2 |
callnumber-sort | QA 3174.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
classification_tum | MAT 200f |
ctrlnum | (OCoLC)226390713 (DE-599)DNB987815652 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV023369215</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170817</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080630s2008 ad|| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987815652</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037190418</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-03-719041-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3037190418</subfield><subfield code="c">Print</subfield><subfield code="9">3-03-719041-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783037190418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)226390713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987815652</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA174.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 200f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bogopol'skij, Oleg V.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140917632</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Vvedenie v teoriju grupii</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to group theory</subfield><subfield code="c">Oleg Bogopolski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Zürich</subfield><subfield code="b">European Math. Soc.</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 177 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">EMS textbooks in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus dem Russ. übers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">ebook</subfield><subfield code="a">Bogopol'skij, Oleg V.</subfield><subfield code="t">Introduction to group theory</subfield><subfield code="z">978-3-03719-541-3</subfield><subfield code="w">(DE-604)BV036713243</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3078001&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016552509&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016552509</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV023369215 |
illustrated | Illustrated |
index_date | 2024-07-02T21:11:59Z |
indexdate | 2024-07-20T09:43:25Z |
institution | BVB |
isbn | 9783037190418 3037190418 |
language | German English Russian |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016552509 |
oclc_num | 226390713 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR DE-824 DE-91G DE-BY-TUM DE-11 DE-188 DE-384 DE-83 |
owner_facet | DE-20 DE-355 DE-BY-UBR DE-824 DE-91G DE-BY-TUM DE-11 DE-188 DE-384 DE-83 |
physical | X, 177 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | European Math. Soc. |
record_format | marc |
series2 | EMS textbooks in mathematics |
spelling | Bogopol'skij, Oleg V. Verfasser (DE-588)140917632 aut Vvedenie v teoriju grupii Introduction to group theory Oleg Bogopolski Zürich European Math. Soc. 2008 X, 177 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier EMS textbooks in mathematics Aus dem Russ. übers. Combinatorial group theory Finite groups Group theory Gruppentheorie (DE-588)4072157-7 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Gruppentheorie (DE-588)4072157-7 s DE-604 Erscheint auch als ebook Bogopol'skij, Oleg V. Introduction to group theory 978-3-03719-541-3 (DE-604)BV036713243 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3078001&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016552509&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bogopol'skij, Oleg V. Introduction to group theory Combinatorial group theory Finite groups Group theory Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4072157-7 (DE-588)4151278-9 |
title | Introduction to group theory |
title_alt | Vvedenie v teoriju grupii |
title_auth | Introduction to group theory |
title_exact_search | Introduction to group theory |
title_exact_search_txtP | Introduction to group theory |
title_full | Introduction to group theory Oleg Bogopolski |
title_fullStr | Introduction to group theory Oleg Bogopolski |
title_full_unstemmed | Introduction to group theory Oleg Bogopolski |
title_short | Introduction to group theory |
title_sort | introduction to group theory |
topic | Combinatorial group theory Finite groups Group theory Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Combinatorial group theory Finite groups Group theory Gruppentheorie Einführung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3078001&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016552509&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bogopolskijolegv vvedenievteorijugrupii AT bogopolskijolegv introductiontogrouptheory |