Transport equations and multi-D hyperbolic conservation laws:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer [u.a.]
2008
|
Schriftenreihe: | Lecture notes of the Unione Matematica Italiana
5 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XIV, 130 S. graph. Darst. 24 cm |
ISBN: | 9783540767800 3540767800 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023357571 | ||
003 | DE-604 | ||
005 | 20080912 | ||
007 | t | ||
008 | 080623s2008 gw d||| |||| 00||| eng d | ||
015 | |a 08,N08,0523 |2 dnb | ||
015 | |a 08,A19,1162 |2 dnb | ||
016 | 7 | |a 987389114 |2 DE-101 | |
020 | |a 9783540767800 |c kart. : EUR 32.05 (freier Pr.), sfr 52.50 (freier Pr.) |9 978-3-540-76780-0 | ||
020 | |a 3540767800 |c kart. : EUR 32.05 (freier Pr.), sfr 52.50 (freier Pr.) |9 3-540-76780-0 | ||
024 | 3 | |a 9783540767800 | |
028 | 5 | 2 | |a 12182992 |
035 | |a (OCoLC)227008458 | ||
035 | |a (DE-599)DNB987389114 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 | ||
082 | 0 | |a 515.3535 |2 22/ger | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
245 | 1 | 0 | |a Transport equations and multi-D hyperbolic conservation laws |c Luigi Ambrosio ... Ed. Fabio Ancona ... |
264 | 1 | |a Berlin [u.a.] |b Springer [u.a.] |c 2008 | |
300 | |a XIV, 130 S. |b graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes of the Unione Matematica Italiana |v 5 | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare hyperbolische Differentialgleichung |0 (DE-588)4228136-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2005 |z Bologna |2 gnd-content | |
689 | 0 | 0 | |a Nichtlineare hyperbolische Differentialgleichung |0 (DE-588)4228136-2 |D s |
689 | 0 | 1 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ambrosio, Luigi |d 1963- |e Sonstige |0 (DE-588)133791408 |4 oth | |
830 | 0 | |a Lecture notes of the Unione Matematica Italiana |v 5 |w (DE-604)BV022297190 |9 5 | |
856 | 4 | 2 | |u http://d-nb.info/987389114/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016541084&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016541084 |
Datensatz im Suchindex
_version_ | 1804137718646571008 |
---|---|
adam_text | Contents
Parti
Existence, Uniqueness, Stability and Differentiability Properties
of the Flow Associated to Weakly Differentiable Vector Fields
.......... 3
Luigi Ambrosio
and Gianluca Crippa
1
Introduction
.................................................... 3
2
The Continuity Equation
......................................... 5
3
The Continuity Equation Within the Cauchy-Lipschitz Framework
...... 7
4
(ODE) Uniqueness Vs. (PDE) Uniqueness
.......................... 11
5
The Flow Associated to Sobolev or
B V
Vector Fields
................. 19
6
Measure-Theoretic Differentials
................................... 32
7
Differentiability of the Flow in the W1 1 Case
........................ 38
8
Differentiability and Compactness of the Flow in the W1 ? Case
........ 40
9
Bibliographical Notes and Open Problems
.......................... 52
References
........................................................ 54
Part
Π
A Note on Alberti s Rank-One Theorem
............................ 61
Camfflo
De Leilis
1
Introduction
.................................................... 61
2
Dimensional Reduction
.......................................... 63
3
A Blow-Up Argument Leading to a Partial Result
.................... 65
4
The Fundamental Lemma
........................................ 66
5
Proof of Theorem
1.1
in the Planar Case
............................ 68
References
........................................................ 74
xii Contents
Part
ΠΙ
Regularizing Effect of Nonlinearity
in Multidimensional Scalar Conservation Laws
...................... 77
Gianluca Crippa, Felix Otto, and Michael
Westdickenberg
1
Introduction
.................................................... 77
2
Background Material
............................................ 79
3
Entropy Solutions with BV-Regularity
.............................. 84
4
Structure of Entropy Solutions
.................................... 87
5
Kinetic Formulation, Blow-Ups and Split States
...................... 91
6
Classification of Split States
...................................... 98
6.1
Special Split States: No Entropy Dissipation
.................... 98
6.2
Special Split States:
ν
Supported on
a
Hyperplane...............101
6.3
Special Split States:
ν
Supported on Half
a
Hyperplane...........103
6.4
Classification of General Split States
..........................105
7
Proof of the Main Theorem
.......................................106
8
Proofs of the Regularity Theorems
.................................112
References
........................................................128
|
adam_txt |
Contents
Parti
Existence, Uniqueness, Stability and Differentiability Properties
of the Flow Associated to Weakly Differentiable Vector Fields
. 3
Luigi Ambrosio
and Gianluca Crippa
1
Introduction
. 3
2
The Continuity Equation
. 5
3
The Continuity Equation Within the Cauchy-Lipschitz Framework
. 7
4
(ODE) Uniqueness Vs. (PDE) Uniqueness
. 11
5
The Flow Associated to Sobolev or
B V
Vector Fields
. 19
6
Measure-Theoretic Differentials
. 32
7
Differentiability of the Flow in the W1'1 Case
. 38
8
Differentiability and Compactness of the Flow in the W1'? Case
. 40
9
Bibliographical Notes and Open Problems
. 52
References
. 54
Part
Π
A Note on Alberti's Rank-One Theorem
. 61
Camfflo
De Leilis
1
Introduction
. 61
2
Dimensional Reduction
. 63
3
A Blow-Up Argument Leading to a Partial Result
. 65
4
The Fundamental Lemma
. 66
5
Proof of Theorem
1.1
in the Planar Case
. 68
References
. 74
xii Contents
Part
ΠΙ
Regularizing Effect of Nonlinearity
in Multidimensional Scalar Conservation Laws
. 77
Gianluca Crippa, Felix Otto, and Michael
Westdickenberg
1
Introduction
. 77
2
Background Material
. 79
3
Entropy Solutions with BV-Regularity
. 84
4
Structure of Entropy Solutions
. 87
5
Kinetic Formulation, Blow-Ups and Split States
. 91
6
Classification of Split States
. 98
6.1
Special Split States: No Entropy Dissipation
. 98
6.2
Special Split States:
ν
Supported on
a
Hyperplane.101
6.3
Special Split States:
ν
Supported on Half
a
Hyperplane.103
6.4
Classification of General Split States
.105
7
Proof of the Main Theorem
.106
8
Proofs of the Regularity Theorems
.112
References
.128 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)133791408 |
building | Verbundindex |
bvnumber | BV023357571 |
classification_rvk | SK 540 |
ctrlnum | (OCoLC)227008458 (DE-599)DNB987389114 |
dewey-full | 515.3535 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.3535 |
dewey-search | 515.3535 |
dewey-sort | 3515.3535 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02184nam a2200505 cb4500</leader><controlfield tag="001">BV023357571</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080912 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080623s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N08,0523</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A19,1162</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987389114</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540767800</subfield><subfield code="c">kart. : EUR 32.05 (freier Pr.), sfr 52.50 (freier Pr.)</subfield><subfield code="9">978-3-540-76780-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540767800</subfield><subfield code="c">kart. : EUR 32.05 (freier Pr.), sfr 52.50 (freier Pr.)</subfield><subfield code="9">3-540-76780-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540767800</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12182992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227008458</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987389114</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3535</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transport equations and multi-D hyperbolic conservation laws</subfield><subfield code="c">Luigi Ambrosio ... Ed. Fabio Ancona ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer [u.a.]</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 130 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2005</subfield><subfield code="z">Bologna</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ambrosio, Luigi</subfield><subfield code="d">1963-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)133791408</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV022297190</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://d-nb.info/987389114/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016541084&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016541084</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2005 Bologna gnd-content |
genre_facet | Konferenzschrift 2005 Bologna |
id | DE-604.BV023357571 |
illustrated | Illustrated |
index_date | 2024-07-02T21:07:52Z |
indexdate | 2024-07-09T21:16:45Z |
institution | BVB |
isbn | 9783540767800 3540767800 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016541084 |
oclc_num | 227008458 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XIV, 130 S. graph. Darst. 24 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer [u.a.] |
record_format | marc |
series | Lecture notes of the Unione Matematica Italiana |
series2 | Lecture notes of the Unione Matematica Italiana |
spelling | Transport equations and multi-D hyperbolic conservation laws Luigi Ambrosio ... Ed. Fabio Ancona ... Berlin [u.a.] Springer [u.a.] 2008 XIV, 130 S. graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Lecture notes of the Unione Matematica Italiana 5 Literaturangaben Geometrische Maßtheorie (DE-588)4125258-5 gnd rswk-swf Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2005 Bologna gnd-content Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 s Geometrische Maßtheorie (DE-588)4125258-5 s DE-604 Ambrosio, Luigi 1963- Sonstige (DE-588)133791408 oth Lecture notes of the Unione Matematica Italiana 5 (DE-604)BV022297190 5 http://d-nb.info/987389114/04 Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016541084&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Transport equations and multi-D hyperbolic conservation laws Lecture notes of the Unione Matematica Italiana Geometrische Maßtheorie (DE-588)4125258-5 gnd Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd |
subject_GND | (DE-588)4125258-5 (DE-588)4228136-2 (DE-588)1071861417 |
title | Transport equations and multi-D hyperbolic conservation laws |
title_auth | Transport equations and multi-D hyperbolic conservation laws |
title_exact_search | Transport equations and multi-D hyperbolic conservation laws |
title_exact_search_txtP | Transport equations and multi-D hyperbolic conservation laws |
title_full | Transport equations and multi-D hyperbolic conservation laws Luigi Ambrosio ... Ed. Fabio Ancona ... |
title_fullStr | Transport equations and multi-D hyperbolic conservation laws Luigi Ambrosio ... Ed. Fabio Ancona ... |
title_full_unstemmed | Transport equations and multi-D hyperbolic conservation laws Luigi Ambrosio ... Ed. Fabio Ancona ... |
title_short | Transport equations and multi-D hyperbolic conservation laws |
title_sort | transport equations and multi d hyperbolic conservation laws |
topic | Geometrische Maßtheorie (DE-588)4125258-5 gnd Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd |
topic_facet | Geometrische Maßtheorie Nichtlineare hyperbolische Differentialgleichung Konferenzschrift 2005 Bologna |
url | http://d-nb.info/987389114/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016541084&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022297190 |
work_keys_str_mv | AT ambrosioluigi transportequationsandmultidhyperbolicconservationlaws |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis