Loop spaces, characteristic classes and geometric quantization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2008
|
Ausgabe: | Reprint of the 1993 ed. |
Schriftenreihe: | Modern Birkhäuser classics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 300 S. |
ISBN: | 9780817647308 9780817647315 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023356448 | ||
003 | DE-604 | ||
005 | 20120829 | ||
007 | t | ||
008 | 080623s2008 |||| 00||| eng d | ||
020 | |a 9780817647308 |9 978-0-8176-4730-8 | ||
020 | |a 9780817647315 |9 978-0-8176-4731-5 | ||
035 | |a (OCoLC)181090530 | ||
035 | |a (DE-599)BVBBV023356448 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-703 | ||
050 | 0 | |a QA612.76 | |
082 | 0 | |a 514/.24 |2 22 | |
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a MAT 553f |2 stub | ||
084 | |a MAT 572f |2 stub | ||
100 | 1 | |a Brylinski, Jean-Luc |e Verfasser |4 aut | |
245 | 1 | 0 | |a Loop spaces, characteristic classes and geometric quantization |c Jean-Luc Brylinski |
250 | |a Reprint of the 1993 ed. | ||
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2008 | |
300 | |a XVI, 300 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Modern Birkhäuser classics | |
650 | 4 | |a Characteristic classes | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Loop spaces | |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schleifenraum |0 (DE-588)4179711-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geradenbündel |0 (DE-588)4156783-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |D s |
689 | 0 | 1 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |D s |
689 | 1 | 1 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |D s |
689 | 1 | 2 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Geradenbündel |0 (DE-588)4156783-3 |D s |
689 | 2 | 1 | |a Schleifenraum |0 (DE-588)4179711-5 |D s |
689 | 2 | 2 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539983&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016539983 |
Datensatz im Suchindex
_version_ | 1804137716944732160 |
---|---|
adam_text | Table
of
Contents
Introduction
...........................................................ix
I. Complexes of Sheaves and Their Cohomology
1.
Injective resolutions and sheaf cohomology
.......................1
2.
Spectral sequences and complexes of sheaves
....................13
3.
Čech
cohomology and hypercohomology
.........................24
4.
de Rham
cohomology
...........................................34
5.
Deligne and Cheeger-Simons cohomologies
.......................46
6.
The Leray spectral sequence
....................................54
II. Line Bundles and Geometric Quantization
1.
Classification of line bundles
....................................62
2.
Line bundles with connection
...................................70
3.
Central extension of the Lie algebra of hamiltonian vector fields
. 85
4.
Central extension of a group of symplectic diffeomorphisms
.....94
5.
Generalizations of Kostant s central extension
..................103
III.
Kahler
Geometry of the Space of Knots
1.
The space of singular knots
....................................110
2.
Topology of the space of singular knots
........................115
3.
Tautological principal bundles
.................................121
4.
The complex structure
........................................126
5.
The symplectic structure
.......................................135
6.
The riemannian structure
......................................144
7.
The group of unimodular diffeomorphisms
......................152
IV. Degree
3
Cohomology: The Dixmier-Douady Theory
1.
Infinite-dimensional algebra bundles
............................158
2.
Connections and curvature
.....................................168
3.
Examples of
projective
Hubert space bundles
...................175
V. Degree
3
Cohomology: Sheaves of Groupoids
1.
Descent theory for sheaves
.....................................182
2.
Sheaves of groupoids and
gerbes
...............................191
3.
Differential geometry of
gerbes
................................205
4.
The canonical sheaf of groupoids on a compact Lie group
......219
5.
Examples of sheaves of groupoids
.............................228
VT. Line
Bundles over Loop Spaces
1.
Holonomy of line bundles
.....................................234
2.
Construction of the line bundle
................................236
3.
The line bundle on the space of knots
.........................243
4.
Central extension of loop groups
..............................247
5.
Relation with smooth Deligne cohomology
.....................250
6.
Parallel transport for sheaves of groupoids
.....................254
VII.
The Dirac
Monopole
1.
Dirac s construction
...........................................257
2.
The sheaf of groupoids over S3
................................264
3.
Obstruction to
5í7(2)-equivariance
............................268
Bibliography
.........................................................278
List of Notations
.....................................................286
Index
................................................................295
|
adam_txt |
Table
of
Contents
Introduction
.ix
I. Complexes of Sheaves and Their Cohomology
1.
Injective resolutions and sheaf cohomology
.1
2.
Spectral sequences and complexes of sheaves
.13
3.
Čech
cohomology and hypercohomology
.24
4.
de Rham
cohomology
.34
5.
Deligne and Cheeger-Simons cohomologies
.46
6.
The Leray spectral sequence
.54
II. Line Bundles and Geometric Quantization
1.
Classification of line bundles
.62
2.
Line bundles with connection
.70
3.
Central extension of the Lie algebra of hamiltonian vector fields
. 85
4.
Central extension of a group of symplectic diffeomorphisms
.94
5.
Generalizations of Kostant's central extension
.103
III.
Kahler
Geometry of the Space of Knots
1.
The space of singular knots
.110
2.
Topology of the space of singular knots
.115
3.
Tautological principal bundles
.121
4.
The complex structure
.126
5.
The symplectic structure
.135
6.
The riemannian structure
.144
7.
The group of unimodular diffeomorphisms
.152
IV. Degree
3
Cohomology: The Dixmier-Douady Theory
1.
Infinite-dimensional algebra bundles
.158
2.
Connections and curvature
.168
3.
Examples of
projective
Hubert space bundles
.175
V. Degree
3
Cohomology: Sheaves of Groupoids
1.
Descent theory for sheaves
.182
2.
Sheaves of groupoids and
gerbes
.191
3.
Differential geometry of
gerbes
.205
4.
The canonical sheaf of groupoids on a compact Lie group
.219
5.
Examples of sheaves of groupoids
.228
VT. Line
Bundles over Loop Spaces
1.
Holonomy of line bundles
.234
2.
Construction of the line bundle
.236
3.
The line bundle on the space of knots
.243
4.
Central extension of loop groups
.247
5.
Relation with smooth Deligne cohomology
.250
6.
Parallel transport for sheaves of groupoids
.254
VII.
The Dirac
Monopole
1.
Dirac's construction
.257
2.
The sheaf of groupoids over S3
.264
3.
Obstruction to
5í7(2)-equivariance
.268
Bibliography
.278
List of Notations
.286
Index
.295 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Brylinski, Jean-Luc |
author_facet | Brylinski, Jean-Luc |
author_role | aut |
author_sort | Brylinski, Jean-Luc |
author_variant | j l b jlb |
building | Verbundindex |
bvnumber | BV023356448 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.76 |
callnumber-search | QA612.76 |
callnumber-sort | QA 3612.76 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 320 |
classification_tum | MAT 553f MAT 572f |
ctrlnum | (OCoLC)181090530 (DE-599)BVBBV023356448 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Reprint of the 1993 ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02331nam a2200601 c 4500</leader><controlfield tag="001">BV023356448</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120829 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080623s2008 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647308</subfield><subfield code="9">978-0-8176-4730-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647315</subfield><subfield code="9">978-0-8176-4731-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181090530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023356448</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.76</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 553f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 572f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brylinski, Jean-Luc</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Loop spaces, characteristic classes and geometric quantization</subfield><subfield code="c">Jean-Luc Brylinski</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprint of the 1993 ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 300 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser classics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characteristic classes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loop spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schleifenraum</subfield><subfield code="0">(DE-588)4179711-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geradenbündel</subfield><subfield code="0">(DE-588)4156783-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Geradenbündel</subfield><subfield code="0">(DE-588)4156783-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Schleifenraum</subfield><subfield code="0">(DE-588)4179711-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539983&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016539983</subfield></datafield></record></collection> |
id | DE-604.BV023356448 |
illustrated | Not Illustrated |
index_date | 2024-07-02T21:07:17Z |
indexdate | 2024-07-09T21:16:43Z |
institution | BVB |
isbn | 9780817647308 9780817647315 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016539983 |
oclc_num | 181090530 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 |
owner_facet | DE-355 DE-BY-UBR DE-703 |
physical | XVI, 300 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser |
record_format | marc |
series2 | Modern Birkhäuser classics |
spelling | Brylinski, Jean-Luc Verfasser aut Loop spaces, characteristic classes and geometric quantization Jean-Luc Brylinski Reprint of the 1993 ed. Boston [u.a.] Birkhäuser 2008 XVI, 300 S. txt rdacontent n rdamedia nc rdacarrier Modern Birkhäuser classics Characteristic classes Homology theory Loop spaces Kohomologie (DE-588)4031700-6 gnd rswk-swf Charakteristische Klasse (DE-588)4194231-0 gnd rswk-swf Schleifenraum (DE-588)4179711-5 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Geradenbündel (DE-588)4156783-3 gnd rswk-swf Garbe Mathematik (DE-588)4019261-1 gnd rswk-swf Charakteristische Klasse (DE-588)4194231-0 s Garbe Mathematik (DE-588)4019261-1 s DE-604 Kohomologie (DE-588)4031700-6 s Geradenbündel (DE-588)4156783-3 s Schleifenraum (DE-588)4179711-5 s Geometrische Quantisierung (DE-588)4156720-1 s Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539983&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Brylinski, Jean-Luc Loop spaces, characteristic classes and geometric quantization Characteristic classes Homology theory Loop spaces Kohomologie (DE-588)4031700-6 gnd Charakteristische Klasse (DE-588)4194231-0 gnd Schleifenraum (DE-588)4179711-5 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Geradenbündel (DE-588)4156783-3 gnd Garbe Mathematik (DE-588)4019261-1 gnd |
subject_GND | (DE-588)4031700-6 (DE-588)4194231-0 (DE-588)4179711-5 (DE-588)4156720-1 (DE-588)4156783-3 (DE-588)4019261-1 |
title | Loop spaces, characteristic classes and geometric quantization |
title_auth | Loop spaces, characteristic classes and geometric quantization |
title_exact_search | Loop spaces, characteristic classes and geometric quantization |
title_exact_search_txtP | Loop spaces, characteristic classes and geometric quantization |
title_full | Loop spaces, characteristic classes and geometric quantization Jean-Luc Brylinski |
title_fullStr | Loop spaces, characteristic classes and geometric quantization Jean-Luc Brylinski |
title_full_unstemmed | Loop spaces, characteristic classes and geometric quantization Jean-Luc Brylinski |
title_short | Loop spaces, characteristic classes and geometric quantization |
title_sort | loop spaces characteristic classes and geometric quantization |
topic | Characteristic classes Homology theory Loop spaces Kohomologie (DE-588)4031700-6 gnd Charakteristische Klasse (DE-588)4194231-0 gnd Schleifenraum (DE-588)4179711-5 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Geradenbündel (DE-588)4156783-3 gnd Garbe Mathematik (DE-588)4019261-1 gnd |
topic_facet | Characteristic classes Homology theory Loop spaces Kohomologie Charakteristische Klasse Schleifenraum Geometrische Quantisierung Geradenbündel Garbe Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539983&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT brylinskijeanluc loopspacescharacteristicclassesandgeometricquantization |