The mathematics of Minkowski space time: with an introduction to commutative hypercomplex numbers
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Basel ; Boston, Mass. ; Berlin
Birkhäuser Verlag
2008
|
Schriftenreihe: | Frontiers in Mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturverzeichnis Seiten 245 - 250 |
Beschreibung: | XVIII, 255 Seiten graph. Darst. 24 cm |
ISBN: | 9783764386139 3764386134 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023356316 | ||
003 | DE-604 | ||
005 | 20210511 | ||
007 | t| | ||
008 | 080623s2008 sz d||| |||| 00||| eng d | ||
015 | |a 07,N38,0749 |2 dnb | ||
015 | |a 08,A21,0683 |2 dnb | ||
016 | 7 | |a 985454393 |2 DE-101 | |
020 | |a 9783764386139 |c kart. : EUR 42.69, sfr 65.00 (freier Pr.) |9 978-3-7643-8613-9 | ||
020 | |a 3764386134 |c kart. : EUR 42.69, sfr 65.00 (freier Pr.) |9 3-7643-8613-4 | ||
024 | 3 | |a 9783764386139 | |
028 | 5 | 2 | |a 12100910 |
035 | |a (OCoLC)187294662 | ||
035 | |a (DE-599)DNB985454393 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH |a gw |c XA-DE | ||
049 | |a DE-355 |a DE-703 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA689 | |
082 | 0 | |a 516.374 |2 22/ger | |
082 | 0 | |a 516.374 |2 22 | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
084 | |a 510 |2 sdnb | ||
245 | 1 | 0 | |a The mathematics of Minkowski space time |b with an introduction to commutative hypercomplex numbers |c Francesco Catoni [und 5 andere] |
264 | 1 | |a Basel ; Boston, Mass. ; Berlin |b Birkhäuser Verlag |c 2008 | |
300 | |a XVIII, 255 Seiten |b graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Frontiers in Mathematics | |
500 | |a Literaturverzeichnis Seiten 245 - 250 | ||
650 | 4 | |a Espaces généralisés | |
650 | 4 | |a Relativité restreinte (Physique) | |
650 | 4 | |a Generalized spaces | |
650 | 4 | |a Special relativity (Physics) | |
650 | 0 | 7 | |a Raum-Zeit |0 (DE-588)4302626-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperkomplexe Zahl |0 (DE-588)4215212-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperkomplexe Zahl |0 (DE-588)4215212-4 |D s |
689 | 0 | 1 | |a Raum-Zeit |0 (DE-588)4302626-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Catoni, Francesco |e Sonstige |4 oth | |
856 | 4 | 2 | |u http://d-nb.info/985454393/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539851&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016539851 |
Datensatz im Suchindex
_version_ | 1826921926232113152 |
---|---|
adam_text |
Contents
Preface
vii
1
Introduction
1
2
N-Dimensional
Commutative Hypercomplex
Numbers
5
2.1
N-Dimensional Hypercomplex
Numbers.
5
2.1.1
Equality and Sum
. 5
2.1.2
The Product Operation
. 6
2.1.3
Characteristic Matrix and Characteristic Determinant
. 7
2.1.4
Invariant Quantities for Hypercomplex Numbers
. 9
2.1.5
The Division Operation
. 10
2.1.6
Characteristic Equation and Principal Conjugations
. 10
2.1.7
Decomposable Systems
. 12
2.2
The General Two-Dimensional System
. 12
2.2.1
Canonical Two-Dimensional Systems
. 16
2.2.2
The Two-Dimensional Hyperbolic System
. 16
3
The Geometries Generated by Hypercomplex Numbers
19
3.1
Linear Transformations and Geometries
. 19
3.1.1
The Continuous Lie Groups
. 19
3.1.2
Klein's
Erlanger
Programm. 19
3.2
Groups Associated with Hypercomplex Numbers
. 20
3.2.1
Geometries Generated by Complex and Hyperbolic
Numbers
. 23
3.3
Conclusions
. 24
4
Trigonometry in the Minkowski Plane
27
4.1
Geometrical Representation of Hyperbolic Numbers
. 28
4.1.1
Hyperbolic Exponential Function and Hyperbolic Polar
Transformation
. 28
4.1.2
Hyperbolic Rotations as
Lorentz
Transformations of Special
Relativity
. 30
4.2
Basics of Hyperbolic Trigonometry
. 31
4.2.1
Complex Numbers and Euclidean Trigonometry
. 31
4.2.2
Hyperbolic Rotation Invariants in Pseudo-Euclidean Plane
Geometry
. 32
4.2.3
Fjelstad's Extension of Hyperbolic Trigonometric Functions
35
4.3
Geometry in the Pseudo-Euclidean Cartesian Plane
. 37
Contents
4.4 Goniometry
and Trigonometry in the Pseudo-Euclidean
Plane . 40
4.4.1
Analytical Definitions of Hyperbolic Trigonometric
Functions
. 41
4.4.2
Trigonometric Laws in the Pseudo-Euclidean Plane
. 42
4.4.3
The Triangle's Angles Sum
. 43
4.5
Theorems on Equilateral Hyperbolas in the Pseudo-Euclidean
Plane
. 44
4.6
Examples of Triangle Solutions in the Minkowski Plane
. 52
Uniform and Accelerated Motions in the Minkowski Space-Time
(Twin Paradox)
57
5.1
Inerţial
Motions
. 58
5.2
Inerţial
and Uniformly Accelerated Motions
. 61
5.3
Non-uniformly Accelerated Motions
. 69
5.3.1
Prenet's Formulas in the Minkowski Space-Time
. 70
5.3.2
Proper Time in Non-Uniformly Accelerated Motions
. 70
General Two-Dimensional Hypercomplex Numbers
73
6.1
Geometrical Representation
. 73
6.2
Geometry and Trigonometry in Two-Dimensional Algebras
. 76
6.2.1
The "Circle" for Three Points
. 76
6.2.2
Hero's Formula and Pythagoras' Theorem
. 77
6.2.3
Properties of "Orthogonal" Lines in General Algebras
. 79
6.3
Some Properties of Fundamental Conic Sections
. 79
6.3.1
"Incircles" and "Excircles" of a Triangle
. 79
6.3.2
The Tangent Lines to the Fundamental Conic Section
. 82
6.4
Numerical Examples
. 83
Functions of a Hyperbolic Variable
87
7.1
Some Remarks on Functions of a Complex Variable
. 87
7.2
Functions of Hypercomplex Variables
. 89
7.2.1
Generalized Cauchy-Riemann Conditions
. 89
7.2.2
The Principal Transformation
. 91
7.2.3
Functions of a Hypercomplex Variable as
Infinite-Dimensional Lie Groups
. 92
7.3
The Functions of a Hyperbolic Variable
. 93
7.3.1
Cauchy-Riemann Conditions for General Two-Dimensional
Systems
. 93
7.3.2
The Derivative of Functions of a Canonical Hyperbolic
Variable
. 94
7.3.3
The Properties of H-Analytic Functions
. 95
7.3.4
The Analytic Functions of Decomposable Systems
. 95
7.4
The Elementary Functions of a Canonical Hyperbolic Variable
. . 96
Contents xiii
7.5 H-Conformal
Mappings .
97
7.5.1 H-Conformal
Mappings by Means of Elementary Functions
99
7.5.2
Hyperbolic Linear-Fractional Mapping
. 109
7.6
Commutative Hypercomplex Systems with Three Unities
. 114
7.6.1
Some Properties of the Three-Units Separable Systems
. . . 115
8
Hyperbolic Variables on
Lorentz
Surfaces
119
8.1
Introduction
. 119
8.2
Gauss:
Conformai
Mapping of Surfaces
. 121
8.2.1
Mapping of a Spherical Surface on a Plane
. 123
8.2.2
Conclusions
. 124
8.3
Extension of Gauss Theorem:
Conformai
Mapping of
Lorentz
Surfaces
. 125
8.4
Beltrami: Complex Variables on a Surface
. 126
8.4.1
Beltrami's Equation
. 127
8.5
Beltrami's Integration of Geodesic Equations
. 130
8.5.1
Differential Parameter and Geodesic Equations
. 130
8.6
Extension of Beltrami's Equation to Non-Definite Differential
Forms
. 133
9
Constant Curvature
Lorentz
Surfaces
137
9.1
Introduction
. 137
9.2
Constant Curvature Riemann Surfaces
. 140
9.2.1
Rotation Surfaces
. 140
9.2.2
Positive Constant Curvature Surface
. 143
9.2.3
Negative Constant Curvature Surface
. 148
9.2.4
Motions
. 149
9.2.5
Two-Sheets
Hyperboloid
in a Semi-Riemannian Space
. . . 151
9.3
Constant Curvature
Lorentz
Surfaces
. 153
9.3.1
Line Element
. 153
9.3.2
Isometric Forms of the Line Elements
. 153
9.3.3
Equations of the Geodesies
. 154
9.3.4
Motions
. 156
9.4
Geodesies and Geodesic Distances on Riemann and
Lorentz
Surfaces
. 157
9.4.1
The Equation of the Geodesic
. 157
9.4.2
Geodesic Distance
. 159
10
Generalization of Two-Dimensional Special Relativity
(Hyperbolic Transformations and the Equivalence Principle)
161
10.1
The Physical Meaning of Transformations by Hyperbolic
Functions
. 161
xiv Contents
10.2
Physical
Interpretation
of Geodesies on Riemann and
Lorentz
Surfaces with Positive Constant Curvature
. 164
10.2.1
The Sphere
. 165
10.2.2
The
Lorentz
Surfaces
. 165
10.3
Einstein's Way to General Relativity
. 166
10.4
Conclusions
. 167
Appendices
A Commutative Segre's Quaternions
169
A.I Hypercomplex Systems with Four Units
. 170
A.I.I Historical Introduction of Segre's Quaternions
. 171
A.
1.2
Generalized Segre's Quaternions
. 171
A.2 Algebraic Properties
. 172
A.2.1 Quaternions as a Composed System
. 176
A.3 Functions of a Quaternion Vaxiable
. 177
A.3.1 Holomorphic Functions
. 178
A.
3.2
Algebraic Reconstruction of Quaternion Functions Given a
Component
. 182
A.
4
Mapping by Means of Quaternion Functions
. 183
A.4.1 The "Polar" Representation of Elliptic and Hyperbolic
Quaternions
. 183
A.4.2
Conformai
Mapping
. 185
A.4.3 Some Considerations About Scalar and Vector Potentials
. 186
A.
5
Elementary Functions of Quaternions
. 187
A.
6
Elliptic-Hyperbolic Quaternions
. 191
A.
6.1
Generalized Cauchy-Riemann Conditions
. 193
A.6.2 Elementary Functions
. 193
A.
7
Elliptic-Parabolic Generalized Segre's Quaternions
. 194
A.7.1 Generalized Cauchy-Riemann conditions
. 195
A.7.2 Elementary Functions
. 196
В
Constant Curvature Segre's Quaternion Spaces
199
B.I Quaternion Differential Geometry
. 200
B.2 Euler's Equations for Geodesies
. 201
B.3 Constant Curvature Quaternion Spaces
. 203
B.3.1 Line Element for Positive Constant Curvature
. 204
B.4 Geodesic Equations in Quaternion Space
. 206
B.4.1 Positive Constant Curvature Quaternion Space
. 210
С
Matrix Formalization for Commutative Numbers
213
C.I Mathematical Operations
. 213
C.I.I Equality, Sum, and Scalar Multiplication
. 214
C.1.2 Product and Related Operations
. 215
Contents xv
С.
1.3 Division
Between Hypercomplex Numbers
. 218
С.
2
Two-dimensional Hypercomplex Numbers
. 221
C.3 Properties of the Characteristic Matrix M.
. 222
C.3.1 Algebraic Properties
. 223
C.3.2 Spectral Properties
. 223
C.3.3 More About Divisors of Zero
. 227
C.3.
4
Modulus of a Hypercomplex Number
. 227
C.3.
5
Conjugations of a Hypercomplex Number
. 227
C.4 Functions of a Hypercomplex Variable
. 228
C.4.1 Analytic Continuation
. 228
C.4.
2
Properties of Hypercomplex Functions
. 229
C.5 Functions of a Two-dimensional Hypercomplex Variable
. 230
C.5.1 Function of
2x2
Matrices
. 231
C.5.2 The Derivative of the Functions of a Real Variable
. 233
C.6 Derivatives of a Hypercomplex Function
. 236
C.6.1 Derivative with Respect to a Hypercomplex Variable
. 236
C.6.
2
Partial Derivatives
. 237
C.6.3 Components of the Derivative Operator
. 238
C.6.
4
Derivative with Respect to the Conjugated Variables
. 239
C.7 Characteristic Differential Equation
. 239
С
7.1
Characteristic Equation for Two-dimensional Numbers
. 241
C.8 Equivalence Between the Formalizations of Hypercomplex
Numbers
. 242
Bibliography
245
Index
251 |
adam_txt |
Contents
Preface
vii
1
Introduction
1
2
N-Dimensional
Commutative Hypercomplex
Numbers
5
2.1
N-Dimensional Hypercomplex
Numbers.
5
2.1.1
Equality and Sum
. 5
2.1.2
The Product Operation
. 6
2.1.3
Characteristic Matrix and Characteristic Determinant
. 7
2.1.4
Invariant Quantities for Hypercomplex Numbers
. 9
2.1.5
The Division Operation
. 10
2.1.6
Characteristic Equation and Principal Conjugations
. 10
2.1.7
Decomposable Systems
. 12
2.2
The General Two-Dimensional System
. 12
2.2.1
Canonical Two-Dimensional Systems
. 16
2.2.2
The Two-Dimensional Hyperbolic System
. 16
3
The Geometries Generated by Hypercomplex Numbers
19
3.1
Linear Transformations and Geometries
. 19
3.1.1
The Continuous Lie Groups
. 19
3.1.2
Klein's
Erlanger
Programm. 19
3.2
Groups Associated with Hypercomplex Numbers
. 20
3.2.1
Geometries Generated by Complex and Hyperbolic
Numbers
. 23
3.3
Conclusions
. 24
4
Trigonometry in the Minkowski Plane
27
4.1
Geometrical Representation of Hyperbolic Numbers
. 28
4.1.1
Hyperbolic Exponential Function and Hyperbolic Polar
Transformation
. 28
4.1.2
Hyperbolic Rotations as
Lorentz
Transformations of Special
Relativity
. 30
4.2
Basics of Hyperbolic Trigonometry
. 31
4.2.1
Complex Numbers and Euclidean Trigonometry
. 31
4.2.2
Hyperbolic Rotation Invariants in Pseudo-Euclidean Plane
Geometry
. 32
4.2.3
Fjelstad's Extension of Hyperbolic Trigonometric Functions
35
4.3
Geometry in the Pseudo-Euclidean Cartesian Plane
. 37
Contents
4.4 Goniometry
and Trigonometry in the Pseudo-Euclidean
Plane . 40
4.4.1
Analytical Definitions of Hyperbolic Trigonometric
Functions
. 41
4.4.2
Trigonometric Laws in the Pseudo-Euclidean Plane
. 42
4.4.3
The Triangle's Angles Sum
. 43
4.5
Theorems on Equilateral Hyperbolas in the Pseudo-Euclidean
Plane
. 44
4.6
Examples of Triangle Solutions in the Minkowski Plane
. 52
Uniform and Accelerated Motions in the Minkowski Space-Time
(Twin Paradox)
57
5.1
Inerţial
Motions
. 58
5.2
Inerţial
and Uniformly Accelerated Motions
. 61
5.3
Non-uniformly Accelerated Motions
. 69
5.3.1
Prenet's Formulas in the Minkowski Space-Time
. 70
5.3.2
Proper Time in Non-Uniformly Accelerated Motions
. 70
General Two-Dimensional Hypercomplex Numbers
73
6.1
Geometrical Representation
. 73
6.2
Geometry and Trigonometry in Two-Dimensional Algebras
. 76
6.2.1
The "Circle" for Three Points
. 76
6.2.2
Hero's Formula and Pythagoras' Theorem
. 77
6.2.3
Properties of "Orthogonal" Lines in General Algebras
. 79
6.3
Some Properties of Fundamental Conic Sections
. 79
6.3.1
"Incircles" and "Excircles" of a Triangle
. 79
6.3.2
The Tangent Lines to the Fundamental Conic Section
. 82
6.4
Numerical Examples
. 83
Functions of a Hyperbolic Variable
87
7.1
Some Remarks on Functions of a Complex Variable
. 87
7.2
Functions of Hypercomplex Variables
. 89
7.2.1
Generalized Cauchy-Riemann Conditions
. 89
7.2.2
The Principal Transformation
. 91
7.2.3
Functions of a Hypercomplex Variable as
Infinite-Dimensional Lie Groups
. 92
7.3
The Functions of a Hyperbolic Variable
. 93
7.3.1
Cauchy-Riemann Conditions for General Two-Dimensional
Systems
. 93
7.3.2
The Derivative of Functions of a Canonical Hyperbolic
Variable
. 94
7.3.3
The Properties of H-Analytic Functions
. 95
7.3.4
The Analytic Functions of Decomposable Systems
. 95
7.4
The Elementary Functions of a Canonical Hyperbolic Variable
. . 96
Contents xiii
7.5 H-Conformal
Mappings .
97
7.5.1 H-Conformal
Mappings by Means of Elementary Functions
99
7.5.2
Hyperbolic Linear-Fractional Mapping
. 109
7.6
Commutative Hypercomplex Systems with Three Unities
. 114
7.6.1
Some Properties of the Three-Units Separable Systems
. . . 115
8
Hyperbolic Variables on
Lorentz
Surfaces
119
8.1
Introduction
. 119
8.2
Gauss:
Conformai
Mapping of Surfaces
. 121
8.2.1
Mapping of a Spherical Surface on a Plane
. 123
8.2.2
Conclusions
. 124
8.3
Extension of Gauss Theorem:
Conformai
Mapping of
Lorentz
Surfaces
. 125
8.4
Beltrami: Complex Variables on a Surface
. 126
8.4.1
Beltrami's Equation
. 127
8.5
Beltrami's Integration of Geodesic Equations
. 130
8.5.1
Differential Parameter and Geodesic Equations
. 130
8.6
Extension of Beltrami's Equation to Non-Definite Differential
Forms
. 133
9
Constant Curvature
Lorentz
Surfaces
137
9.1
Introduction
. 137
9.2
Constant Curvature Riemann Surfaces
. 140
9.2.1
Rotation Surfaces
. 140
9.2.2
Positive Constant Curvature Surface
. 143
9.2.3
Negative Constant Curvature Surface
. 148
9.2.4
Motions
. 149
9.2.5
Two-Sheets
Hyperboloid
in a Semi-Riemannian Space
. . . 151
9.3
Constant Curvature
Lorentz
Surfaces
. 153
9.3.1
Line Element
. 153
9.3.2
Isometric Forms of the Line Elements
. 153
9.3.3
Equations of the Geodesies
. 154
9.3.4
Motions
. 156
9.4
Geodesies and Geodesic Distances on Riemann and
Lorentz
Surfaces
. 157
9.4.1
The Equation of the Geodesic
. 157
9.4.2
Geodesic Distance
. 159
10
Generalization of Two-Dimensional Special Relativity
(Hyperbolic Transformations and the Equivalence Principle)
161
10.1
The Physical Meaning of Transformations by Hyperbolic
Functions
. 161
xiv Contents
10.2
Physical
Interpretation
of Geodesies on Riemann and
Lorentz
Surfaces with Positive Constant Curvature
. 164
10.2.1
The Sphere
. 165
10.2.2
The
Lorentz
Surfaces
. 165
10.3
Einstein's Way to General Relativity
. 166
10.4
Conclusions
. 167
Appendices
A Commutative Segre's Quaternions
169
A.I Hypercomplex Systems with Four Units
. 170
A.I.I Historical Introduction of Segre's Quaternions
. 171
A.
1.2
Generalized Segre's Quaternions
. 171
A.2 Algebraic Properties
. 172
A.2.1 Quaternions as a Composed System
. 176
A.3 Functions of a Quaternion Vaxiable
. 177
A.3.1 Holomorphic Functions
. 178
A.
3.2
Algebraic Reconstruction of Quaternion Functions Given a
Component
. 182
A.
4
Mapping by Means of Quaternion Functions
. 183
A.4.1 The "Polar" Representation of Elliptic and Hyperbolic
Quaternions
. 183
A.4.2
Conformai
Mapping
. 185
A.4.3 Some Considerations About Scalar and Vector Potentials
. 186
A.
5
Elementary Functions of Quaternions
. 187
A.
6
Elliptic-Hyperbolic Quaternions
. 191
A.
6.1
Generalized Cauchy-Riemann Conditions
. 193
A.6.2 Elementary Functions
. 193
A.
7
Elliptic-Parabolic Generalized Segre's Quaternions
. 194
A.7.1 Generalized Cauchy-Riemann conditions
. 195
A.7.2 Elementary Functions
. 196
В
Constant Curvature Segre's Quaternion Spaces
199
B.I Quaternion Differential Geometry
. 200
B.2 Euler's Equations for Geodesies
. 201
B.3 Constant Curvature Quaternion Spaces
. 203
B.3.1 Line Element for Positive Constant Curvature
. 204
B.4 Geodesic Equations in Quaternion Space
. 206
B.4.1 Positive Constant Curvature Quaternion Space
. 210
С
Matrix Formalization for Commutative Numbers
213
C.I Mathematical Operations
. 213
C.I.I Equality, Sum, and Scalar Multiplication
. 214
C.1.2 Product and Related Operations
. 215
Contents xv
С.
1.3 Division
Between Hypercomplex Numbers
. 218
С.
2
Two-dimensional Hypercomplex Numbers
. 221
C.3 Properties of the Characteristic Matrix M.
. 222
C.3.1 Algebraic Properties
. 223
C.3.2 Spectral Properties
. 223
C.3.3 More About Divisors of Zero
. 227
C.3.
4
Modulus of a Hypercomplex Number
. 227
C.3.
5
Conjugations of a Hypercomplex Number
. 227
C.4 Functions of a Hypercomplex Variable
. 228
C.4.1 Analytic Continuation
. 228
C.4.
2
Properties of Hypercomplex Functions
. 229
C.5 Functions of a Two-dimensional Hypercomplex Variable
. 230
C.5.1 Function of
2x2
Matrices
. 231
C.5.2 The Derivative of the Functions of a Real Variable
. 233
C.6 Derivatives of a Hypercomplex Function
. 236
C.6.1 Derivative with Respect to a Hypercomplex Variable
. 236
C.6.
2
Partial Derivatives
. 237
C.6.3 Components of the Derivative Operator
. 238
C.6.
4
Derivative with Respect to the Conjugated Variables
. 239
C.7 Characteristic Differential Equation
. 239
С
7.1
Characteristic Equation for Two-dimensional Numbers
. 241
C.8 Equivalence Between the Formalizations of Hypercomplex
Numbers
. 242
Bibliography
245
Index
251 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023356316 |
callnumber-first | Q - Science |
callnumber-label | QA689 |
callnumber-raw | QA689 |
callnumber-search | QA689 |
callnumber-sort | QA 3689 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 750 SK 950 SK 260 |
ctrlnum | (OCoLC)187294662 (DE-599)DNB985454393 |
dewey-full | 516.374 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.374 |
dewey-search | 516.374 |
dewey-sort | 3516.374 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023356316</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210511</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080623s2008 sz d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N38,0749</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A21,0683</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985454393</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764386139</subfield><subfield code="c">kart. : EUR 42.69, sfr 65.00 (freier Pr.)</subfield><subfield code="9">978-3-7643-8613-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764386134</subfield><subfield code="c">kart. : EUR 42.69, sfr 65.00 (freier Pr.)</subfield><subfield code="9">3-7643-8613-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764386139</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12100910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)187294662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985454393</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA689</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.374</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.374</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mathematics of Minkowski space time</subfield><subfield code="b">with an introduction to commutative hypercomplex numbers</subfield><subfield code="c">Francesco Catoni [und 5 andere]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel ; Boston, Mass. ; Berlin</subfield><subfield code="b">Birkhäuser Verlag</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 255 Seiten</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Frontiers in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seiten 245 - 250</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces généralisés</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativité restreinte (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special relativity (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raum-Zeit</subfield><subfield code="0">(DE-588)4302626-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperkomplexe Zahl</subfield><subfield code="0">(DE-588)4215212-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperkomplexe Zahl</subfield><subfield code="0">(DE-588)4215212-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Raum-Zeit</subfield><subfield code="0">(DE-588)4302626-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Catoni, Francesco</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://d-nb.info/985454393/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539851&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016539851</subfield></datafield></record></collection> |
id | DE-604.BV023356316 |
illustrated | Illustrated |
index_date | 2024-07-02T21:07:12Z |
indexdate | 2025-03-18T09:01:59Z |
institution | BVB |
isbn | 9783764386139 3764386134 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016539851 |
oclc_num | 187294662 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-11 DE-188 |
physical | XVIII, 255 Seiten graph. Darst. 24 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser Verlag |
record_format | marc |
series2 | Frontiers in Mathematics |
spelling | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers Francesco Catoni [und 5 andere] Basel ; Boston, Mass. ; Berlin Birkhäuser Verlag 2008 XVIII, 255 Seiten graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Frontiers in Mathematics Literaturverzeichnis Seiten 245 - 250 Espaces généralisés Relativité restreinte (Physique) Generalized spaces Special relativity (Physics) Raum-Zeit (DE-588)4302626-6 gnd rswk-swf Hyperkomplexe Zahl (DE-588)4215212-4 gnd rswk-swf Hyperkomplexe Zahl (DE-588)4215212-4 s Raum-Zeit (DE-588)4302626-6 s DE-604 Catoni, Francesco Sonstige oth http://d-nb.info/985454393/04 Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539851&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers Espaces généralisés Relativité restreinte (Physique) Generalized spaces Special relativity (Physics) Raum-Zeit (DE-588)4302626-6 gnd Hyperkomplexe Zahl (DE-588)4215212-4 gnd |
subject_GND | (DE-588)4302626-6 (DE-588)4215212-4 |
title | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers |
title_auth | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers |
title_exact_search | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers |
title_exact_search_txtP | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers |
title_full | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers Francesco Catoni [und 5 andere] |
title_fullStr | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers Francesco Catoni [und 5 andere] |
title_full_unstemmed | The mathematics of Minkowski space time with an introduction to commutative hypercomplex numbers Francesco Catoni [und 5 andere] |
title_short | The mathematics of Minkowski space time |
title_sort | the mathematics of minkowski space time with an introduction to commutative hypercomplex numbers |
title_sub | with an introduction to commutative hypercomplex numbers |
topic | Espaces généralisés Relativité restreinte (Physique) Generalized spaces Special relativity (Physics) Raum-Zeit (DE-588)4302626-6 gnd Hyperkomplexe Zahl (DE-588)4215212-4 gnd |
topic_facet | Espaces généralisés Relativité restreinte (Physique) Generalized spaces Special relativity (Physics) Raum-Zeit Hyperkomplexe Zahl |
url | http://d-nb.info/985454393/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539851&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT catonifrancesco themathematicsofminkowskispacetimewithanintroductiontocommutativehypercomplexnumbers |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis