Einstein manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Ausgabe: | reprint of the 1987 ed. |
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
Folge 3 ; 10 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 516 S. graph. Darst. |
ISBN: | 9783540741206 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023356279 | ||
003 | DE-604 | ||
005 | 20090430 | ||
007 | t | ||
008 | 080623s2008 d||| |||| 00||| eng d | ||
020 | |a 9783540741206 |9 978-3-540-74120-6 | ||
035 | |a (OCoLC)494579656 | ||
035 | |a (DE-599)BVBBV023356279 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 | ||
082 | 0 | |a 530.11 |2 21/a | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Besse, Arthur L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Einstein manifolds |c Arthur L. Besse |
250 | |a reprint of the 1987 ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XII, 516 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete : Folge 3 |v 10 | |
490 | 0 | |a Classics in mathematics | |
650 | 7 | |a Einstein, Variétés d' |2 ram | |
650 | 7 | |a Relativité (physique) |2 ram | |
650 | 0 | 7 | |a Relativitätstheorie |0 (DE-588)4049363-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Einstein-Mannigfaltigkeit |0 (DE-588)4113398-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Einstein-Mannigfaltigkeit |0 (DE-588)4113398-5 |D s |
689 | 0 | 1 | |a Relativitätstheorie |0 (DE-588)4049363-5 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v Folge 3 ; 10 |w (DE-604)BV000899194 |9 10 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539814&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016539814 |
Datensatz im Suchindex
_version_ | 1804137716660568064 |
---|---|
adam_text | Table
of
Contents
Chapter
0.
Introduction
........................................... 1
A.
Brief Definitions and Motivation
................................ 1
B. Why Write a Book on Einstein Manifolds?
........................ 5
C. Existence
.................................................... 6
D. Examples
1.
Algebraic Examples
......................................... 6
2.
Examples from Analysis
..................................... 7
3.
Sporadic Examples
......................................... 8
E. Uniqueness and Moduli
....................................... 9
F. A
Brief Survey of Chapter Contents
.............................. 10
G.
Leitfaden.................................................... 14
Η.
Getting the Feel of
Ricci
Curvature
.............................. 15
I. The Main Problems Today
..................................... 18
Chapter
1.
Basic Material
......................................... 20
A. Introduction
................................................. 20
B. Linear Connections
........................................... 22
С
Riemannian and Pseudo-Riemannian Manifolds
................... 29
D. Riemannian Manifolds as Metric Spaces
.......................... 35
E. Riemannian Immersions, Isometries and Killing Vector Fields
....... 37
F. Einstein Manifolds
............................................ 41
G. Irreducible Decompositions of Algebraic Curvature Tensors
......... 45
H. Applications to Riemannian Geometry
........................... 48
I. Laplacians and
Weitzenböck
Formulas
........................... 52
J.
Conformai
Changes of Riemannian Metrics
....................... 58
K. First Variations of Curvature Tensor Fields
....................... 62
Chapter
2.
Basic Material (Continued):
Kahler
Manifolds
.............. 66
0.
Introduction
................................................. 66
A. Almost Complex and Complex Manifolds
........................ 66
B. Hermitian and
Kahler
Metrics
.................................. 69
С
Ricci
Tensor and
Ricci Form
................................... 73
D. Holomorphic Sectional Curvature
............................... 75
E. Chern Classes
................................................ 78
viii Table of
Contents
F. The Ricci Form
as the Curvature Form of a Line Bundle
............ 81
G. Hodge Theory
................................................ 83
H. Holomorphic Vector Fields and Infinitesimal Isometries
............ 86
I. The Calabi-Futaki Theorem
.................................... 92
Chapter
3.
Relativity
............................................. 94
A. Introduction
................................................. 94
B. Physical Interpretations
........................................ 94
С
The Einstein Field Equation
.................................... 96
D. Tidal Stresses
................................................ 97
E. Normal Forms for Curvature
................................... 98
F. The
Schwarzschild
Metric
...................................... 101
G. Planetary Orbits
.............................................. 105
H. Perihelion Precession
.......................................... 107
I. Geodesies in the
Schwarzschild
Universe
......................... 108
J. Bending of Light
.............................................. 110
K. The Kruskal Extension
........................................
Ill
L. How Completeness May Fail
................................... 113
M. Singularity Theorems
.......................................... 115
Chapter
4.
Riemannian Functionals
................................ 116
A. Introduction
................................................. 116
B. Basic Properties of Riemannian Functionals
...................... 117
C. The Total Scalar Curvature: First Order Properties
................ 119
D. Existence of Metrics with Constant Scalar Curvature
............... 122
E. The Image of the Scalar Curvature Map
.......................... 124
F. The Manifold of Metrics with Constant Scalar Curvature
........... 126
G. Back to the Total Scalar Curvature: Second Order Properties
........ 129
H. Quadratic Functionals
......................................... 133
Chapter
5.
Ricci
Curvature as a Partial Differential Equation
........... 137
A. Pointwise (Infinitesimal) Solvability
.............................. 137
B. From Pointwise to Local Solvability: Obstructions
................. 138
С
Local Solvability of
Ric(^)
=
r
for Nonsingular
r
................... 140
D.
Local Construction of Einstein Metrics
........................... 142
E. Regularity of Metrics with Smooth
Ricci
Tensors
.................. 143
F. Analyticity of Einstein Metrics and Applications
................... 145
G. Einstein
Metrics on Three-Manifolds
............................ 146
H, A
Uniqueness Theorem for
Ricci
Curvature
....................... 152
I. Global Non-Existence
......................................... 153
Chapter
6.
Einstein Manifolds and Topology
......................... 154
A. Introduction
................................................. 154
B. Existence of Einstein Metrics in Dimension
2...................... 155
С
The 3-Dimensional Case
....................................... 157
Table
of Contents
ix
D.
The ^Dimensional Case
....................................... 161
E. Ricci Curvature
and the Fundamental
Group
..................... 165
F.
Scalar Curvature
and the Spinorial Obstruction
................... 169
G.
A
Proof of the Cheeger-Gromoll Theorem on Complete Manifolds
with Non-Negative
Ricci
Curvature
............................. 171
Chapter
7.
Homogeneous Riemannian Manifolds
..................... 177
A. Introduction
................................................. 177
B. Homogeneous Riemannian Manifolds
............................ 178
C. Curvature
................................................... 181
D. Some Examples of Homogeneous Einstein Manifolds
............... 186
E. General Results on Homogeneous Einstein Manifolds
.............. 189
F. Symmetric Spaces
............................................. 191
G. Standard Homogeneous Riemannian Manifolds
................... 196
H. Tables
...................................................... 200
I. Remarks on Homogeneous
Lorentz
Manifolds
.................... 205
Chapter
8.
Compact Homogeneous
Kahler
Manifolds
................. 208
0.
Introduction
................................................. 208
A. The Orbits of a Compact Lie Group for the Adjoint Representation
.. 209
B. The Canonical Complex Structure
............................... 212
C. The G-Invariant
Ricci Form
.................................... 215
D. The Symplectic Structure of KiriUov-Kostant-Souriau
.............. 220
E. The Invariant
Kahler
Metrics on the Orbits
....................... 221
F. Compact Homogeneous
Kahler
Manifolds
........................ 224
G. The Space of Orbits
........................................... 227
H. Examples
.................................................... 229
Chapter
9.
Riemannian Submersions
................................ 235
A. Introduction
...................................·.............. 235
B. Riemannian Submersions
...................................... 236
C. The Invariants A and
T
........................................ 238
D.
O Neill s Formulas for Curvature
................................ 241
E. Completeness and Connections
................................. 244
F. Riemannian Submersions with Totally Geodesic Fibres
............. 249
G. The Canonical Variation
....................................... 252
H. Applications to Homogeneous Einstein Manifolds
................. 256
1. Further Examples of Homogeneous Einstein Manifolds
............. 263
J. Warped Products
............................................. 265
K. Examples of Non-Homogeneous Compact Einstein Manifolds with
Positive Scalar Curvature
..................................___ 272
Chapter
10.
Holonomy Groups
.................................... 278
A. Introduction
................................................. 278
B. Definitions
................................................... 280
x
Table of
Contents
C.
Covariant Derivative
Vanishing
Versus Holonomy
Invariance.
Examples
.................................................... 282
D.
Riemannian
Products
Versus
Holonomy
......................... 285
E.
Structure 1
................................................... 288
F.
Holonomy and Curvature
...................................... 290
G. Symmetric Spaces; Their Holonomy
............................. 294
H. Structure II
.................................................. 300
I. The Non-Simply Connected Case
............................... 307
J. Lorentzian Manifolds
......................................... 309
K. Tables
...................................................... 311
Chapter
11. Kähler-Einstein
Metrics and the Calabi Conjecture
......... 318
A.
Kähler-Einstein
Metrics
....................................... 318
B. The Resolution of the Calabi Conjecture and its Consequences
....... 322
С
A Brief Outline of the Proofs of the Aubin-Calabi-Yau Theorems
..... 326
D. Compact Complex Manifolds with Positive First Chern Class
....... 329
E. Extremal Metrics
............................................. 333
Chapter
12.
The Moduli Space of Einstein Structures
.................. 340
A. Introduction
................................................. 340
B. Typical Examples: Surfaces and Flat Manifolds
.................... 342
С
Basic Tools
.................................................. 345
D. Infinitesimal Einstein Deformations
.............................. 346
E. Formal Integrability
.......................................... 348
F. Structure of the
Premoduli
Spaces
............................... 351
G. The Set of Einstein Constants
................................... 352
H. Rigidity of Einstein Structures
.................................. 355
I. Dimension of the Moduli Space
................................. 358
J. Deformations of
Kähler-Einstein
Metrics
......................... 361
K. The Moduli Space of the Underlying Manifold of
КЗ
Surfaces
....... 365
Chapter
13.
Self-Duality
.......................................... 369
A. Introduction
................................................. 369
B. Self-Duality
.................................................. 370
С
Half-Conformally Flat Manifolds
............................... 372
D. The Penrose Construction
...................................... 379
E. The Reverse Penrose Construction
.............................. 385
F. Application to the Construction of Half-Conformally Flat Einstein
Manifolds
................................................... 390
Chapter
14. Quaternion-Kähler
Manifolds
........................... 396
A. Introduction
................................................. 396
B. Hyperkählerian
Manifolds
..................................... 398
C. Examples of
Hyperkählerian
Manifolds
.......................... 400
Table
of
Contents xi
D.
Quaternion-Kähler
Manifolds
................................. 402
E.
Symmetric
Quaternion-Kähler
Manifolds
......................... 408
F. Quaternionic
Manifolds.......................................
410
G.
The Twistor Space of a Quaternionic Manifold
.................... 412
H. Applications of the Twistor Space Theory
........................ 415
I. Examples of Non-Symmetric
Quaternion-Kähler
Manifolds
......... 419
Chapter
15.
A Report on the Non-Compact Case
..................... 422
A. Introduction
................................................. 422
B. A Construction of Nonhomogeneous Einstein Metrics
.............. 423
С
Bundle Constructions
......................................... 424
D. Bounded Domains of Holomorphy
.............................. 428
Chapter
16.
Generalizations of the Einstein Condition
................. 432
A. Introduction
................................................. 432
B. Natural Linear Conditions on
Dr
................................ 433
C.
Codazzi
Tensors
.............................................. 436
D.
The Case DreC^iQ ® S): Riemannian Manifolds with Harmonic
Weyl Tensor
................................................. 440
E. Condition
Dr
є
C^iS): Riemannian Manifolds with Harmonic
Curvature
................................................... 443
F. The Case DreC^iQ)
.......................................... 447
G. Condition
Dr
є С^А):
Riemannian Manifolds such that
(Dxr)(X,X)
= 0
for all Tangent Vectors X
........................ 450
H. Oriented Riemannian 4-Manifolds with 6W+
= 0.................. 451
Appendix. Sobolev Spaces and Elliptic Operators
..................... 456
A. Holder Spaces
................................................ 456
B. Sobolev Spaces
............................................... 457
С
Embedding Theorems
......................................... 457
D. Differential Operators
......................................... 459
E. Adjoint
..................................................... 460
F. Principal Symbol
............................................. 460
G. Elliptic Operators
............................................. 461
H.
Schauder
and Lp Estimates for Linear Elliptic Operators
............ 463
I. Existence for Linear Elliptic Equations
........................... 464
J. Regularity of Solutions for Elliptic Equations
..................... 466
K. Existence for Nonlinear Elliptic Equations
........................ 467
Addendum
...................................................... 471
A. Infinitely Many Einstein Constants on
S2 x
S2m+1.................
471
B.
Explicit Metrics with Holonomy G2 and Spin(7)
................... 472
С
Inhomogeneous
Kähler-Einstein
Metrics with Positive Scalar
Curvature
................................................... 474
xii
Table of Contents
D. Uniqueness of
Kähler-Einstein
Metrics with Positive Scalar
Curvature
................................................... 475
E.
Hyperkählerian
Quotients
...................................... 477
Bibliography
.................................................... 479
Notation Index
.................................................. 500
Subject Index
.................................................... 505
Errata
......................................................... 511
|
adam_txt |
Table
of
Contents
Chapter
0.
Introduction
. 1
A.
Brief Definitions and Motivation
. 1
B. Why Write a Book on Einstein Manifolds?
. 5
C. Existence
. 6
D. Examples
1.
Algebraic Examples
. 6
2.
Examples from Analysis
. 7
3.
Sporadic Examples
. 8
E. Uniqueness and Moduli
. 9
F. A
Brief Survey of Chapter Contents
. 10
G.
Leitfaden. 14
Η.
Getting the Feel of
Ricci
Curvature
. 15
I. The Main Problems Today
. 18
Chapter
1.
Basic Material
. 20
A. Introduction
. 20
B. Linear Connections
. 22
С
Riemannian and Pseudo-Riemannian Manifolds
. 29
D. Riemannian Manifolds as Metric Spaces
. 35
E. Riemannian Immersions, Isometries and Killing Vector Fields
. 37
F. Einstein Manifolds
. 41
G. Irreducible Decompositions of Algebraic Curvature Tensors
. 45
H. Applications to Riemannian Geometry
. 48
I. Laplacians and
Weitzenböck
Formulas
. 52
J.
Conformai
Changes of Riemannian Metrics
. 58
K. First Variations of Curvature Tensor Fields
. 62
Chapter
2.
Basic Material (Continued):
Kahler
Manifolds
. 66
0.
Introduction
. 66
A. Almost Complex and Complex Manifolds
. 66
B. Hermitian and
Kahler
Metrics
. 69
С
Ricci
Tensor and
Ricci Form
. 73
D. Holomorphic Sectional Curvature
. 75
E. Chern Classes
. 78
viii Table of
Contents
F. The Ricci Form
as the Curvature Form of a Line Bundle
. 81
G. Hodge Theory
. 83
H. Holomorphic Vector Fields and Infinitesimal Isometries
. 86
I. The Calabi-Futaki Theorem
. 92
Chapter
3.
Relativity
. 94
A. Introduction
. 94
B. Physical Interpretations
. 94
С
The Einstein Field Equation
. 96
D. Tidal Stresses
. 97
E. Normal Forms for Curvature
. 98
F. The
Schwarzschild
Metric
. 101
G. Planetary Orbits
. 105
H. Perihelion Precession
. 107
I. Geodesies in the
Schwarzschild
Universe
. 108
J. Bending of Light
. 110
K. The Kruskal Extension
.
Ill
L. How Completeness May Fail
. 113
M. Singularity Theorems
. 115
Chapter
4.
Riemannian Functionals
. 116
A. Introduction
. 116
B. Basic Properties of Riemannian Functionals
. 117
C. The Total Scalar Curvature: First Order Properties
. 119
D. Existence of Metrics with Constant Scalar Curvature
. 122
E. The Image of the Scalar Curvature Map
. 124
F. The Manifold of Metrics with Constant Scalar Curvature
. 126
G. Back to the Total Scalar Curvature: Second Order Properties
. 129
H. Quadratic Functionals
. 133
Chapter
5.
Ricci
Curvature as a Partial Differential Equation
. 137
A. Pointwise (Infinitesimal) Solvability
. 137
B. From Pointwise to Local Solvability: Obstructions
. 138
С
Local Solvability of
Ric(^)
=
r
for Nonsingular
r
. 140
D.
Local Construction of Einstein Metrics
. 142
E. Regularity of Metrics with Smooth
Ricci
Tensors
. 143
F. Analyticity of Einstein Metrics and Applications
. 145
G. Einstein
Metrics on Three-Manifolds
. 146
H, A
Uniqueness Theorem for
Ricci
Curvature
. 152
I. Global Non-Existence
. 153
Chapter
6.
Einstein Manifolds and Topology
. 154
A. Introduction
. 154
B. Existence of Einstein Metrics in Dimension
2. 155
С
The 3-Dimensional Case
. 157
Table
of Contents
ix
D.
The ^Dimensional Case
. 161
E. Ricci Curvature
and the Fundamental
Group
. 165
F.
Scalar Curvature
and the Spinorial Obstruction
. 169
G.
A
Proof of the Cheeger-Gromoll Theorem on Complete Manifolds
with Non-Negative
Ricci
Curvature
. 171
Chapter
7.
Homogeneous Riemannian Manifolds
. 177
A. Introduction
. 177
B. Homogeneous Riemannian Manifolds
. 178
C. Curvature
. 181
D. Some Examples of Homogeneous Einstein Manifolds
. 186
E. General Results on Homogeneous Einstein Manifolds
. 189
F. Symmetric Spaces
. 191
G. Standard Homogeneous Riemannian Manifolds
. 196
H. Tables
. 200
I. Remarks on Homogeneous
Lorentz
Manifolds
. 205
Chapter
8.
Compact Homogeneous
Kahler
Manifolds
. 208
0.
Introduction
. 208
A. The Orbits of a Compact Lie Group for the Adjoint Representation
. 209
B. The Canonical Complex Structure
. 212
C. The G-Invariant
Ricci Form
. 215
D. The Symplectic Structure of KiriUov-Kostant-Souriau
. 220
E. The Invariant
Kahler
Metrics on the Orbits
. 221
F. Compact Homogeneous
Kahler
Manifolds
. 224
G. The Space of Orbits
. 227
H. Examples
. 229
Chapter
9.
Riemannian Submersions
. 235
A. Introduction
.·. 235
B. Riemannian Submersions
. 236
C. The Invariants A and
T
. 238
D.
O'Neill's Formulas for Curvature
. 241
E. Completeness and Connections
. 244
F. Riemannian Submersions with Totally Geodesic Fibres
. 249
G. The Canonical Variation
. 252
H. Applications to Homogeneous Einstein Manifolds
. 256
1. Further Examples of Homogeneous Einstein Manifolds
. 263
J. Warped Products
. 265
K. Examples of Non-Homogeneous Compact Einstein Manifolds with
Positive Scalar Curvature
._ 272
Chapter
10.
Holonomy Groups
. 278
A. Introduction
. 278
B. Definitions
. 280
x
Table of
Contents
C.
Covariant Derivative
Vanishing
Versus Holonomy
Invariance.
Examples
. 282
D.
Riemannian
Products
Versus
Holonomy
. 285
E.
Structure 1
. 288
F.
Holonomy and Curvature
. 290
G. Symmetric Spaces; Their Holonomy
. 294
H. Structure II
. 300
I. The Non-Simply Connected Case
. 307
J. Lorentzian Manifolds
. 309
K. Tables
. 311
Chapter
11. Kähler-Einstein
Metrics and the Calabi Conjecture
. 318
A.
Kähler-Einstein
Metrics
. 318
B. The Resolution of the Calabi Conjecture and its Consequences
. 322
С
A Brief Outline of the Proofs of the Aubin-Calabi-Yau Theorems
. 326
D. Compact Complex Manifolds with Positive First Chern Class
. 329
E. Extremal Metrics
. 333
Chapter
12.
The Moduli Space of Einstein Structures
. 340
A. Introduction
. 340
B. Typical Examples: Surfaces and Flat Manifolds
. 342
С
Basic Tools
. 345
D. Infinitesimal Einstein Deformations
. 346
E. Formal Integrability
. 348
F. Structure of the
Premoduli
Spaces
. 351
G. The Set of Einstein Constants
. 352
H. Rigidity of Einstein Structures
. 355
I. Dimension of the Moduli Space
. 358
J. Deformations of
Kähler-Einstein
Metrics
. 361
K. The Moduli Space of the Underlying Manifold of
КЗ
Surfaces
. 365
Chapter
13.
Self-Duality
. 369
A. Introduction
. 369
B. Self-Duality
. 370
С
Half-Conformally Flat Manifolds
. 372
D. The Penrose Construction
. 379
E. The Reverse Penrose Construction
. 385
F. Application to the Construction of Half-Conformally Flat Einstein
Manifolds
. 390
Chapter
14. Quaternion-Kähler
Manifolds
. 396
A. Introduction
. 396
B. Hyperkählerian
Manifolds
. 398
C. Examples of
Hyperkählerian
Manifolds
. 400
Table
of
Contents xi
D.
Quaternion-Kähler
Manifolds
. 402
E.
Symmetric
Quaternion-Kähler
Manifolds
. 408
F. Quaternionic
Manifolds.
410
G.
The Twistor Space of a Quaternionic Manifold
. 412
H. Applications of the Twistor Space Theory
. 415
I. Examples of Non-Symmetric
Quaternion-Kähler
Manifolds
. 419
Chapter
15.
A Report on the Non-Compact Case
. 422
A. Introduction
. 422
B. A Construction of Nonhomogeneous Einstein Metrics
. 423
С
Bundle Constructions
. 424
D. Bounded Domains of Holomorphy
. 428
Chapter
16.
Generalizations of the Einstein Condition
. 432
A. Introduction
. 432
B. Natural Linear Conditions on
Dr
. 433
C.
Codazzi
Tensors
. 436
D.
The Case DreC^iQ ® S): Riemannian Manifolds with Harmonic
Weyl Tensor
. 440
E. Condition
Dr
є
C^iS): Riemannian Manifolds with Harmonic
Curvature
. 443
F. The Case DreC^iQ)
. 447
G. Condition
Dr
є С^А):
Riemannian Manifolds such that
(Dxr)(X,X)
= 0
for all Tangent Vectors X
. 450
H. Oriented Riemannian 4-Manifolds with 6W+
= 0. 451
Appendix. Sobolev Spaces and Elliptic Operators
. 456
A. Holder Spaces
. 456
B. Sobolev Spaces
. 457
С
Embedding Theorems
. 457
D. Differential Operators
. 459
E. Adjoint
. 460
F. Principal Symbol
. 460
G. Elliptic Operators
. 461
H.
Schauder
and Lp Estimates for Linear Elliptic Operators
. 463
I. Existence for Linear Elliptic Equations
. 464
J. Regularity of Solutions for Elliptic Equations
. 466
K. Existence for Nonlinear Elliptic Equations
. 467
Addendum
. 471
A. Infinitely Many Einstein Constants on
S2 x
S2m+1.
471
B.
Explicit Metrics with Holonomy G2 and Spin(7)
. 472
С
Inhomogeneous
Kähler-Einstein
Metrics with Positive Scalar
Curvature
. 474
xii
Table of Contents
D. Uniqueness of
Kähler-Einstein
Metrics with Positive Scalar
Curvature
. 475
E.
Hyperkählerian
Quotients
. 477
Bibliography
. 479
Notation Index
. 500
Subject Index
. 505
Errata
. 511 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Besse, Arthur L. |
author_facet | Besse, Arthur L. |
author_role | aut |
author_sort | Besse, Arthur L. |
author_variant | a l b al alb |
building | Verbundindex |
bvnumber | BV023356279 |
classification_rvk | SK 370 |
ctrlnum | (OCoLC)494579656 (DE-599)BVBBV023356279 |
dewey-full | 530.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11 |
dewey-search | 530.11 |
dewey-sort | 3530.11 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
edition | reprint of the 1987 ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01680nam a2200421 cb4500</leader><controlfield tag="001">BV023356279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090430 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080623s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540741206</subfield><subfield code="9">978-3-540-74120-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)494579656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023356279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">21/a</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Besse, Arthur L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Einstein manifolds</subfield><subfield code="c">Arthur L. Besse</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">reprint of the 1987 ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 516 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete : Folge 3</subfield><subfield code="v">10</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Classics in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Einstein, Variétés d'</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relativité (physique)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Einstein-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4113398-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Einstein-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4113398-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">Folge 3 ; 10</subfield><subfield code="w">(DE-604)BV000899194</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539814&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016539814</subfield></datafield></record></collection> |
id | DE-604.BV023356279 |
illustrated | Illustrated |
index_date | 2024-07-02T21:07:10Z |
indexdate | 2024-07-09T21:16:43Z |
institution | BVB |
isbn | 9783540741206 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016539814 |
oclc_num | 494579656 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
physical | XII, 516 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Ergebnisse der Mathematik und ihrer Grenzgebiete |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete : Folge 3 Classics in mathematics |
spelling | Besse, Arthur L. Verfasser aut Einstein manifolds Arthur L. Besse reprint of the 1987 ed. Berlin [u.a.] Springer 2008 XII, 516 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete : Folge 3 10 Classics in mathematics Einstein, Variétés d' ram Relativité (physique) ram Relativitätstheorie (DE-588)4049363-5 gnd rswk-swf Einstein-Mannigfaltigkeit (DE-588)4113398-5 gnd rswk-swf Einstein-Mannigfaltigkeit (DE-588)4113398-5 s Relativitätstheorie (DE-588)4049363-5 s DE-604 Ergebnisse der Mathematik und ihrer Grenzgebiete Folge 3 ; 10 (DE-604)BV000899194 10 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539814&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Besse, Arthur L. Einstein manifolds Ergebnisse der Mathematik und ihrer Grenzgebiete Einstein, Variétés d' ram Relativité (physique) ram Relativitätstheorie (DE-588)4049363-5 gnd Einstein-Mannigfaltigkeit (DE-588)4113398-5 gnd |
subject_GND | (DE-588)4049363-5 (DE-588)4113398-5 |
title | Einstein manifolds |
title_auth | Einstein manifolds |
title_exact_search | Einstein manifolds |
title_exact_search_txtP | Einstein manifolds |
title_full | Einstein manifolds Arthur L. Besse |
title_fullStr | Einstein manifolds Arthur L. Besse |
title_full_unstemmed | Einstein manifolds Arthur L. Besse |
title_short | Einstein manifolds |
title_sort | einstein manifolds |
topic | Einstein, Variétés d' ram Relativité (physique) ram Relativitätstheorie (DE-588)4049363-5 gnd Einstein-Mannigfaltigkeit (DE-588)4113398-5 gnd |
topic_facet | Einstein, Variétés d' Relativité (physique) Relativitätstheorie Einstein-Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539814&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000899194 |
work_keys_str_mv | AT bessearthurl einsteinmanifolds |