Vanishing and finiteness results in geometric analysis: a generalization of the Bochner technique
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2008
|
Schriftenreihe: | Progress in mathematics
266 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 269 - 279 |
Beschreibung: | XIV, 282 S. 24 cm |
ISBN: | 9783764386412 376438641X 9783764386429 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023355900 | ||
003 | DE-604 | ||
005 | 20090120 | ||
007 | t | ||
008 | 080620s2008 sz |||| 00||| eng d | ||
015 | |a 07,N41,0517 |2 dnb | ||
015 | |a 08,A21,0684 |2 dnb | ||
016 | 7 | |a 98575768X |2 DE-101 | |
020 | |a 9783764386412 |c Pp. : EUR 53.39, sfr 89.90 (freier Pr.) |9 978-3-7643-8641-2 | ||
020 | |a 376438641X |c Pp. : EUR 53.39, sfr 89.90 (freier Pr.) |9 3-7643-8641-X | ||
020 | |a 9783764386429 |9 978-3-7643-8642-9 | ||
024 | 3 | |a 9783764386412 | |
028 | 5 | 2 | |a 12172436 |
035 | |a (OCoLC)181090558 | ||
035 | |a (DE-599)DNB98575768X | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH |a gw |c XA-DE | ||
049 | |a DE-29T |a DE-355 |a DE-19 |a DE-824 |a DE-11 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA649 | |
082 | 0 | |a 516.3/62 |2 22 | |
082 | 0 | |a 516.362 |2 22/ger | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 53C21 |2 msc | ||
100 | 1 | |a Pigola, Stefano |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vanishing and finiteness results in geometric analysis |b a generalization of the Bochner technique |c Stefano Pigola ; Marco Rigoli ; Alberto G. Setti |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2008 | |
300 | |a XIV, 282 S. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 266 | |
500 | |a Literaturverz. S. 269 - 279 | ||
650 | 4 | |a Bochner, Technique de | |
650 | 4 | |a Riemann, Géométrie de | |
650 | 4 | |a Riemann, Variétés de | |
650 | 4 | |a Équations différentielles | |
650 | 4 | |a Bochner technique | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Geometry, Riemannian | |
650 | 4 | |a Riemannian manifolds | |
650 | 0 | 7 | |a Bochner-Technik |0 (DE-588)4224695-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Analysis |0 (DE-588)4156708-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Analysis |0 (DE-588)4156708-0 |D s |
689 | 0 | 1 | |a Bochner-Technik |0 (DE-588)4224695-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rigoli, Marco |e Verfasser |4 aut | |
700 | 1 | |a Setti, Alberto G. |e Verfasser |4 aut | |
830 | 0 | |a Progress in mathematics |v 266 |w (DE-604)BV000004120 |9 266 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539448&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016539448 |
Datensatz im Suchindex
_version_ | 1804137716067074048 |
---|---|
adam_text | Contents
Introduction
vii
1
Harmonie,
pluriharmonic, holomorphic
maps
and basic Hermitian and
Kählerian
geometry
1
1.1
The general setting
........................... 1
1.2
The complex case
............................ 6
1.3
Hermitian
bundles
........................... 10
1.4
Complex geometry via moving
frames
................ 12
1.5 Weitzenböck-type
formulas
...................... 17
2
Comparison Results
27
2.1
Hessian and Laplacian comparison
.................. 27
2.2
Volume comparison and volume growth
............... 40
2.3
A monotonicity
formula for volumes
................. 58
3
Review of spectral theory
63
3.1
The spectrum of a self-adjoint operator
............... 63
3.2
Schrödinger
operators on Riemannian manifolds
........... 69
4
Vanishing results
83
4.1
Formulation of the problem
...................... 83
4.2
Liouville and vanishing results
.................... 84
4.3
Appendix: Chain rule under weak regularity
............. 99
5
A finite-dimensionality result
103
5.1
Peter Li s lemma
............................ 107
5.2
Poincaré-type
inequalities
....................... 110
5.3
Local Sobolev inequality
........................ 114
5.4
L2 Caccioppoli-type inequality
.................... 117
5.5
The
Moser
iteration procedure
.................... 118
5.6
A weak Harnack inequality
...................... 121
5.7
Proof of the abstract finiteness theorem
............... 122
6
Applications to harmonic maps
127
6.1
Harmonic maps of finite //-energy
.................. 127
6.2
Harmonic maps of bounded dilations and a Schwarz-type lemma
. 136
6.3
Fundamental group and harmonic maps
............... 141
6.4
A generalization of a finiteness theorem of Lemaire
......... 143
7
Some topologica!
applications
147
7.1
Ends and harmonic functions
..................... 147
7.2
Appendix: Further characterizations of parabolicity
......... 165
7.3
Appendix: The double of a Riemannian manifold
.......... 171
7.4
Topology at infinity of submanifolds of
C
-Н
spaces
......... 172
7.5
Line bundles over
Kahler
manifolds
.................. 178
7.6
Reduction of codimension of harmonic immersions
......... 179
8
Constancy of holomorphic maps and the structure of complete
Kahler
manifolds
183
8.1
Three versions of a result of Li and Yau
............... 183
8.2
Plurisubharmonic exhaustions
..................... 199
9
Splitting and gap theorems in the presence of
a Poincaré—
Sobolev
inequality
205
9.1
Splitting theorems
........................... 205
9.2
Gap theorems
.............................. 223
9.3
Gap Theorems, continued
....................... 229
A Unique continuation
235
В
ZAcohomology of non-compact manifolds
251
B.I The Lp
de Rham
cochain complex: reduced and unreduced
cohomologies
.............................. 251
B.2 Harmonic forms and L2-cohomology
................. 260
B.3 Harmonic forms and
L^^-cohomology................ 262
B.4 Some topological aspects of the theory
................ 265
Bibliography
269
Index
281
|
adam_txt |
Contents
Introduction
vii
1
Harmonie,
pluriharmonic, holomorphic
maps
and basic Hermitian and
Kählerian
geometry
1
1.1
The general setting
. 1
1.2
The complex case
. 6
1.3
Hermitian
bundles
. 10
1.4
Complex geometry via moving
frames
. 12
1.5 Weitzenböck-type
formulas
. 17
2
Comparison Results
27
2.1
Hessian and Laplacian comparison
. 27
2.2
Volume comparison and volume growth
. 40
2.3
A monotonicity
formula for volumes
. 58
3
Review of spectral theory
63
3.1
The spectrum of a self-adjoint operator
. 63
3.2
Schrödinger
operators on Riemannian manifolds
. 69
4
Vanishing results
83
4.1
Formulation of the problem
. 83
4.2
Liouville and vanishing results
. 84
4.3
Appendix: Chain rule under weak regularity
. 99
5
A finite-dimensionality result
103
5.1
Peter Li's lemma
. 107
5.2
Poincaré-type
inequalities
. 110
5.3
Local Sobolev inequality
. 114
5.4
L2 Caccioppoli-type inequality
. 117
5.5
The
Moser
iteration procedure
. 118
5.6
A weak Harnack inequality
. 121
5.7
Proof of the abstract finiteness theorem
. 122
6
Applications to harmonic maps
127
6.1
Harmonic maps of finite //-energy
. 127
6.2
Harmonic maps of bounded dilations and a Schwarz-type lemma
. 136
6.3
Fundamental group and harmonic maps
. 141
6.4
A generalization of a finiteness theorem of Lemaire
. 143
7
Some topologica!
applications
147
7.1
Ends and harmonic functions
. 147
7.2
Appendix: Further characterizations of parabolicity
. 165
7.3
Appendix: The double of a Riemannian manifold
. 171
7.4
Topology at infinity of submanifolds of
C
-Н
spaces
. 172
7.5
Line bundles over
Kahler
manifolds
. 178
7.6
Reduction of codimension of harmonic immersions
. 179
8
Constancy of holomorphic maps and the structure of complete
Kahler
manifolds
183
8.1
Three versions of a result of Li and Yau
. 183
8.2
Plurisubharmonic exhaustions
. 199
9
Splitting and gap theorems in the presence of
a Poincaré—
Sobolev
inequality
205
9.1
Splitting theorems
. 205
9.2
Gap theorems
. 223
9.3
Gap Theorems, continued
. 229
A Unique continuation
235
В
ZAcohomology of non-compact manifolds
251
B.I The Lp
de Rham
cochain complex: reduced and unreduced
cohomologies
. 251
B.2 Harmonic forms and L2-cohomology
. 260
B.3 Harmonic forms and
L^^-cohomology. 262
B.4 Some topological aspects of the theory
. 265
Bibliography
269
Index
281 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Pigola, Stefano Rigoli, Marco Setti, Alberto G. |
author_facet | Pigola, Stefano Rigoli, Marco Setti, Alberto G. |
author_role | aut aut aut |
author_sort | Pigola, Stefano |
author_variant | s p sp m r mr a g s ag ags |
building | Verbundindex |
bvnumber | BV023355900 |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 SK 380 SK 540 |
ctrlnum | (OCoLC)181090558 (DE-599)DNB98575768X |
dewey-full | 516.3/62 516.362 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 516.362 |
dewey-search | 516.3/62 516.362 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02578nam a2200673 cb4500</leader><controlfield tag="001">BV023355900</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080620s2008 sz |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N41,0517</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A21,0684</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98575768X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764386412</subfield><subfield code="c">Pp. : EUR 53.39, sfr 89.90 (freier Pr.)</subfield><subfield code="9">978-3-7643-8641-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">376438641X</subfield><subfield code="c">Pp. : EUR 53.39, sfr 89.90 (freier Pr.)</subfield><subfield code="9">3-7643-8641-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764386429</subfield><subfield code="9">978-3-7643-8642-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764386412</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12172436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181090558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB98575768X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.362</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C21</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pigola, Stefano</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vanishing and finiteness results in geometric analysis</subfield><subfield code="b">a generalization of the Bochner technique</subfield><subfield code="c">Stefano Pigola ; Marco Rigoli ; Alberto G. Setti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 282 S.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">266</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 269 - 279</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bochner, Technique de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Géométrie de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Variétés de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bochner technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bochner-Technik</subfield><subfield code="0">(DE-588)4224695-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bochner-Technik</subfield><subfield code="0">(DE-588)4224695-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rigoli, Marco</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Setti, Alberto G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">266</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">266</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539448&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016539448</subfield></datafield></record></collection> |
id | DE-604.BV023355900 |
illustrated | Not Illustrated |
index_date | 2024-07-02T21:06:57Z |
indexdate | 2024-07-09T21:16:43Z |
institution | BVB |
isbn | 9783764386412 376438641X 9783764386429 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016539448 |
oclc_num | 181090558 |
open_access_boolean | |
owner | DE-29T DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-824 DE-11 DE-83 DE-188 |
owner_facet | DE-29T DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-824 DE-11 DE-83 DE-188 |
physical | XIV, 282 S. 24 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Pigola, Stefano Verfasser aut Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique Stefano Pigola ; Marco Rigoli ; Alberto G. Setti Basel [u.a.] Birkhäuser 2008 XIV, 282 S. 24 cm txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 266 Literaturverz. S. 269 - 279 Bochner, Technique de Riemann, Géométrie de Riemann, Variétés de Équations différentielles Bochner technique Differential equations Geometry, Riemannian Riemannian manifolds Bochner-Technik (DE-588)4224695-7 gnd rswk-swf Geometrische Analysis (DE-588)4156708-0 gnd rswk-swf Geometrische Analysis (DE-588)4156708-0 s Bochner-Technik (DE-588)4224695-7 s DE-604 Rigoli, Marco Verfasser aut Setti, Alberto G. Verfasser aut Progress in mathematics 266 (DE-604)BV000004120 266 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539448&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pigola, Stefano Rigoli, Marco Setti, Alberto G. Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique Progress in mathematics Bochner, Technique de Riemann, Géométrie de Riemann, Variétés de Équations différentielles Bochner technique Differential equations Geometry, Riemannian Riemannian manifolds Bochner-Technik (DE-588)4224695-7 gnd Geometrische Analysis (DE-588)4156708-0 gnd |
subject_GND | (DE-588)4224695-7 (DE-588)4156708-0 |
title | Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique |
title_auth | Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique |
title_exact_search | Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique |
title_exact_search_txtP | Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique |
title_full | Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique Stefano Pigola ; Marco Rigoli ; Alberto G. Setti |
title_fullStr | Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique Stefano Pigola ; Marco Rigoli ; Alberto G. Setti |
title_full_unstemmed | Vanishing and finiteness results in geometric analysis a generalization of the Bochner technique Stefano Pigola ; Marco Rigoli ; Alberto G. Setti |
title_short | Vanishing and finiteness results in geometric analysis |
title_sort | vanishing and finiteness results in geometric analysis a generalization of the bochner technique |
title_sub | a generalization of the Bochner technique |
topic | Bochner, Technique de Riemann, Géométrie de Riemann, Variétés de Équations différentielles Bochner technique Differential equations Geometry, Riemannian Riemannian manifolds Bochner-Technik (DE-588)4224695-7 gnd Geometrische Analysis (DE-588)4156708-0 gnd |
topic_facet | Bochner, Technique de Riemann, Géométrie de Riemann, Variétés de Équations différentielles Bochner technique Differential equations Geometry, Riemannian Riemannian manifolds Bochner-Technik Geometrische Analysis |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539448&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT pigolastefano vanishingandfinitenessresultsingeometricanalysisageneralizationofthebochnertechnique AT rigolimarco vanishingandfinitenessresultsingeometricanalysisageneralizationofthebochnertechnique AT settialbertog vanishingandfinitenessresultsingeometricanalysisageneralizationofthebochnertechnique |