Elliptic theory and noncommutative geometry: nonlocal elliptic operators
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2008
|
Schriftenreihe: | Operator theory
183 : Advances in partial differential equations |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XII, 224 S. graph. Darst. |
ISBN: | 9783764387747 3764387742 9783764387754 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023354678 | ||
003 | DE-604 | ||
005 | 20090421 | ||
007 | t | ||
008 | 080620s2008 d||| |||| 00||| eng d | ||
015 | |a 08,N06,0734 |2 dnb | ||
016 | 7 | |a 987201549 |2 DE-101 | |
020 | |a 9783764387747 |c Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.) |9 978-3-7643-8774-7 | ||
020 | |a 3764387742 |c Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.) |9 3-7643-8774-2 | ||
020 | |a 9783764387754 |9 978-3-7643-8775-4 | ||
024 | 3 | |a 9783764387747 | |
028 | 5 | 2 | |a 12024988 |
035 | |a (OCoLC)633862834 | ||
035 | |a (DE-599)DNB987201549 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-824 |a DE-19 |a DE-703 |a DE-11 |a DE-83 | ||
082 | 0 | |a 515.7242 |2 22/ger | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a 19K56 |2 msc | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Nazajkinskij, Vladimir E. |d 1955- |e Verfasser |0 (DE-588)121444643 |4 aut | |
245 | 1 | 0 | |a Elliptic theory and noncommutative geometry |b nonlocal elliptic operators |c V. E. Nazaikinskii ; A. Yu. Savin ; B. Yu. Sternin |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2008 | |
300 | |a XII, 224 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Operator theory |v 183 : Advances in partial differential equations | |
650 | 0 | 7 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |D s |
689 | 0 | 1 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Savin, Anton Ju. |e Verfasser |4 aut | |
700 | 1 | |a Sternin, Boris Ju. |d 1939- |e Verfasser |0 (DE-588)120484536 |4 aut | |
830 | 0 | |a Operator theory |v 183 : Advances in partial differential equations |w (DE-604)BV000000970 |9 183 | |
856 | 4 | 2 | |u http://d-nb.info/988365510/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016538238&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016538238 |
Datensatz im Suchindex
_version_ | 1804137714215288832 |
---|---|
adam_text | Contents
Preface
xi
Introduction
1
I Analysis of Nonlocal Elliptic Operators
3
1
Nonlocal Functions and Bundles
5
1.1
Group Algebras and Crossed Products
................ 5
1.1.1
Group Algebras
......................... 5
1.1.2
^-Crossed Products
...................... 7
1.1.3
Isomorphism Theorem
..................... 11
1.1.4
Smooth Crossed Products
................... 13
Motivation
........................... 13
Sufficient Condition for Locality
............... 14
Groups of Polynomial Growth
................. 15
Tempered Actions
....................... 16
Schweitzer theorem
....................... 17
1.2
Nonlocal Functions
........................... 18
1.2.1
Assumptions about the Group
Γ
............... 18
1.2.2
Continuous Nonlocal Functions
................ 18
Nonlocal Functions as Operators in L2
............ 19
Changes of Variables and Substitutions
........... 19
1.2.3
Smooth Nonlocal Functions
.................. 20
1.3
Nonlocal Bundles
............................ 22
1.4
Case of Noncompact Spaces
...................... 22
1.4.1
Nonlocal Functions
....................... 23
1.4.2
Special Noncompact Manifolds
................ 24
2
Nonlocal Elliptic Operators
27
2.1
Scalar Operators
............................ 27
2.1.1
Symbol Algebras
........................ 27
vi
Contents
2.1.2
Quantization of Symbols and Operators of Order Zero
... 27
Quantization of Continuous Symbols
............. 28
Quantization of Smooth Symbols
............... 29
2.1.3
Operators of Arbitrary Order
................. 30
2.2
Operators in Spaces of Sections of Bundles
............. 32
2.2.1
Operators of Order Zero
.................... 32
2.2.2
Operators of Arbitrary Order
................. 34
2.2.3
Operators on Noncompact Manifolds
............. 35
2.3
Symbols as Nonlocal Functions on T*M
............... 36
3
Elliptic Operators over C*-Algebras
37
3.1
Hubert Modules and
A-Index
..................... 38
3.1.1
Hubert Modules
........................ 38
3.1.2
Operators in Hubert Modules
................. 41
3.1.3
Fredholm
Property and Index
................. 42
3.2
Pseudodifferential Operators over
Λ
................. 44
3.2.1
Л
-bundles and Section Spaces
................. 44
Л
-bundles............................
44
Space of Smooth Sections
................... 45
Space L2
............................ 46
Sobolev Spaces
......................... 46
3.2.2
Symbols and Pseudodifferential Operators
.......... 47
3.2.3
Ellipticity and the
Л
-Fredholm
property
........... 50
3.3
Nonlocal Pseudodifferential Operators over
Λ
............ 51
3.3.1
Operators in Trivial
Л
-Bundles................
51
3.3.2
Operators in General
Л
-Bundles...............
52
3.3.3
Symbols in Trivial Bundles
.................. 52
3.3.4
Symbols in
Nontrivial
Bundles
................ 54
3.3.5
Ellipticity and the
Л
-Fredholm
Property
........... 54
II Homotopy Invariants of Nonlocal Elliptic Operators
57
4
Homotopy Classification
59
4.1
Ell-Group
................................ 59
4.2
Difference Construction
........................ 60
4.3
Isomorphism of Ell- and ir-Groups
.................. 61
5
Analytic Invariants
63
5.1
Fredholm
Index
............................. 63
5.2
C*(r)-Index and Its Connection with the
Fredholm
Index
..... 63
Contents
vii
6
Bott
Periodicity
67
6.1
Preliminary Remarks
.......................... 67
6.2
Exterior Product of Operators
.................... 68
6.3
Euler
Operator and the
Bott
Element
................ 69
6.4
Bott
Mapping and the Periodicity Theorem
............. 70
6.5
Proof of the Periodicity Theorem
................... 71
7
Direct Image and Index Formulas in if-Theory
75
7.1
Direct Image Mapping in if-Theory for Embeddings
........ 75
7.1.1
Exterior Products
....................... 75
7.1.2
Normal Bundle
......................... 76
7.1.3
Definition of the Direct Image Mapping
........... 77
7.1.4
Л
-Index
Is Preserved by the Direct Image Mapping
..... 78
7.2
Index Formulas in
iř-Theory
..................... 79
7.2.1
Direct Image in
iř-Theory
for the Projection into a Point
. 79
7.2.2
Index Formulas
......................... 79
7.3
Proof of Theorem
7.7.......................... 79
7.3.1
Exterior Products of Operators
................ 80
7.3.2
Homotopy
............................ 82
7.3.3
Completion of the Proof
.................... 86
8
Chern Character
89
8.1
Differential Forms and Graded Traces
................ 89
8.1.1
Noncommutative
Differential Forms
............. 89
8.1.2
Graded Trace on the Algebra of
Noncommutative
Differential Forms
....................... 90
8.2
Chern Character of Projections
.................... 92
8.3
Chern Character of Symbols
...................... 94
8.4
How to Compute the Chern Character
................ 95
8.4.1
Computation in Terms of the Symbol
............ 95
8.4.2
Computation in Terms of Connections
............ 96
Graded Trace
.......................... 96
Chern Character of Projections
................ 96
Chern Character of Symbols
................. 97
9
Cohomological Index Formula
99
9.1
Todd Class
............................... 99
9.2
Index Theorem
............................. 101
9.2.1
Topological Index
....................... 101
9.2.2
Chern Character on the Group K0(A)
............ 102
9.2.3
Statement of the Theorem
................... 102
9.3
Vanishing Theorem
........................... 103
9.4
Proof of the Index Theorem
...................... 105
viii Contents
9.5
Proofs of Auxiliary Statements
.................... 108
9.5.1
Multiplicativity of the Chern Character
........... 108
Case
1.
Compact Manifold
.................. 108
Case
2.
Noncompact Manifold
................. 110
9.5.2
Chern Character of the Symbol of the
Euler
Operator
. . . 114
10
Cohomological Formula for the
Л
-Index
115
10.1
Noncommutative
Differential Forms
................. 116
10.2
Graded Traces over A°°
........................ 117
10.2.1
Cohomology of Groups
..................... 118
10.2.2
Construction of Traces
..................... 119
10.2.3
Examples
............................ 119
Traces of Degree
0....................... 119
Trace of Degree
1
for the Group
Z
.............. 120
Trace of Degree
2
for the Group Z2
.............. 120
10.3
Graded Traces over C°°(X)
χ Γ....................
120
10.4
Chern Character and the Index Formula
............... 122
10.4.1
Chern Character
........................ 122
10.4.2
Index Formula
......................... 123
10.4.3
Proofs of Auxiliary Statements
................ 123
11
Index of Nonlocal Operators over C*-Algebras
127
11.1
Classification of Nonlocal Elliptic Operators
............. 128
11.1.1
Ell-Group
............................ 128
11.1.2
Difference Construction
.................... 128
11.1.3
Isomorphism of the Groups Ell and if
............ 128
11.1.4 Künneth
Formula and Classification Modulo Torsion
.... 129
11.2
Chern Character and the Index Theorem
.............. 130
11.2.1
Chern Character
........................ 130
11.2.2
Index Theorem
......................... 131
Case
1.
Product of Elements of Even ii-Groups
....... 131
Case
2.
Product of Elements of Odd A -Groups
....... 132
III Examples
137
12
Index Formula on the Noncommutative Torus
139
12.1
Operators on the Noncommutative Torus
.............. 139
12.2
Index Computation
........................... 140
12.2.1
Reduction to the Two-Dimensional Torus
.......... 140
12.2.2
Index of Operators on the 2-Torus
.............. 141
12.3
Special Cases
.............................. 142
Contents
їх
13 An Application
of
Higher
Traces
145
13.1 Index
with Values in Odd
AT-Groups................. 145
13.2
Odd
Index
Formula
........................... 146
13.2.1 Suspension........................... 147
13.2.2 Index Theorem......................... 147
Step 1.
Reduction to the Cosphere Bundle and the Chern-
Simons Character
.................. 148
Step
2.
Desuspension and Integration over S1
........ 148
13.3
Example of
Л
-Index
Computation
.................. 149
14
Index Formula for a Finite Group
Γ
153
14.1
Trajectory Symbol
........................... 153
14.2
Index Formula
............................. 154
IV Appendices
157
A ^-Algebras
161
A.I Basic Notions
.............................. 161
A.
1.1
Definitions and Examples
................... 161
A.I.
2
Unital Algebras and Units
................... 162
A.1.3 Homomorphisms, Ideals, Quotient Algebras, and Extensions
163
A.
1.4
Commutative C*-Algebras
................... 165
A.
1.5
Spectrum and Functional Calculus
.............. 165
A.1.6 Local C*-Algebras
....................... 167
A.l.ľ
Positive Elements
........................ 167
A.
1.8
Projections in C*-Algebras
.................. 168
A.2 Representations of C*-Algebras
.................... 169
A.2.1 Basic Definitions
........................ 169
A.2.2 Existence of Representations
................. 172
A.2.3 Representations of Ideals and Quotient Algebras
...... 173
A.2.4 Primitive Ideals
......................... 174
A.2.5 Algebras of Type I
....................... 175
A.3 Tensor Products and Nuclear Algebras
................ 176
A.3.1 Minimal and Maximal Tensor Products
........... 176
A.3.2 Nuclear Algebras
........................ 177
A.3.3 Primitive Ideals in the Tensor Product
............ 178
B
Ä-Theory
of Operator Algebras
179
B.I Covariant A -Theory
.......................... 179
B.I.I Topological A -Theory
..................... 179
B.1.2 Group K0(A)
.......................... 182
B.1.3 Group
Α ,(Λ)
.......................... 184
B.1.4
Bott
Periodicity
........................ 186
x
Contents
В.
1.5
Long Exact Sequence in if-Theory
.............. 187
Homomorphism
di
....................... 187
Homomorphism do
....................... 188
B.1.6 Stability of
K-Groups..................... 188
B.I.
7
K-groups of Local C*-Algebras
................ 189
B.2 K-Homology
.............................. 189
B.2.1 ii-Homology of a Topological Space
............. 189
Even Groups
.......................... 191
Odd Groups
........................... 191
B.2.
2
if-Homology of Operator Algebras: Definitions
....... 192
Fredholm
Modules
....................... 192
Dual Algebras
......................... 193
Extensions of C*-Algebras
................... 195
Equivalence of Different Definitions
.............. 196
B.2.3 Suspension and
Bott
Periodicity
............... 197
B.2.
4
Long Exact Sequence in if-Homology
............ 198
B.2.5 Stability
............................. 199
B.2.
6
Duality between if-Homology and if-Theory of Operator
Algebras
............................. 199
Even Groups
.......................... 199
Odd Groups
........................... 199
С
Cyclic Homology and Cohomology
201
C.I Cyclic Cohomology
........................... 201
C.I.I Enveloping Differential Algebra
................ 201
C.I.
2
Graded Traces and Cyclic Functionals
............ 203
C.1.3 Cochains, Cyclic Cochains, and the
Hochschild
Differential
204
C.I.
4
Cyclic Cohomology and
Hochschild
Cohomology
...... 204
C.1.5 Example
............................. 205
C.1.6 Cup Product in Cyclic Cohomology
............. 206
C.I.
7
Periodicity in Cyclic Cohomology
............... 207
C.1.8 Example
............................. 209
C.2 Cyclic Homology
............................ 209
C.2.1 Definition of Cyclic Homology
................. 209
C.2.2 Periodicity
........................... 210
C.2.3 Pairing between Cyclic Homology and Cohomology
..... 211
C.2.4 Morita
Invariance
....................... 211
C.2.
5
Chern Characters in Homology
................ 211
Concise Bibliographical Remarks
213
Bibliography
217
Index
222
|
adam_txt |
Contents
Preface
xi
Introduction
1
I Analysis of Nonlocal Elliptic Operators
3
1
Nonlocal Functions and Bundles
5
1.1
Group Algebras and Crossed Products
. 5
1.1.1
Group Algebras
. 5
1.1.2
^-Crossed Products
. 7
1.1.3
Isomorphism Theorem
. 11
1.1.4
Smooth Crossed Products
. 13
Motivation
. 13
Sufficient Condition for Locality
. 14
Groups of Polynomial Growth
. 15
Tempered Actions
. 16
Schweitzer theorem
. 17
1.2
Nonlocal Functions
. 18
1.2.1
Assumptions about the Group
Γ
. 18
1.2.2
Continuous Nonlocal Functions
. 18
Nonlocal Functions as Operators in L2
. 19
Changes of Variables and Substitutions
. 19
1.2.3
Smooth Nonlocal Functions
. 20
1.3
Nonlocal Bundles
. 22
1.4
Case of Noncompact Spaces
. 22
1.4.1
Nonlocal Functions
. 23
1.4.2
Special Noncompact Manifolds
. 24
2
Nonlocal Elliptic Operators
27
2.1
Scalar Operators
. 27
2.1.1
Symbol Algebras
. 27
vi
Contents
2.1.2
Quantization of Symbols and Operators of Order Zero
. 27
Quantization of Continuous Symbols
. 28
Quantization of Smooth Symbols
. 29
2.1.3
Operators of Arbitrary Order
. 30
2.2
Operators in Spaces of Sections of Bundles
. 32
2.2.1
Operators of Order Zero
. 32
2.2.2
Operators of Arbitrary Order
. 34
2.2.3
Operators on Noncompact Manifolds
. 35
2.3
Symbols as Nonlocal Functions on T*M
. 36
3
Elliptic Operators over C*-Algebras
37
3.1
Hubert Modules and
A-Index
. 38
3.1.1
Hubert Modules
. 38
3.1.2
Operators in Hubert Modules
. 41
3.1.3
Fredholm
Property and Index
. 42
3.2
Pseudodifferential Operators over
Λ
. 44
3.2.1
Л
-bundles and Section Spaces
. 44
Л
-bundles.
44
Space of Smooth Sections
. 45
Space L2
. 46
Sobolev Spaces
. 46
3.2.2
Symbols and Pseudodifferential Operators
. 47
3.2.3
Ellipticity and the
Л
-Fredholm
property
. 50
3.3
Nonlocal Pseudodifferential Operators over
Λ
. 51
3.3.1
Operators in Trivial
Л
-Bundles.
51
3.3.2
Operators in General
Л
-Bundles.
52
3.3.3
Symbols in Trivial Bundles
. 52
3.3.4
Symbols in
Nontrivial
Bundles
. 54
3.3.5
Ellipticity and the
Л
-Fredholm
Property
. 54
II Homotopy Invariants of Nonlocal Elliptic Operators
57
4
Homotopy Classification
59
4.1
Ell-Group
. 59
4.2
Difference Construction
. 60
4.3
Isomorphism of Ell- and ir-Groups
. 61
5
Analytic Invariants
63
5.1
Fredholm
Index
. 63
5.2
C*(r)-Index and Its Connection with the
Fredholm
Index
. 63
Contents
vii
6
Bott
Periodicity
67
6.1
Preliminary Remarks
. 67
6.2
Exterior Product of Operators
. 68
6.3
Euler
Operator and the
Bott
Element
. 69
6.4
Bott
Mapping and the Periodicity Theorem
. 70
6.5
Proof of the Periodicity Theorem
. 71
7
Direct Image and Index Formulas in if-Theory
75
7.1
Direct Image Mapping in if-Theory for Embeddings
. 75
7.1.1
Exterior Products
. 75
7.1.2
Normal Bundle
. 76
7.1.3
Definition of the Direct Image Mapping
. 77
7.1.4
Л
-Index
Is Preserved by the Direct Image Mapping
. 78
7.2
Index Formulas in
iř-Theory
. 79
7.2.1
Direct Image in
iř-Theory
for the Projection into a Point
. 79
7.2.2
Index Formulas
. 79
7.3
Proof of Theorem
7.7. 79
7.3.1
Exterior Products of Operators
. 80
7.3.2
Homotopy
. 82
7.3.3
Completion of the Proof
. 86
8
Chern Character
89
8.1
Differential Forms and Graded Traces
. 89
8.1.1
Noncommutative
Differential Forms
. 89
8.1.2
Graded Trace on the Algebra of
Noncommutative
Differential Forms
. 90
8.2
Chern Character of Projections
. 92
8.3
Chern Character of Symbols
. 94
8.4
How to Compute the Chern Character
. 95
8.4.1
Computation in Terms of the Symbol
. 95
8.4.2
Computation in Terms of Connections
. 96
Graded Trace
. 96
Chern Character of Projections
. 96
Chern Character of Symbols
. 97
9
Cohomological Index Formula
99
9.1
Todd Class
. 99
9.2
Index Theorem
. 101
9.2.1
Topological Index
. 101
9.2.2
Chern Character on the Group K0(A)
. 102
9.2.3
Statement of the Theorem
. 102
9.3
Vanishing Theorem
. 103
9.4
Proof of the Index Theorem
. 105
viii Contents
9.5
Proofs of Auxiliary Statements
. 108
9.5.1
Multiplicativity of the Chern Character
. 108
Case
1.
Compact Manifold
. 108
Case
2.
Noncompact Manifold
. 110
9.5.2
Chern Character of the Symbol of the
Euler
Operator
. . . 114
10
Cohomological Formula for the
Л
-Index
115
10.1
Noncommutative
Differential Forms
. 116
10.2
Graded Traces over A°°
. 117
10.2.1
Cohomology of Groups
. 118
10.2.2
Construction of Traces
. 119
10.2.3
Examples
. 119
Traces of Degree
0. 119
Trace of Degree
1
for the Group
Z
. 120
Trace of Degree
2
for the Group Z2
. 120
10.3
Graded Traces over C°°(X)
χ Γ.
120
10.4
Chern Character and the Index Formula
. 122
10.4.1
Chern Character
. 122
10.4.2
Index Formula
. 123
10.4.3
Proofs of Auxiliary Statements
. 123
11
Index of Nonlocal Operators over C*-Algebras
127
11.1
Classification of Nonlocal Elliptic Operators
. 128
11.1.1
Ell-Group
. 128
11.1.2
Difference Construction
. 128
11.1.3
Isomorphism of the Groups Ell and if
. 128
11.1.4 Künneth
Formula and Classification Modulo Torsion
. 129
11.2
Chern Character and the Index Theorem
. 130
11.2.1
Chern Character
. 130
11.2.2
Index Theorem
. 131
Case
1.
Product of Elements of Even ii-Groups
. 131
Case
2.
Product of Elements of Odd A'-Groups
. 132
III Examples
137
12
Index Formula on the Noncommutative Torus
139
12.1
Operators on the Noncommutative Torus
. 139
12.2
Index Computation
. 140
12.2.1
Reduction to the Two-Dimensional Torus
. 140
12.2.2
Index of Operators on the 2-Torus
. 141
12.3
Special Cases
. 142
Contents
їх
13 An Application
of
Higher
Traces
145
13.1 Index
with Values in Odd
AT-Groups. 145
13.2
Odd
Index
Formula
. 146
13.2.1 Suspension. 147
13.2.2 Index Theorem. 147
Step 1.
Reduction to the Cosphere Bundle and the Chern-
Simons Character
. 148
Step
2.
Desuspension and Integration over S1
. 148
13.3
Example of
Л
-Index
Computation
. 149
14
Index Formula for a Finite Group
Γ
153
14.1
Trajectory Symbol
. 153
14.2
Index Formula
. 154
IV Appendices
157
A ^-Algebras
161
A.I Basic Notions
. 161
A.
1.1
Definitions and Examples
. 161
A.I.
2
Unital Algebras and Units
. 162
A.1.3 Homomorphisms, Ideals, Quotient Algebras, and Extensions
163
A.
1.4
Commutative C*-Algebras
. 165
A.
1.5
Spectrum and Functional Calculus
. 165
A.1.6 Local C*-Algebras
. 167
A.l.ľ
Positive Elements
. 167
A.
1.8
Projections in C*-Algebras
. 168
A.2 Representations of C*-Algebras
. 169
A.2.1 Basic Definitions
. 169
A.2.2 Existence of Representations
. 172
A.2.3 Representations of Ideals and Quotient Algebras
. 173
A.2.4 Primitive Ideals
. 174
A.2.5 Algebras of Type I
. 175
A.3 Tensor Products and Nuclear Algebras
. 176
A.3.1 Minimal and Maximal Tensor Products
. 176
A.3.2 Nuclear Algebras
. 177
A.3.3 Primitive Ideals in the Tensor Product
. 178
B
Ä-Theory
of Operator Algebras
179
B.I Covariant A'-Theory
. 179
B.I.I Topological A'-Theory
. 179
B.1.2 Group K0(A)
. 182
B.1.3 Group
Α',(Λ)
. 184
B.1.4
Bott
Periodicity
. 186
x
Contents
В.
1.5
Long Exact Sequence in if-Theory
. 187
Homomorphism
di
. 187
Homomorphism do
. 188
B.1.6 Stability of
K-Groups. 188
B.I.
7
K-groups of Local C*-Algebras
. 189
B.2 K-Homology
. 189
B.2.1 ii-Homology of a Topological Space
. 189
Even Groups
. 191
Odd Groups
. 191
B.2.
2
if-Homology of Operator Algebras: Definitions
. 192
Fredholm
Modules
. 192
Dual Algebras
. 193
Extensions of C*-Algebras
. 195
Equivalence of Different Definitions
. 196
B.2.3 Suspension and
Bott
Periodicity
. 197
B.2.
4
Long Exact Sequence in if-Homology
. 198
B.2.5 Stability
. 199
B.2.
6
Duality between if-Homology and if-Theory of Operator
Algebras
. 199
Even Groups
. 199
Odd Groups
. 199
С
Cyclic Homology and Cohomology
201
C.I Cyclic Cohomology
. 201
C.I.I Enveloping Differential Algebra
. 201
C.I.
2
Graded Traces and Cyclic Functionals
. 203
C.1.3 Cochains, Cyclic Cochains, and the
Hochschild
Differential
204
C.I.
4
Cyclic Cohomology and
Hochschild
Cohomology
. 204
C.1.5 Example
. 205
C.1.6 Cup Product in Cyclic Cohomology
. 206
C.I.
7
Periodicity in Cyclic Cohomology
. 207
C.1.8 Example
. 209
C.2 Cyclic Homology
. 209
C.2.1 Definition of Cyclic Homology
. 209
C.2.2 Periodicity
. 210
C.2.3 Pairing between Cyclic Homology and Cohomology
. 211
C.2.4 Morita
Invariance
. 211
C.2.
5
Chern Characters in Homology
. 211
Concise Bibliographical Remarks
213
Bibliography
217
Index
222 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Nazajkinskij, Vladimir E. 1955- Savin, Anton Ju Sternin, Boris Ju. 1939- |
author_GND | (DE-588)121444643 (DE-588)120484536 |
author_facet | Nazajkinskij, Vladimir E. 1955- Savin, Anton Ju Sternin, Boris Ju. 1939- |
author_role | aut aut aut |
author_sort | Nazajkinskij, Vladimir E. 1955- |
author_variant | v e n ve ven a j s aj ajs b j s bj bjs |
building | Verbundindex |
bvnumber | BV023354678 |
classification_rvk | SK 560 SK 620 SK 920 |
ctrlnum | (OCoLC)633862834 (DE-599)DNB987201549 |
dewey-full | 515.7242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7242 |
dewey-search | 515.7242 |
dewey-sort | 3515.7242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02363nam a2200529 cb4500</leader><controlfield tag="001">BV023354678</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090421 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080620s2008 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N06,0734</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987201549</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764387747</subfield><subfield code="c">Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.)</subfield><subfield code="9">978-3-7643-8774-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764387742</subfield><subfield code="c">Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.)</subfield><subfield code="9">3-7643-8774-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764387754</subfield><subfield code="9">978-3-7643-8775-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764387747</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12024988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633862834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987201549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7242</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19K56</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nazajkinskij, Vladimir E.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121444643</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic theory and noncommutative geometry</subfield><subfield code="b">nonlocal elliptic operators</subfield><subfield code="c">V. E. Nazaikinskii ; A. Yu. Savin ; B. Yu. Sternin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 224 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator theory</subfield><subfield code="v">183 : Advances in partial differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savin, Anton Ju.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sternin, Boris Ju.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120484536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Operator theory</subfield><subfield code="v">183 : Advances in partial differential equations</subfield><subfield code="w">(DE-604)BV000000970</subfield><subfield code="9">183</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://d-nb.info/988365510/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016538238&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016538238</subfield></datafield></record></collection> |
id | DE-604.BV023354678 |
illustrated | Illustrated |
index_date | 2024-07-02T21:06:32Z |
indexdate | 2024-07-09T21:16:41Z |
institution | BVB |
isbn | 9783764387747 3764387742 9783764387754 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016538238 |
oclc_num | 633862834 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-824 DE-19 DE-BY-UBM DE-703 DE-11 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-824 DE-19 DE-BY-UBM DE-703 DE-11 DE-83 |
physical | XII, 224 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser |
record_format | marc |
series | Operator theory |
series2 | Operator theory |
spelling | Nazajkinskij, Vladimir E. 1955- Verfasser (DE-588)121444643 aut Elliptic theory and noncommutative geometry nonlocal elliptic operators V. E. Nazaikinskii ; A. Yu. Savin ; B. Yu. Sternin Basel [u.a.] Birkhäuser 2008 XII, 224 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Operator theory 183 : Advances in partial differential equations Elliptischer Differentialoperator (DE-588)4140057-4 gnd rswk-swf Nichtkommutative Geometrie (DE-588)4171742-9 gnd rswk-swf Elliptischer Differentialoperator (DE-588)4140057-4 s Nichtkommutative Geometrie (DE-588)4171742-9 s DE-604 Savin, Anton Ju. Verfasser aut Sternin, Boris Ju. 1939- Verfasser (DE-588)120484536 aut Operator theory 183 : Advances in partial differential equations (DE-604)BV000000970 183 http://d-nb.info/988365510/04 Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016538238&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nazajkinskij, Vladimir E. 1955- Savin, Anton Ju Sternin, Boris Ju. 1939- Elliptic theory and noncommutative geometry nonlocal elliptic operators Operator theory Elliptischer Differentialoperator (DE-588)4140057-4 gnd Nichtkommutative Geometrie (DE-588)4171742-9 gnd |
subject_GND | (DE-588)4140057-4 (DE-588)4171742-9 |
title | Elliptic theory and noncommutative geometry nonlocal elliptic operators |
title_auth | Elliptic theory and noncommutative geometry nonlocal elliptic operators |
title_exact_search | Elliptic theory and noncommutative geometry nonlocal elliptic operators |
title_exact_search_txtP | Elliptic theory and noncommutative geometry nonlocal elliptic operators |
title_full | Elliptic theory and noncommutative geometry nonlocal elliptic operators V. E. Nazaikinskii ; A. Yu. Savin ; B. Yu. Sternin |
title_fullStr | Elliptic theory and noncommutative geometry nonlocal elliptic operators V. E. Nazaikinskii ; A. Yu. Savin ; B. Yu. Sternin |
title_full_unstemmed | Elliptic theory and noncommutative geometry nonlocal elliptic operators V. E. Nazaikinskii ; A. Yu. Savin ; B. Yu. Sternin |
title_short | Elliptic theory and noncommutative geometry |
title_sort | elliptic theory and noncommutative geometry nonlocal elliptic operators |
title_sub | nonlocal elliptic operators |
topic | Elliptischer Differentialoperator (DE-588)4140057-4 gnd Nichtkommutative Geometrie (DE-588)4171742-9 gnd |
topic_facet | Elliptischer Differentialoperator Nichtkommutative Geometrie |
url | http://d-nb.info/988365510/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016538238&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000970 |
work_keys_str_mv | AT nazajkinskijvladimire elliptictheoryandnoncommutativegeometrynonlocalellipticoperators AT savinantonju elliptictheoryandnoncommutativegeometrynonlocalellipticoperators AT sterninborisju elliptictheoryandnoncommutativegeometrynonlocalellipticoperators |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis