Protein folding, misfolding and aggregation: classical themes and novel approaches
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge
RSC Publ.
2008
|
Schriftenreihe: | RSC biomolecular sciences
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 272 S. Ill., graph. Darst. |
ISBN: | 9780854042579 0854042571 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023347752 | ||
003 | DE-604 | ||
005 | 20091204 | ||
007 | t | ||
008 | 080617s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780854042579 |9 978-0-85404-257-9 | ||
020 | |a 0854042571 |9 0-85404-257-1 | ||
035 | |a (OCoLC)470606311 | ||
035 | |a (DE-599)BVBBV023347752 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 |a DE-91G | ||
082 | 1 | |a 572.6 |2 22 | |
084 | |a WD 5100 |0 (DE-625)148194: |2 rvk | ||
084 | |a CHE 820f |2 stub | ||
245 | 1 | 0 | |a Protein folding, misfolding and aggregation |b classical themes and novel approaches |c ed. by Victor Muñoz |
264 | 1 | |a Cambridge |b RSC Publ. |c 2008 | |
300 | |a XV, 272 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a RSC biomolecular sciences | |
650 | 7 | |a Protéines |2 ram | |
650 | 0 | 7 | |a Proteinfaltung |0 (DE-588)4324567-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Proteinfaltung |0 (DE-588)4324567-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Muñoz, Victor |d 1965- |e Sonstige |0 (DE-588)135580811 |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016531411&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016531411 |
Datensatz im Suchindex
_version_ | 1804137703852212224 |
---|---|
adam_text | Contents
Preface
v
Chapter
1
The
α
-Helix as the Simplest Protein Model:
Helix-Coil Theory, Stability, and Design
Andrew James Doig
1.1
Introduction
1
1.2
Structure of the
α
-Helix I
1.2.1
Capping Motifs
2
1.2.2
Metal Binding
3
1.2.3
The3,o-Helix
3
1.2.4
The
π
-Helix
З
1.3
Design of
Peptide
Helices
4
1.3.1
Host-Guest Studies
4
1.3.2
Helix Lengths
5
1.3.3
The Helix
Dipole 5
1.3.4
Acetylation and
Amidation 5
1.3.5
Solubility
6
1.3.6
Concentration Determination
6
1.3.7
Helix Templates
7
1.4
Helix-Coil Theory
7
1.4.1
Zimm-Bragg Model
8
1.4.2
Lifson-Roig Model
8
1.4.3
AGADIR
12
1.4.4
Lomize-Mosberg Model
13
1.5
Forces Affecting
α
-Helix Stability
13
1.5.1
Helix Interior
13
1.5.2
Caps
14
1.5.3
Phosphorylation
15
RSC Biomoiecuiar Sciences
Protein Folding, Misfolding and Aggregation: Classical Themes and Novel Approaches
Edited by Victor
Muñoz
£
Royal Society of Chemistry
2008
ix
Contents
1.5.4
1.5.5
1.5.6
1.5.7
1.5.8
References
Non-covalent Side-chain Interactions
Covalent Side-chain Interactions
Capping Motifs
Ionic Strength
Temperature
18
20
20
20
21
21
Chapter
2
Kinetics and Mechanisms of
α
-Helix Formation
Urmi
Doshi
2.1
Introduction
28
2.2
Experimental Techniques Employed to Study
Helix-Coil Kinetics
31
2.3
Theoretical Approaches to Explore
Helix-Coil Kinetics
34
2.4
General Observations in Helix-Coil Kinetics
35
2.5
Kinetic Theory of the Helix-Coil Transition
37
2.6
Free-Energy Landscape for
α
-Helix Formation
39
2.7
Mechanisms of
α
-Helix Formation
41
2.8
Reaction Coordinates for
я-
Helix Formation
43
2.9
The Nature of the Diffusion Coefficient
for
α
-Helix Formation
44
2.10
Implications for Protein Folding
45
References
46
Chapter
3
The Protein Folding Energy Landscape: A Primer
Peter G. Wolynes
3.1
Energy Landscape: Metaphor and Math
49
3.2
Random Sequences
-
Prehistoric Proteins (Possibly),
but Not Most Modem Proteins
50
3.3
The Statistical Energy Landscape
50
3.4
The Energy Landscape of Long Evolved Proteins
55
3.5
Minimal Frustration. Capillarity,
and Protein Topology
61
3.6
Delightful Prediction of Many of the Devilish Details
of Folding
64
References
66
Chapter
4
Hydrogen Exchange Experiments: Detection and
Characterization of Protein Folding Intermediates
Yawen
Bai
4.1
Introduction
70
4.2
Intrinsic Exchange Rates for Unfolded Polypeptides
71
Contents
xi
4.3 Linderstrom-Lang
Model for Amide Hydrogen
Exchange in Folded Proteins
72
4.4
Characterization of Acid Denatured States
by Hydrogen Exchange
73
4.4.1
Apomyoglobin (AMb)
74
4.4.2
Cytochrome
с
(cyt c)
75
4.4.3
Ribonuclease
H
(RNase H)
75
4.5
Pulsed-Amide H/D Exchange Method
75
4.5.1
Cytochrome
с
78
4.5.2
Apomyoglobin
78
4.5.3
RNase
H
79
4.5.4
Hen Egg White Lysozyme (HEWL)
79
4.6
Native-State Hydrogen Exchange Method
80
4.6.1
Cytochrome
с
82
4.6.2
RNase
H
83
4.6.3
Rd-apocytochrome
hSñj
83
References
83
Chapter
5
Statistical Differential Scanning Calorimetry: Probing
Protein Folding-Unfolding Ensembles
Beatriz
Ibarra-
M
alero
und Jose Manuel
Sanchez-
Rui:
5.1 Differential
Scanning
Calorimetry (DSC)
as a Tool
for the Complete Energetic Description of Protein
Folding Unfolding Thermal Equilibria
85
5.2
Partition Functions of Folding. Unfolding Processes
87
5.3
The Two-state Equilibrium Model:
A Historical Perspective
93
5.4
Folding Free-energy Barriers from Equilibrium DSC
Experiments
96
5.5
The van
t Hoŕľ
to
Calorimetrie
Enthalpy
Ratio Revisited
98
5.6
Protein Kinetic Stability: Free-energy Barriers for
Irreversible Denaturation from Scan-rate Dependent
DSC
100
References
103
Chapter
6
Fast Protein Folding
Martin Gruebele
6.1
Introduction
¡06
6.2
Fast Folding: Why and How?
108
6.3
Fast Dynamics of Polypeptide Chains
110
6.3.1
Loop Formation 111
6.3.2
Protein Collapse
ä
14
Contents
6.3.3
Secondary Structure Formation
115
6.3.4
Timescales
115
6.4
Microsecond Protein Folding
115
6.4.1
History
115
6.4.2
Sub-millisecond Instrumentation
117
6.4.3
Spectroscopie
Signatures Used in Fast Folding
119
6.4.4
Case Studies
121
6.5
Downhill Folding
127
6.6
Outlook
130
Acknowledgement
131
References
131
Chapter
7
Single Molecule Spectroscopy in Protein Folding: From
Ensembles to Single Molecules
Benjamin
Schuier
7.1
Introduction
139
7.2
History and Principles of Single Molecule Detection
140
7.3
Kinetics: From Ensembles to Single Molecules
141
7.3.1
Rate Constants and Probabilities
143
7.4
Correlation Analysis
146
7.5
FRET Efficiency Distributions and Distance
Dynamics
149
7.5.1
Single Molecule FRET Experiments
149
7.5.2
Timescales and Distance Distributions
150
7.5.3
Dynamics from Transfer Efficiency
Fluctuations
153
7.6
Pleasure, Pain, and Promise of Single Molecule
Experiments
154
Acknowledgements
156
References
156
Chapter
8
Computer Simulations of Protein Folding
Vijay S.
Pande,
Eric J.
Sorin,
Christopher D. Snow and
Young
Min Rhee
8.1
Introduction: Goals and Challenges of Simulating
Protein Folding
161
8.1.1
Simulating Protein Folding
161
8.1.2
What are the Challenges for Atomistic
Simulation?
163
8.2
Protein Folding Models: from Atomistic to Simplified
Representations
164
8.2.1
Atomic Force Fields
164
8.2.2
Implicit Solvation Models
166
Contents
x¡jj
8.2.3 Minimalist Models 167
8.2.4
How Accurate are the Models?
168
8.3
Sampling: Methods to Tackle the Long Timescales
Involved in Folding
169
8.3.1
Tightly Coupled Molecular Dynamics
(TCMD)
169
8.3.2
Replica Exchange Molecular Dynamics
(REMD)
169
8.3.3
High-temperature Unfolding
170
8.3.4
Low-viscosity Simulation Coupled with
Implicit Solvation Models
170
8.3.5
Coarse-grained and Minimalist Models
170
8.3.6
Path Sampling
171
8.3.7
Graph-based Methods
171
8.3.8
Markovian State Model Methods
171
8.4
Validation of Simulation Methodology: Protein
Folding Kinetics
172
8.4.1
Low-viscosity Simulations
172
8.4.2
Estimating Rates with a Two-state
Approximation
173
8.4.3
Markovian State Models (MSMs)
176
8.4.4
Other Approaches
177
8.5
Predicting Protein Folding Pathways
179
8.5.1
Kinetics Simulations
179
8.5.2
Thermodynamics Simulations
181
8.6
Conclusions
182
References
184
Chapter
9
Protein Design: Tailoring Sequence, Structure, and
Folding Properties
Andreas
Lehmann,
Christopher J. Land, Thomas J. Petty II,
Seung-gu Kang and Jeffery G.
Saven
9.1
Introduction
188
9.2
Empirical Approaches to Protein Design
190
9.2.1
Hierarchical Protein Design
190
9.2.2
Combinatorial Methods
191
9.2.3
Directed Evolution
192
9.2.4
Intrinsic Limitations
192
9.3
Computational Approaches to Structured-based Design
193
9.3.1
Backbone Structure and Sequence Constraints
194
9.3.2
Residue Degrees of Freedom
194
9.3.3
Energy Function
195
9.3.4
Solvation
195
9.3.5
Foldability Criteria and Negative Design
196
xiv Contents
9.3.6
Search and Characterization of Sequence
Ensembles
197
9.4
Recent Successes in Protein Design
198
9.4.1
Tailored Mutations for Ultrafast Folding
198
9.4.2
Designing Structure and Sequence
199
9.4.3
Facilitating the Study of Membrane
Proteins
201
9.4.4
Proteins with Non-biological Components
202
9.4.5
Symmetric Structures
202
9.4.6
Computational Methods for Directed
Evolution
203
9.5
Outlook
204
Acknowledgements
204
References
205
Chapter
10
Protein Misfolding and
ß-Amyloid
Formation
Alexandra
Esteras-Chopo,
Maria Teresa Pastor and
Luis Serrano
10.1
Introduction
214
10.2
General Principles of Amyloid Formation
216
10.2.1
Historical Perspective
216
10.2.2
Molecular Basis of Amyloidosis: Protein
Misfolding
217
10.2.3
The Structural Architecture of Amyloid
Fibrils
221
10.2.4
Amyloid Induced
Toxicity
224
10.2.5
Experimental Techniques to Study Amyloid
Formation
226
10.2.6
Cytotoxicity Studies
228
10.3
Experimental Studies on Amyloid Model Systems
229
10.3.1
Diversity and Commonalities in the
Amyloid Protein Family
229
10.3.2
Protein Amyloidogenic Regions
230
Acknowledgements
235
References
235
Chapter
11
Scenarios for Protein Aggregation: Molecular Dynamics
Simulations and Bioinformatics Analysis
Ruxandra
Dima,
Bogdan Tams, G.
Ready, John E.
Sträub
and D.
Thirumalai
11.1
Introduction
241
11.2
Scenarios for
Peptide
Association
243
11.2.1
General Ideas
243
Contents
11.2.2
The Assembly of A)
ßi&-22
Ohgomers
245
11.2.3
Dimerization of
Aß
10-35
Peptides
247
11.2.4
Initial Stages in the
PrPc
Conformational
Transition
251
11.3
Conclusions
262
References
263
Subject Index
266
|
adam_txt |
Contents
Preface
v
Chapter
1
The
α
-Helix as the Simplest Protein Model:
Helix-Coil Theory, Stability, and Design
Andrew James Doig
1.1
Introduction
1
1.2
Structure of the
α
-Helix I
1.2.1
Capping Motifs
2
1.2.2
Metal Binding
3
1.2.3
The3,o-Helix
3
1.2.4
The
π
-Helix
З
1.3
Design of
Peptide
Helices
4
1.3.1
Host-Guest Studies
4
1.3.2
Helix Lengths
5
1.3.3
The Helix
Dipole 5
1.3.4
Acetylation and
Amidation 5
1.3.5
Solubility
6
1.3.6
Concentration Determination
6
1.3.7
Helix Templates
7
1.4
Helix-Coil Theory
7
1.4.1
Zimm-Bragg Model
8
1.4.2
Lifson-Roig Model
8
1.4.3
AGADIR
12
1.4.4
Lomize-Mosberg Model
13
1.5
Forces Affecting
α
-Helix Stability
13
1.5.1
Helix Interior
13
1.5.2
Caps
14
1.5.3
Phosphorylation
15
RSC Biomoiecuiar Sciences
Protein Folding, Misfolding and Aggregation: Classical Themes and Novel Approaches
Edited by Victor
Muñoz
£
Royal Society of Chemistry
2008
ix
Contents
1.5.4
1.5.5
1.5.6
1.5.7
1.5.8
References
Non-covalent Side-chain Interactions
Covalent Side-chain Interactions
Capping Motifs
Ionic Strength
Temperature
18
20
20
20
21
21
Chapter
2
Kinetics and Mechanisms of
α
-Helix Formation
Urmi
Doshi
2.1
Introduction
28
2.2
Experimental Techniques Employed to Study
Helix-Coil Kinetics
31
2.3
Theoretical Approaches to Explore
Helix-Coil Kinetics
34
2.4
General Observations in Helix-Coil Kinetics
35
2.5
Kinetic Theory of the Helix-Coil Transition
37
2.6
Free-Energy Landscape for
α
-Helix Formation
39
2.7
Mechanisms of
α
-Helix Formation
41
2.8
Reaction Coordinates for
я-
Helix Formation
43
2.9
The Nature of the Diffusion Coefficient
for
α
-Helix Formation
44
2.10
Implications for Protein Folding
45
References
46
Chapter
3
The Protein Folding Energy Landscape: A Primer
Peter G. Wolynes
3.1
Energy Landscape: Metaphor and Math
49
3.2
Random Sequences
-
Prehistoric Proteins (Possibly),
but Not Most Modem Proteins
50
3.3
The Statistical Energy Landscape
50
3.4
The Energy Landscape of Long Evolved Proteins
55
3.5
Minimal Frustration. Capillarity,
and Protein Topology
61
3.6
Delightful Prediction of Many of the Devilish Details
of Folding
64
References
66
Chapter
4
Hydrogen Exchange Experiments: Detection and
Characterization of Protein Folding Intermediates
Yawen
Bai
4.1
Introduction
70
4.2
Intrinsic Exchange Rates for Unfolded Polypeptides
71
Contents
xi
4.3 Linderstrom-Lang
Model for Amide Hydrogen
Exchange in Folded Proteins
72
4.4
Characterization of Acid Denatured States
by Hydrogen Exchange
73
4.4.1
Apomyoglobin (AMb)
74
4.4.2
Cytochrome
с
(cyt c)
75
4.4.3
Ribonuclease
H
(RNase H)
75
4.5
Pulsed-Amide H/D Exchange Method
75
4.5.1
Cytochrome
с
78
4.5.2
Apomyoglobin
78
4.5.3
RNase
H
79
4.5.4
Hen Egg White Lysozyme (HEWL)
79
4.6
Native-State Hydrogen Exchange Method
80
4.6.1
Cytochrome
с
82
4.6.2
RNase
H
83
4.6.3
Rd-apocytochrome
hSñj
83
References
83
Chapter
5
Statistical Differential Scanning Calorimetry: Probing
Protein Folding-Unfolding Ensembles
Beatriz
Ibarra-
M
alero
und Jose Manuel
Sanchez-
Rui:
5.1 Differential
Scanning
Calorimetry (DSC)
as a Tool
for the Complete Energetic Description of Protein
Folding Unfolding Thermal Equilibria
85
5.2
Partition Functions of Folding. Unfolding Processes
87
5.3
The Two-state Equilibrium Model:
A Historical Perspective
93
5.4
Folding Free-energy Barriers from Equilibrium DSC
Experiments
96
5.5
The van
"t Hoŕľ
to
Calorimetrie
Enthalpy
Ratio Revisited
98
5.6
Protein Kinetic Stability: Free-energy Barriers for
Irreversible Denaturation from Scan-rate Dependent
DSC
100
References
103
Chapter
6
Fast Protein Folding
Martin Gruebele
6.1
Introduction
¡06
6.2
Fast Folding: Why and How?
108
6.3
Fast Dynamics of Polypeptide Chains
110
6.3.1
Loop Formation 111
6.3.2
Protein Collapse
ä
14
Contents
6.3.3
Secondary Structure Formation
115
6.3.4
Timescales
115
6.4
Microsecond Protein Folding
115
6.4.1
History
115
6.4.2
Sub-millisecond Instrumentation
117
6.4.3
Spectroscopie
Signatures Used in Fast Folding
119
6.4.4
Case Studies
121
6.5
Downhill Folding
127
6.6
Outlook
130
Acknowledgement
131
References
131
Chapter
7
Single Molecule Spectroscopy in Protein Folding: From
Ensembles to Single Molecules
Benjamin
Schuier
7.1
Introduction
139
7.2
History and Principles of Single Molecule Detection
140
7.3
Kinetics: From Ensembles to Single Molecules
141
7.3.1
Rate Constants and Probabilities
143
7.4
Correlation Analysis
146
7.5
FRET Efficiency Distributions and Distance
Dynamics
149
7.5.1
Single Molecule FRET Experiments
149
7.5.2
Timescales and Distance Distributions
150
7.5.3
Dynamics from Transfer Efficiency
Fluctuations
153
7.6
Pleasure, Pain, and Promise of Single Molecule
Experiments
154
Acknowledgements
156
References
156
Chapter
8
Computer Simulations of Protein Folding
Vijay S.
Pande,
Eric J.
Sorin,
Christopher D. Snow and
Young
Min Rhee
8.1
Introduction: Goals and Challenges of Simulating
Protein Folding
161
8.1.1
Simulating Protein Folding
161
8.1.2
What are the Challenges for Atomistic
Simulation?
163
8.2
Protein Folding Models: from Atomistic to Simplified
Representations
164
8.2.1
Atomic Force Fields
164
8.2.2
Implicit Solvation Models
166
Contents
x¡jj
8.2.3 Minimalist Models 167
8.2.4
How Accurate are the Models?
168
8.3
Sampling: Methods to Tackle the Long Timescales
Involved in Folding
169
8.3.1
Tightly Coupled Molecular Dynamics
(TCMD)
169
8.3.2
Replica Exchange Molecular Dynamics
(REMD)
169
8.3.3
High-temperature Unfolding
170
8.3.4
Low-viscosity Simulation Coupled with
Implicit Solvation Models
170
8.3.5
Coarse-grained and Minimalist Models
170
8.3.6
Path Sampling
171
8.3.7
Graph-based Methods
171
8.3.8
Markovian State Model Methods
171
8.4
Validation of Simulation Methodology: Protein
Folding Kinetics
172
8.4.1
Low-viscosity Simulations
172
8.4.2
Estimating Rates with a Two-state
Approximation
173
8.4.3
Markovian State Models (MSMs)
176
8.4.4
Other Approaches
177
8.5
Predicting Protein Folding Pathways
179
8.5.1
Kinetics Simulations
179
8.5.2
Thermodynamics Simulations
181
8.6
Conclusions
182
References
184
Chapter
9
Protein Design: Tailoring Sequence, Structure, and
Folding Properties
Andreas
Lehmann,
Christopher J. Land, Thomas J. Petty II,
Seung-gu Kang and Jeffery G.
Saven
9.1
Introduction
188
9.2
Empirical Approaches to Protein Design
190
9.2.1
Hierarchical Protein Design
190
9.2.2
Combinatorial Methods
191
9.2.3
Directed Evolution
192
9.2.4
Intrinsic Limitations
192
9.3
Computational Approaches to Structured-based Design
193
9.3.1
Backbone Structure and Sequence Constraints
194
9.3.2
Residue Degrees of Freedom
194
9.3.3
Energy Function
195
9.3.4
Solvation
195
9.3.5
Foldability Criteria and Negative Design
196
xiv Contents
9.3.6
Search and Characterization of Sequence
Ensembles
197
9.4
Recent Successes in Protein Design
198
9.4.1
Tailored Mutations for Ultrafast Folding
198
9.4.2
Designing Structure and Sequence
199
9.4.3
Facilitating the Study of Membrane
Proteins
201
9.4.4
Proteins with Non-biological Components
202
9.4.5
Symmetric Structures
202
9.4.6
Computational Methods for Directed
Evolution
203
9.5
Outlook
204
Acknowledgements
204
References
205
Chapter
10
Protein Misfolding and
ß-Amyloid
Formation
Alexandra
Esteras-Chopo,
Maria Teresa Pastor and
Luis Serrano
10.1
Introduction
214
10.2
General Principles of Amyloid Formation
216
10.2.1
Historical Perspective
216
10.2.2
Molecular Basis of Amyloidosis: Protein
Misfolding
217
10.2.3
The Structural Architecture of Amyloid
Fibrils
221
10.2.4
Amyloid Induced
Toxicity
224
10.2.5
Experimental Techniques to Study Amyloid
Formation
226
10.2.6
Cytotoxicity Studies
228
10.3
Experimental Studies on Amyloid Model Systems
229
10.3.1
Diversity and Commonalities in the
Amyloid Protein Family
229
10.3.2
Protein Amyloidogenic Regions
230
Acknowledgements
235
References
235
Chapter
11
Scenarios for Protein Aggregation: Molecular Dynamics
Simulations and Bioinformatics Analysis
Ruxandra
Dima,
Bogdan Tams, G.
Ready, John E.
Sträub
and D.
Thirumalai
11.1
Introduction
241
11.2
Scenarios for
Peptide
Association
243
11.2.1
General Ideas
243
Contents
11.2.2
The Assembly of A)
ßi&-22
Ohgomers
245
11.2.3
Dimerization of
Aß
10-35
Peptides
247
11.2.4
Initial Stages in the
PrPc
Conformational
Transition
251
11.3
Conclusions
262
References
263
Subject Index
266 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)135580811 |
building | Verbundindex |
bvnumber | BV023347752 |
classification_rvk | WD 5100 |
classification_tum | CHE 820f |
ctrlnum | (OCoLC)470606311 (DE-599)BVBBV023347752 |
dewey-full | 572.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.6 |
dewey-search | 572.6 |
dewey-sort | 3572.6 |
dewey-tens | 570 - Biology |
discipline | Biologie Chemie |
discipline_str_mv | Biologie Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01487nam a2200385 c 4500</leader><controlfield tag="001">BV023347752</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091204 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080617s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780854042579</subfield><subfield code="9">978-0-85404-257-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0854042571</subfield><subfield code="9">0-85404-257-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)470606311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023347752</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="1" ind2=" "><subfield code="a">572.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5100</subfield><subfield code="0">(DE-625)148194:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 820f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Protein folding, misfolding and aggregation</subfield><subfield code="b">classical themes and novel approaches</subfield><subfield code="c">ed. by Victor Muñoz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">RSC Publ.</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 272 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">RSC biomolecular sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Protéines</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proteinfaltung</subfield><subfield code="0">(DE-588)4324567-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Proteinfaltung</subfield><subfield code="0">(DE-588)4324567-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muñoz, Victor</subfield><subfield code="d">1965-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135580811</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016531411&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016531411</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023347752 |
illustrated | Illustrated |
index_date | 2024-07-02T21:04:03Z |
indexdate | 2024-07-09T21:16:31Z |
institution | BVB |
isbn | 9780854042579 0854042571 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016531411 |
oclc_num | 470606311 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
physical | XV, 272 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | RSC Publ. |
record_format | marc |
series2 | RSC biomolecular sciences |
spelling | Protein folding, misfolding and aggregation classical themes and novel approaches ed. by Victor Muñoz Cambridge RSC Publ. 2008 XV, 272 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier RSC biomolecular sciences Protéines ram Proteinfaltung (DE-588)4324567-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Proteinfaltung (DE-588)4324567-5 s DE-604 Muñoz, Victor 1965- Sonstige (DE-588)135580811 oth Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016531411&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Protein folding, misfolding and aggregation classical themes and novel approaches Protéines ram Proteinfaltung (DE-588)4324567-5 gnd |
subject_GND | (DE-588)4324567-5 (DE-588)4143413-4 |
title | Protein folding, misfolding and aggregation classical themes and novel approaches |
title_auth | Protein folding, misfolding and aggregation classical themes and novel approaches |
title_exact_search | Protein folding, misfolding and aggregation classical themes and novel approaches |
title_exact_search_txtP | Protein folding, misfolding and aggregation classical themes and novel approaches |
title_full | Protein folding, misfolding and aggregation classical themes and novel approaches ed. by Victor Muñoz |
title_fullStr | Protein folding, misfolding and aggregation classical themes and novel approaches ed. by Victor Muñoz |
title_full_unstemmed | Protein folding, misfolding and aggregation classical themes and novel approaches ed. by Victor Muñoz |
title_short | Protein folding, misfolding and aggregation |
title_sort | protein folding misfolding and aggregation classical themes and novel approaches |
title_sub | classical themes and novel approaches |
topic | Protéines ram Proteinfaltung (DE-588)4324567-5 gnd |
topic_facet | Protéines Proteinfaltung Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016531411&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT munozvictor proteinfoldingmisfoldingandaggregationclassicalthemesandnovelapproaches |