The power of functional resins in organic synthesis:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2008
|
Ausgabe: | 1. Aufl. |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XX, 663 S. Ill., graph. Darst. |
ISBN: | 9783527319367 3527319360 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023334202 | ||
003 | DE-604 | ||
005 | 20090116 | ||
007 | t | ||
008 | 080609s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N06,0788 |2 dnb | ||
016 | 7 | |a 987215787 |2 DE-101 | |
020 | |a 9783527319367 |c Gb. |9 978-3-527-31936-7 | ||
020 | |a 3527319360 |c Gb. |9 3-527-31936-0 | ||
024 | 3 | |a 9783527319367 | |
028 | 5 | 2 | |a 1131936 000 |
035 | |a (OCoLC)267126569 | ||
035 | |a (DE-599)DNB987215787 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-19 | ||
050 | 0 | |a QD262 | |
082 | 0 | |a 547.2 |2 22 | |
084 | |a VK 5500 |0 (DE-625)147401:253 |2 rvk | ||
084 | |a 540 |2 sdnb | ||
245 | 1 | 0 | |a The power of functional resins in organic synthesis |c ed. by Judit Tulla-Puche ... |
250 | |a 1. Aufl. | ||
264 | 1 | |a Weinheim |b WILEY-VCH |c 2008 | |
300 | |a XX, 663 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Gums and resins, Synthetic | |
650 | 4 | |a Organic compounds |x Synthesis | |
650 | 0 | 7 | |a Organische Synthese |0 (DE-588)4075695-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalisierung |g Chemie |0 (DE-588)4279323-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harze |0 (DE-588)4130013-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harze |0 (DE-588)4130013-0 |D s |
689 | 0 | 1 | |a Funktionalisierung |g Chemie |0 (DE-588)4279323-3 |D s |
689 | 0 | 2 | |a Organische Synthese |0 (DE-588)4075695-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tulla-Puche, Judit |e Sonstige |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3060816&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016518089&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016518089 |
Datensatz im Suchindex
_version_ | 1805090542158086144 |
---|---|
adam_text |
Contents
Preftce XIX
Part One Introduction
1 The (Classic Concept of) Solid Support 3
Fernando Albericio andjudit Tulta-Puche
1.1 Introduction 3
1.2 Linkers/Handies 4
1.3 Solid Supports 7
1.3.1 Gel-Type Support 7
1.3.1.1 Polystyrene (PS) Resins 7
1.3.1.2 Polyäthylene Glycol)-Polystyrene (PEG-PS) Resins
1.3.1.3 Hydrophilic PEG-Based Resins 8
1.3.2 Modified Surface Type Supports 10
1.3.2.1 Cellulose Membranes 10
1.3.2.2 Polyolefinic Membranes 11
1.3.2.3 Pellicular Solid Supports 11
Acknowledgments 12
References 12
2 Molecularly Imprinted Polymers 15
Henrik Kempe and Maria Kempe
2.1 Introduction 25
2.2 The Concept of Molecular Imprinting 16
2.2.1 Non-covalent Molecular Imprinting 17
L2.2 Covalent Molecular Imprinting 17
.2.3 Semi-covalent Molecular Imprinting 29
2.4 Metal Ion Mediated Molecular Imprinting 19
* Formats of Molecularly Imprinted Polymers 19
1 Irregularly Shaped Partides 21
2 Beads 22
.1 Homogeneous Polymerization 22
2 Heterogeneous Polymerization 22
er ofFunctkmal fiöins in Orgpnic Synibtsis. Jtuäit TuHa-Puche and Fernando Albericio
t © 2«» WILEY-VCH Vertag GmbH Co. KGaA, Weinheim
V377
VI Contents
2.3.2.3 Two-Step Swelling Polymerization 24
2.3.2.4 Core-Shell Polymerization 24
2.3.2.5 Silica Composite Beads 24
2.3.3 Films and Membranes 24
2.4 Design of MIPS 25
2.4.1 Functional Monomers 25
2.4.2 Cross-linking Monomers 28
2.4.3 The Porogen 28
2.4.4 Initiation of Polymerization 30
2.4.5 Optimization of Imprinting Conditions 30
2.5 Characterization of Molecularly Imprinted Polymers 31
2.5.1 Characterization of Binding Properties of MIPs 31
2.5.2 Characterization of Chemical and Physical Properties of MIPs 34
2.6 Applications of Molecularly Imprinted Polymers 34
2.6.1 Liquid Chromatography 34
2.6.2 Solid-Phase Extraction 35
2.6.3 Solid-Phase Binding Assay 35
2.6.4 Sensors 35
2.6.4.1 Optical Sensors 35
2.6.4.2 Mass Sensitive Sensors 36
2.6.4.3 Electrochemical Sensors 36
2.6.5 Synthetic Enzymes 36
2.7 Conclusions 37
References 37
3 Nanoparticles Functionalized with Bioactive Molecules:
Biomedical Applications 45
Ivonne Olmedo, Ariel R. Guerrero, Eyleen Araya and MarceloJ. Kogan
3.1 Introduction 45
3.2 MNPs 46
3.2.1 Gold Nanoparticles 46
3.2.1.1 Synthesis and Properties 46
3.2.1.2 Functionalization of GNPs with Bioactive Compounds and Biomedical
Applications of Functionalized GNPs 47
3.2.2 Nanoshells and Metal Heterodimers 55
3.2.3 Iron Oxide NPs 57
3.2.3.1 Synthesis and Properties 57
3.2.3.2 Functionalization of IONPs 57
3.2.4 Silver NPs 61
3.2.5 Quantum Dots 62
3.2.6 Nanowires 65
3.3 CNTs 67
3.4 Organic Nanoparticles (ONPs) 68
3.4.1 Synthesis and Properties of ONPs 68
3.4.2 Functionalization Strategies 70
3.4.3 ONPs Types and Applications 73
Contents VII
3.4.3.1 Fluorescent ONPs 73
3.4.3.2 Cancer-Aimed ONPs 73
3.4.3.3 Delivery of ONPs through the Blood-Brain Barrier (BBB) 74
3.4.3.4 Nucleic Acids/Gene Delivery 74
3.4.3.5 Other Biomedical Uses of ONPs 74
3.5 Conclusions 75
Acknowledgments 75
List of Abbreviations 76
References 77
Part Two Solid-Supported Reagents and Scavengers
4 Oxidizing and Reducing Agents 83
Samuel Beligny andjorg Rademann
4.1 Introduction 83
4.2 Considerations Concerning the Nature of the Solid Support Used for
Polymer-Supported Redox Reagents 84
4.3 Oxidizing Resins 84
4.3.1 Novel Oxidative Resins 84
4.3.1.1 Solid-Supported Hypervalent Iodine Reagents 84
4.3.1.2 Supported TEMPO 85
4.3.1.3 Supported Co-oxidants 86
4.3.1.4 Asymmetric Oxidation 88
4.3.1.5 Oxidation with Multi Supported Reagents 88
4.3.1.6 Nanopartides and Polymer Incarcerated Oxidants 89
4.3.1.7 High-Loading Resins 90
4.3.2 Applications of Functional Resins for Oxidation 90
4.3.2.1 Polymer-Supported Chromic Acid 90
4.3.2.2 Applications of Supported TPAP 90
4.3.2.3 Aerobic Oxidation with Polymer-Supported Catalysts 91
4.3.2.4 Osmium Tetroxide 91
4.4 Polymer-Supported Reducing Reagents 92
A A.I Novel Reagents 92
4.4.1.1 Chiral Boranes 92
4.4.1.2 Polymer-Supported Ru-TsDPEN 94
4.4.1.3 Polymer-Supported Hydrazine Hydrate 95
4.4.1.4 Nanopartides and Polymer Incarcerated Reagents 95
4.4.1.5 Polycationic Ultra-borohydride 95
4.4.2 Solid-Supported Reducing Agents and Their Applications 96
4.5 Conclusion 96
References 96
5 Base and Acid Reagents 101
Tadashi Aoyama
5.1 Base Reagents 101
5.1.1 KF/A12O3 101
VIII Contents
5.1.1.1 Generation of Dichlorocarbene 102
5.1.1.2 Acceleration of the Metal-Catalyzed Reaction 102
5.1.1.3 With Microwave 203
5.1.2 Silica-Gel Bound Organic Bases 104
5.1.2.1 For Electroorganic Synthesis 106
5.1.3 Others 106
5.2 Acid Reagents 108
5.2.1 SSA 108
5.2.2 HClO4/SiO2 110
5.2.3 HBF4/SiO2 111
5.2.4 Silica-Gel Supported Heteropoly Acid 112
5.2.5 Others 112
5.3 Applications 123
5.4 Conclusions 115
list of Abbreviations 226
References 116
6 Nucleophilic, Electrophilic and Radical Reactions 222
Magnus Johansson and Nina Kann
6.1 Introduction 121
6.2 Polymer-Supported Nucleophilic Reagents 222
6.2.1 Polymer-Supported Secondary Amines 222
6.2.2 Reactions with Polymer-Bound Phosphanes 223
6.2.3 The Wittig Reaction and Related Olefination Reactions 226
6.2.4 Nudeophiles Anchored to Anion Exchange Resins 127
6.3 Reagents for Electrophilic Reactions 129
6.3.1 Reagents for Alkylation and Silylation 229
6.3.2 Reagents for Acylation and Sulfonylation 232
6.3.3 Nitrogen Electrophiles on Solid Phase 232
6.3.4 Electrophilic Bromination Reagents 233
6.4 Radical Reactions Using Supported Reagents 234
6.5 Conclusions 236
list of Abbreviations 236
References 237
7 Coupling and Introducing Building Block Reagents 141
Rafael Chinchilla and Carmen Najera
7.1 Introduction 142
7.2 Supported Carbodiimide and Isourea Reagents 242
7.3 Supported Aminium and Uronium Reagents 146
7.4 Supported Phosphorous-Containing Reagents 250
7.5 Other Supported Coupling Reagents 252
7.6 Active Ester-Forming Polymeric Reagents 258
7.6.1 Phenol-Derived Polymers 159
7.6.2 N-Hydroxysuccinimide-Derived Polymers 163
Contents IX
7.6.3 N-Hydroxybenzotriazole-Derived Polymers 168
7.6A Other Active Ester-Forming Polymers 174
7.7 Conclusions 176
References 177
8 Supported/Tagged Scavengers for Facilitating High-Throughput
Chemistry 183
Paul R. Hanson, Thiwanka Samarakoon and Alan Rolfe
8.1 Introduction 183
8.2 Supported/Tagged Reactive Functionalities for the Sequestration of
Nudeophiles (Nudeophile/Electrophilic Scavengers) 185
8.2.1 Polystyrene Resin-Supported Scavengers 185
8.2.1.1 Resin-Supported Isocyanates 185
8.2.1.2 Resin-Supported Anhydrides and Acid Chlorides 188
8.2.1.3 Resin-Supported Aldehydes 188
8.2.1.4 Resin-Supported Diketones 189
8.2.1.5 Resin-Supported Maleimide 189
8.2.1.6 Resin-Supported Diazonium Salts 192
8.2.1.7 Resin-Supported Halide 192
8.2.2 PEG-Supported Scavengers 193
8.2.2.1 PEG-Supported Dichlorotriazine (DCT) 193
8.2.3 Silica-Supported Scavengers 194
8.2.3.1 Silica-Supported DCT 194
8.2.4 Fluorous-Tagged Scavengers 194
8.2.4.1 Fluorous-Tagged Anhydrides and Isocyanates 196
8.2.4.2 Fluorous-Tagged Sulfonyl Chlorides and Acid Chlorides and
Epoxides 197
8.2.4.3 Fluorous-Tagged Aldehyde 197
8.2.4.4 Fluorous-Tagged DCT 198
8.2.5 ROMP-Derived Electrophilic Scavengers 200
8.2.6 ROMP-Gel Anhydride 202
8.2.6.1 Oligomeric Bis-acid Chloride 203
8.2.6.2 Oligomeric Sulfonyl Chloride (OSC) 204
8.2.6.3 Oligomeric Phosphonyl Chloride 205
8.3 Supported/Tagged Reactive Functionalities for the Sequestration of
Electrophiles (Electrophile/Nucleophilic Scavengers) 205
8.3.1 Polystyrene Resin-Based Scavengers 206
8.3.1.1 Supported Amine 206
8.3.1.2 Supported Thiols 207
8.3.1.3 Supported Phosphines 207
8.3.1.4 Supported Anthracene for Dienophile Scavenging 209
8.3.1.5 Supported Hydrazines 209
8.3.1.6 Supported Acids/Bases for Scavenging 209
8.3.1.7 Scavengers in "Tablets" 211
8.3.1.8 Magnetically-Tagged Nanopartide for Impurity Removal 211
X Contents
8.3.1.9 Phase Switching-Bipyridyl Tagging Approaches to Scavengers 212
8.3.1.10 PEG-Supported Amine Scavenger Microgels 212
8.3.1.11 Application of Polystyrene Resin-Supported Scavengers towards the
Synthesis of Natural Products 213
8.3.1.12 Application of Polystyrene Resin-Supported Scavengers towards Library
Synthesis 214
8.3.1.13 Application of Polystyrene Resin-Supported Scavengers in a Flow-
through Platform towards Combinatorial Libraries and Natural Product
Synthesis 215
8.3.2 Silica-Supported Scavengers 217
8.3.2.1 Silica-Supported Amines 217
8.3.2.2 Silica-Supported Thiols 218
8.3.3 Fluorous-Tagged Scavengers 219
8.3.3.1 Fluorous-Tagged Thiols 219
8.3.3.2 Fluorous-Tagged Dienophile 220
8.3.4 Supported Ionic Platforms for Scavenging Electrophiles 220
8.3.4.1 Task Specific Ionic Liquid Amine 220
8.3.5 ROMP-Derived Nudeophilic Scavengers 222
8.4 Conclusion 223
References 223
9 Metal Scavengers 227
Aubrey Mendonca
9.1 Background 227
9.2 Medicinal Chemistry Uses of Metals 228
9.2.1 New Chemistries 228
9.2.2 Examples of Drugs Involving Use of Metals as Catalysts 229
9.3 Process Chemistry Uses of Metals 230
9.3.1 Large-Scale Removal of Metals in Chemistry 230
9.3.2 Alternatives to Functional Resins 230
9.4 Players in the Field 231
9.4.1 ChemRoutes 231
9.4.2 Silicyde 231
9.4.3 Aldrich 232
9.4.4 Reaxa 233
9.4.5 Polymer Laboratories/Varian 233
9.4.6 Degussa 235
9.4.7 Johnson Matthey Chemicals 236
9.5 Silica Manufacture of the Metal Scavenger Resins 236
9.5.1 Irregular Silica 237
9.5.2 Uniform Silica 237
9.6 Polymer Manufacture of the Metal Scavenger Resins 237
9.6.1 Polystyrene Based Resins 237
9.6.2 Macroporous Based Resin 238
9.6.3 Gel-Type Resin 238
Content! | XI
9.7 Palladium Removal in Organic Chemistry 239
9.8 Platinum Removal in Organic Chemistry 240
9.9 Ruthenium and Tin Removal in Organic Chemistry 240
9.10 Other Metals Removal 241
9.11 Conclusion 241
List of Abbreviations 242
References 242
Part Three Resin-Bound Catalysts
10 Polymer-Supported Organocatalysts 247
Belin Altava, M. Isabel Burguete and Santiago V. Luis
10.1 Introduction 247
10.2 Polymer-Supported Acidic Catalysts 250
10.2.1 Catalysis by Strongly Acidic Ion Exchange Resins 250
10.2.1.1 Conventional Polystyrene Sulfonic Resins 250
10.2.1.2 Modification of Conventional Sulfonated Polystyrene Resins 254
10.2.2 Catalysis by Perfluorinated Sulfonic Acid Polymers 256
10.2.3 Catalysis by Functional Polymers Containing Specific Acidic Sites 260
10.3 Polymer-Supported Basic Catalysts 261
10.3.1 Catalysis by Anion Exchange Resins 261
10.3.2 Catalysis by Non-chiral Polymer-Supported Amines and
Phosphines 263
10.3.3 Polymer-Supported Chiral Basic Catalysts 270
10.4 Polymer-Supported Phase Transfer Catalysts 273
10.4.1 Non-chiral PTC Using Insoluble Supports 273
10.4.2 Chiral PTC Using Insoluble Supports 276
10.4.3 PTC Using Soluble Supports 278
10.5 Polymer-Supported Oxidation Catalysts 280
10.5.1 Non-chiral Polymer-Supported Oxidation Catalysts 280
10.5.2 Chiral Polymer-Supported Oxidation Catalysts 283
10.6 Polymer-Supported Organocatalysts Based on Amino Acids 285
10.6.1 Polymer-Supported Proline and Related Catalysts 286
10.6.2 Polymer-Supported Peptides and Related Catalysts 290
10.7 Polymer-Supported Imidazolium, Thiazolium and Related
Structures 293
10.8 Miscellaneous Organocatalysts 294
10.9 Conclusions 296
list of Abbreviations 297
References 298
11 Transition Metal Catalysts 309
Rajiv Banavali, Martin J. Deetz and Alfred K. Schultz
11.1 Introduction 309
11.2 Synthetic Avenues for Producing Metal Loaded Organic Resins 309
XII Contents
11.2.1 Covalent Bonding 310
11.2.2 Coordination Complexes 310
11.2.3 Precipitation 311
11.2.4 Microstructural Aspects of Organic Functional Resins 313
11.3 Reactions Utilizing Transition Metal Catalysts Supported on Organic
Resins 316
11.3.1 Hydrogenation 326
11.3.2 Bi-functional Catalysis 319
11.3.3 Isomerization of Olefins 319
11.3.4 Hydrosilylation Reaction 320
11.3.5 Aldol Reactions 320
11.3.6 The C-0 Coupling Reaction 321
11.4 Commercial Interest in Transition Metal Catalysts 322
11.4.1 Methyl Isobutyl Ketone (MIBK) Synthesis 322
11.4.2 Conversion of Glycerol into 1,2-Propanediol 323
11.4.3 Oxidation-Synthesisof H2O2 324
11.4.4 Hydrogenation of N-O Bonds 324
11.4.5 Removal of Oxygen from Water 325
11.5 Conclusions and Future Outlook 326
Acknowledgments 326
References 326
12 Chiral Auxiliaries on Solid Support 329
Peter Caertner and Amitava Kundu
12.1 Introduction 329
12.2 Carbohydrate Derived Auxiliaries 330
12.3 Alcohols as Chiral Auxiliaries 332
12.4 Amine Derived Auxiliaries 336
12.5 Oxazolidinones, Oxazolidines and Oxazolines as Auxiliaries 341
12.6 Sulfoxide, Sulfmamide and Sulfoximine Auxiliaries 348
12.7 Cydohexanone as a Chiral Auxiliary 352
12.8 An Enone as a Chiral Auxiliary 352
12.9 Hydrobenzoin Derived Auxiliaries 355
12.10 Conclusion 360
References 361
13 Immobilized Enzymes in Organic Synthesis 365
Jesper Brask
13.1 Introduction 365
13.1.1 Enzyme Classification and Availability 366
13.1.2 Popular Enzymes for Biocatalysis 366
13.1.2.1 Upases 366
13.1.2.2 Oxidoreductases 367
13.1.2.3 Nitrile-Converting Enzymes 368
13.1.3 Solvents and Stability 368
Contents XIII
13.1.4 Predicting Hydrolase Enantiopreference 369
13.2 Immobilized Enzymes 370
13.2.1 Immobilization without Carrier 371
13.2.1.1 Cross-linking 371
13.2.1.2 Entrapment 372
13.2.2 Immobilization on a Carrier 372
13.2.2.1 Adsorption 373
13.2.2.2 Covalent Binding 374
13.3 Applications 375
13.3.1 Novozym 435 -A Versatile Immobilized Biocatalyst 375
13.3.2 Immobilized Enzymes in Industrial-Scale Biocatalysis 377
13.4 Concluding Remarks 377
References 378
Part Four Resins for Solid Phase Synthesis
14 Acid-Labile Resins 383
Peter D. White
14.1 Introduction: Linker Design 383
14.2 Linker Types 387
14.2.1 Benzyl-Based Linkers 387
14.2.2 Benzhydryl-Based Linkers 397
14.2.3 Trityl-Based Linkers 400
14.2.4 Cyclic Linkers 402
14.2.5 Silyl-Based Linkers 403
14.2.6 Acetal/Aminal-Type Linkers 404
14.3 The Cleavage Reaction 405
14.4 Functional Group and Linker Combinations 408
list of Abbreviations 412
References 413
15 Base/Nucleophile-Labile Resins 417
Francesc Rabanal
15.1 Introduction 417
15.2 Nudeophile-Labile Resins 417
15.2.1 Intermolecular Nudeophilic Displacement 420
15.2.1.1 Hydroxy Functionalized Linkers and Resins and Related Ones 420
15.2.1.2 Carboxy- and Sulfonic-Based Linkers and Resins 424
15.2.2 Intramolecular Nudeophilic Displacement: Cleavage by
Cydization 426
15.2.2.1 Cydic Peptides 426
15.2.2.2 Diketopiperazines 427
15.2.2.3 Hydantoins 427
15.2.2.4 Benzodiazepinones 428
15.3 Base-Labile linkers and Resins 429
XIV Contents
Acknowledgments 432
list of Abbreviations 432
References 433
16 Safety-Catch and Traceless Linkers in Solid Phase Organic
Synthesis 437
Matthias Sebastian Wiehn, Nicole Jung, and Stefan Erase
16.1 Introduction 437
16.2 Safety-Catch Linkers 437
16.3 Traceless Linkers 450
16.4 Conclusions 460
list of Abbreviations 460
References 462
17 Photolabile and Miscellaneous Linkers/Resins 467
Soo Sung Kang and Mark A. Upton
17.1 Introduction 467
17.2 Types of Photolabile linker 467
17.2.1 o-Nitrobenzyl as a Photolabile Group 467
17.2.1.1 o-Nitrobenzyl Linker 468
17.2.1.2 4-Bromomethyl-3-Nitrobenzoic Acid Derived Linker 469
17.2.1.3 Hydroxynitrobenzyl and Nitroveratryl Linkers 471
17.2.1.4 a-Substituted Nitrobenzyl Linkers 474
17.2.1.5 Comparison of o-Nitrobenzyl Linkers 476
17.2.2 Functionalized Phenylacyl Linkers 477
17.2.2.1 Benzoin Linker 478
17.2.2.2 Phenacyl Linker 479
17.2.2.3 o-Methylphenacyl Linker 482
17.2.3 Pivaloyl linker 484
17.2.4 Miscellaneous Photolabile Linkers 485
17.3 Miscellaneous linkers 487
17.3.1 1,3-Dithiane linker 487
17.3.2 p-Alkoxybenzyl linker 488
17.3.3 Alkene-Functionalized Linker 488
17.4 Conclusion 489
list of Abbreviations 490
References 490
Part Five Solid Phase Synthesis of Biomolecules. The State of the Art
(from the Resin Point of View)
18 Peptides 495
Judit Tulla-Puche and Fernando Albericio
18.1 Introduction 495
18.2 Methodological Remarks 496
18.2.1 Solid Supports 497
Contents XV
18.2.2 Protecting Groups 497
18.3 Coupling Reagents 498
18.4 Synthesis of Long Peptides 499
18.4.1 Convergent Approaches 500
18.4.1.1 Hybrid Approaches: The Synthesis of Enfuvirtide 500
18.4.1.2 Solid Phase Fragment Coupling: Synthesis of Hirudin 502
18.4.2 Stepwise Approaches 503
18.4.2.1 PEG Resins 504
18.4.2.2 Pseudoprolines 504
18.4.2.3 O-Acyl Isopeptide 506
18.5 Native Chemical Iigation 508
18.5.1 Example: Synthesis of a 203 Amino Acid Covalent Dimer, HIV-1
Protease [146] 515
18.6 Cyclic Peptides 516
18.6.1 Example: Solid Phase Synthesis of Argadin by a Side-Anchoring
Approach [169] 517
18.7 Depsipeptides 519
18.7.1 Example: Synthesis of H-L(1)EAKLKELEAKA.(12)AALEAKLKELEAKL-
OH (L12X.) 519
18.8 Click Chemistry 520
list of Abbreviations 521
References 522
19 Oligonucleotides and Their Derivatives 529
Dmitry A Stetsenko
19.1 Polymer Supported Oligonucleotide Synthesis: An Overview and
History 529
19.1.1 Introduction to Nucleic Acid Synthesis: Never-Ending Quest for
Excellence 529
19.1.2 Dawn of the Oligonucleotide Synthesis 530
19.1.3 Phosphodiester and Phosphotriester Methods: A Slow Maturity 530
19.1.4 Phosphite Triester and Phosphoramidite Methods:
A Breakthrough 534
19.1.5 H-Phosphonate Method: Encouraging Diversity 536
19.2 Supports for the Polymer-Supported Synthesis of
Oligonucleotides 538
19.2.1 Polystyrene (PS) Resins 538
19.2.1.1 "Popcorn" Polystyrene 538
19.2.1.2 Low Cross-linked Polystyrene 538
19.2.1.3 Highly Cross-linked (Macroporous) Polystyrene 540
19.2.1.4 Polystyrene - Poly (ethylene glycol) (PEG-PS) Composite
Supports 540
19.2.1.5 Linear Polystyrene Grafted onto Other Polymer 540
19.2.2 Polyacrylamide (PA) Resins 541
19.2.3 Silica Gel Supports 542
XVI Contents
19.2.4 Miscellaneous Polymers, Surface-Modified Materials and Composite
Supports 542
19.3 Linkers and Anchor Groups for Solid Phase Oligonucleotide
Synthesis 545
19.3.1 Linkers for the Synthesis of 3'- or 5'-Unmodified
Oligonudeotides 545
19.3.1.1 Acid-Labile Trityl Linkers 545
19.3.1.2 Base-Labile Acyl Linkers 546
19.3.1.3 Carbonic Acid Linkers, Carbamate and Carbonate 549
19.3.1.4 Silyl, Silanediyl and Disiloxanediyl Linkers 551
19.3.2 Linkers for the Synthesis of Phosphorylated, Thiophosphorylated or
Other Related Oligonudeotides 553
19.3.2.1 Phosphoramidate and Phosphorothiolate Linkages 553
19.3.2.2 Base-Labile Linkers Based on p-Elimination 554
19.3.2.3 Reduction Linkers Based on Disulfide Bond 556
19.3.2.4 Miscellaneous Phosphate Linkers 557
19.3.3 Linkers for the Synthesis of Oligonudeotides 3'-Functionalized with
Other Chemical Groups 559
19.3.3.1 Amino Group 559
19.3.3.2 Thiol Group 561
19.3.3.3 Carboxyl Group 563
19.3.4 Speciality Linkers 564
19.4 Oligonudeotide Synthesis on Soluble Polymer Supports 565
19.5 Oligonudeotide Synthesis with Polymer-Supported Reagents 568
19.6 Condusions 570
list of Abbreviations 570
References 572
20 Oligosaccharides 585
Peter H. Seeberger and Harold Wippo
20.1 Introduction 585
20.2 Insoluble Resins 586
20.2.1 Controlled-Pore Glass (CPG) 586
20.2.2 Polystyrene Resins 586
20.2.2.1 Polystyrene Resin Cross-linked with Divinylbenzene 586
20.2.2.2 PEG Grafted Polystyrenes 588
20.2.3 Magnetic Partides 588
20.3 Soluble Resins 590
20.3.1 MPEG Resins 590
20.3.2 Hyperbranched Soluble Resins 591
20.3.2.1 Hyperbranched Polyester 592
20.3.2.2 PAMAM 592
20.3.3 Ionic Liquids 594
20.4 Linkers 594
20.4.1 Add- and Base-Labile linkers 594
Contents XVII
20.4.1.1 Acid-Labile Linkers 594
20.4.1.2 Base-Labile Linkers 596
20.4.2 Linkers Cleaved by Olefin Metathesis 597
20.4.3 Photocleavable Linkers 597
20.4.4 Silyl Ether Linkers 598
20.4.5 Boronate Linkers 599
20.4.6 Thiol-Group Containing Linkers 600
20.4.7 Linkers Cleaved Under Oxidative Conditions 601
20.4.8 Linkers Cleaved by Reduction 602
20.4.9 Cleavage by Hydrogenolysis 602
20.4.10 Enzymatically Cleavable Linkers 603
20.5 Capture and Release Techniques 604
20.6 Conclusions 607
list of Abbreviations 607
References 609
21 High-Throughput Synthesis of Natural Products 613
Nicolas Winssinger, Sofia Barluenga and Pierre-Yves Dakas
21.1 Introduction 613
21.2 Solid Phase Elaboration of Natural Product Scaffolds 614
21.3 Solid Phase Synthesis of Natural Products 616
21.4 Synthesis of Natural Products Using Immobilized Reagents 623
21.5 Synthesis of Natural Products Using Isolation Tags 627
21.6 Combinatorial Synthesis of Libraries Based on Important Natural
Product Motifs 630
21.6.1 Structure-Based Libraries Targeting Kinases and Other Purine-
Dependent Enzymes 631
21.6.2 Libraries Based on a Privileged Scaffold-Discovery of
Fexaramine 633
21.6.3 Inhibitors of Histone Deacetylases (HDAC) 634
21.6.4 Secramine 634
21.6.5 Carpanone 635
21.6.6 Natural-Product Inspired Synthesis of ap-Unsaturated-8-Lactones 635
21.7 Conclusion 636
List of Abbreviations 636
References 637
Index 641 |
adam_txt |
Contents
Preftce XIX
Part One Introduction
1 The (Classic Concept of) Solid Support 3
Fernando Albericio andjudit Tulta-Puche
1.1 Introduction 3
1.2 Linkers/Handies 4
1.3 Solid Supports 7
1.3.1 Gel-Type Support 7
1.3.1.1 Polystyrene (PS) Resins 7
1.3.1.2 Polyäthylene Glycol)-Polystyrene (PEG-PS) Resins
1.3.1.3 Hydrophilic PEG-Based Resins 8
1.3.2 Modified Surface Type Supports 10
1.3.2.1 Cellulose Membranes 10
1.3.2.2 Polyolefinic Membranes 11
1.3.2.3 Pellicular Solid Supports 11
Acknowledgments 12
References 12
2 Molecularly Imprinted Polymers 15
Henrik Kempe and Maria Kempe
2.1 Introduction 25
2.2 The Concept of Molecular Imprinting 16
2.2.1 Non-covalent Molecular Imprinting 17
L2.2 Covalent Molecular Imprinting 17
.2.3 Semi-covalent Molecular Imprinting 29
2.4 Metal Ion Mediated Molecular Imprinting 19
* Formats of Molecularly Imprinted Polymers 19
1 Irregularly Shaped Partides 21
2 Beads 22
.1 Homogeneous Polymerization 22
2 Heterogeneous Polymerization 22
er ofFunctkmal fiöins in Orgpnic Synibtsis. Jtuäit TuHa-Puche and Fernando Albericio
t © 2«» WILEY-VCH Vertag GmbH Co. KGaA, Weinheim
V377
VI Contents
2.3.2.3 Two-Step Swelling Polymerization 24
2.3.2.4 Core-Shell Polymerization 24
2.3.2.5 Silica Composite Beads 24
2.3.3 Films and Membranes 24
2.4 Design of MIPS 25
2.4.1 Functional Monomers 25
2.4.2 Cross-linking Monomers 28
2.4.3 The Porogen 28
2.4.4 Initiation of Polymerization 30
2.4.5 Optimization of Imprinting Conditions 30
2.5 Characterization of Molecularly Imprinted Polymers 31
2.5.1 Characterization of Binding Properties of MIPs 31
2.5.2 Characterization of Chemical and Physical Properties of MIPs 34
2.6 Applications of Molecularly Imprinted Polymers 34
2.6.1 Liquid Chromatography 34
2.6.2 Solid-Phase Extraction 35
2.6.3 Solid-Phase Binding Assay 35
2.6.4 Sensors 35
2.6.4.1 Optical Sensors 35
2.6.4.2 Mass Sensitive Sensors 36
2.6.4.3 Electrochemical Sensors 36
2.6.5 Synthetic Enzymes 36
2.7 Conclusions 37
References 37
3 Nanoparticles Functionalized with Bioactive Molecules:
Biomedical Applications 45
Ivonne Olmedo, Ariel R. Guerrero, Eyleen Araya and MarceloJ. Kogan
3.1 Introduction 45
3.2 MNPs 46
3.2.1 Gold Nanoparticles 46
3.2.1.1 Synthesis and Properties 46
3.2.1.2 Functionalization of GNPs with Bioactive Compounds and Biomedical
Applications of Functionalized GNPs 47
3.2.2 Nanoshells and Metal Heterodimers 55
3.2.3 Iron Oxide NPs 57
3.2.3.1 Synthesis and Properties 57
3.2.3.2 Functionalization of IONPs 57
3.2.4 Silver NPs 61
3.2.5 Quantum Dots 62
3.2.6 Nanowires 65
3.3 CNTs 67
3.4 Organic Nanoparticles (ONPs) 68
3.4.1 Synthesis and Properties of ONPs 68
3.4.2 Functionalization Strategies 70
3.4.3 ONPs Types and Applications 73
Contents VII
3.4.3.1 Fluorescent ONPs 73
3.4.3.2 Cancer-Aimed ONPs 73
3.4.3.3 Delivery of ONPs through the Blood-Brain Barrier (BBB) 74
3.4.3.4 Nucleic Acids/Gene Delivery 74
3.4.3.5 Other Biomedical Uses of ONPs 74
3.5 Conclusions 75
Acknowledgments 75
List of Abbreviations 76
References 77
Part Two Solid-Supported Reagents and Scavengers
4 Oxidizing and Reducing Agents 83
Samuel Beligny andjorg Rademann
4.1 Introduction 83
4.2 Considerations Concerning the Nature of the Solid Support Used for
Polymer-Supported Redox Reagents 84
4.3 Oxidizing Resins 84
4.3.1 Novel Oxidative Resins 84
4.3.1.1 Solid-Supported Hypervalent Iodine Reagents 84
4.3.1.2 Supported TEMPO 85
4.3.1.3 Supported Co-oxidants 86
4.3.1.4 Asymmetric Oxidation 88
4.3.1.5 Oxidation with Multi Supported Reagents 88
4.3.1.6 Nanopartides and Polymer Incarcerated Oxidants 89
4.3.1.7 High-Loading Resins 90
4.3.2 Applications of Functional Resins for Oxidation 90
4.3.2.1 Polymer-Supported Chromic Acid 90
4.3.2.2 Applications of Supported TPAP 90
4.3.2.3 Aerobic Oxidation with Polymer-Supported Catalysts 91
4.3.2.4 Osmium Tetroxide 91
4.4 Polymer-Supported Reducing Reagents 92
A A.I Novel Reagents 92
4.4.1.1 Chiral Boranes 92
4.4.1.2 Polymer-Supported Ru-TsDPEN 94
4.4.1.3 Polymer-Supported Hydrazine Hydrate 95
4.4.1.4 Nanopartides and Polymer Incarcerated Reagents 95
4.4.1.5 Polycationic Ultra-borohydride 95
4.4.2 Solid-Supported Reducing Agents and Their Applications 96
4.5 Conclusion 96
References 96
5 Base and Acid Reagents 101
Tadashi Aoyama
5.1 Base Reagents 101
5.1.1 KF/A12O3 101
VIII Contents
5.1.1.1 Generation of Dichlorocarbene 102
5.1.1.2 Acceleration of the Metal-Catalyzed Reaction 102
5.1.1.3 With Microwave 203
5.1.2 Silica-Gel Bound Organic Bases 104
5.1.2.1 For Electroorganic Synthesis 106
5.1.3 Others 106
5.2 Acid Reagents 108
5.2.1 SSA 108
5.2.2 HClO4/SiO2 110
5.2.3 HBF4/SiO2 111
5.2.4 Silica-Gel Supported Heteropoly Acid 112
5.2.5 Others 112
5.3 Applications 123
5.4 Conclusions 115
list of Abbreviations 226
References 116
6 Nucleophilic, Electrophilic and Radical Reactions 222
Magnus Johansson and Nina Kann
6.1 Introduction 121
6.2 Polymer-Supported Nucleophilic Reagents 222
6.2.1 Polymer-Supported Secondary Amines 222
6.2.2 Reactions with Polymer-Bound Phosphanes 223
6.2.3 The Wittig Reaction and Related Olefination Reactions 226
6.2.4 Nudeophiles Anchored to Anion Exchange Resins 127
6.3 Reagents for Electrophilic Reactions 129
6.3.1 Reagents for Alkylation and Silylation 229
6.3.2 Reagents for Acylation and Sulfonylation 232
6.3.3 Nitrogen Electrophiles on Solid Phase 232
6.3.4 Electrophilic Bromination Reagents 233
6.4 Radical Reactions Using Supported Reagents 234
6.5 Conclusions 236
list of Abbreviations 236
References 237
7 Coupling and Introducing Building Block Reagents 141
Rafael Chinchilla and Carmen Najera
7.1 Introduction 142
7.2 Supported Carbodiimide and Isourea Reagents 242
7.3 Supported Aminium and Uronium Reagents 146
7.4 Supported Phosphorous-Containing Reagents 250
7.5 Other Supported Coupling Reagents 252
7.6 Active Ester-Forming Polymeric Reagents 258
7.6.1 Phenol-Derived Polymers 159
7.6.2 N-Hydroxysuccinimide-Derived Polymers 163
Contents IX
7.6.3 N-Hydroxybenzotriazole-Derived Polymers 168
7.6A Other Active Ester-Forming Polymers 174
7.7 Conclusions 176
References 177
8 Supported/Tagged Scavengers for Facilitating High-Throughput
Chemistry 183
Paul R. Hanson, Thiwanka Samarakoon and Alan Rolfe
8.1 Introduction 183
8.2 Supported/Tagged Reactive Functionalities for the Sequestration of
Nudeophiles (Nudeophile/Electrophilic Scavengers) 185
8.2.1 Polystyrene Resin-Supported Scavengers 185
8.2.1.1 Resin-Supported Isocyanates 185
8.2.1.2 Resin-Supported Anhydrides and Acid Chlorides 188
8.2.1.3 Resin-Supported Aldehydes 188
8.2.1.4 Resin-Supported Diketones 189
8.2.1.5 Resin-Supported Maleimide 189
8.2.1.6 Resin-Supported Diazonium Salts 192
8.2.1.7 Resin-Supported Halide 192
8.2.2 PEG-Supported Scavengers 193
8.2.2.1 PEG-Supported Dichlorotriazine (DCT) 193
8.2.3 Silica-Supported Scavengers 194
8.2.3.1 Silica-Supported DCT 194
8.2.4 Fluorous-Tagged Scavengers 194
8.2.4.1 Fluorous-Tagged Anhydrides and Isocyanates 196
8.2.4.2 Fluorous-Tagged Sulfonyl Chlorides and Acid Chlorides and
Epoxides 197
8.2.4.3 Fluorous-Tagged Aldehyde 197
8.2.4.4 Fluorous-Tagged DCT 198
8.2.5 ROMP-Derived Electrophilic Scavengers 200
8.2.6 ROMP-Gel Anhydride 202
8.2.6.1 Oligomeric Bis-acid Chloride 203
8.2.6.2 Oligomeric Sulfonyl Chloride (OSC) 204
8.2.6.3 Oligomeric Phosphonyl Chloride 205
8.3 Supported/Tagged Reactive Functionalities for the Sequestration of
Electrophiles (Electrophile/Nucleophilic Scavengers) 205
8.3.1 Polystyrene Resin-Based Scavengers 206
8.3.1.1 Supported Amine 206
8.3.1.2 Supported Thiols 207
8.3.1.3 Supported Phosphines 207
8.3.1.4 Supported Anthracene for Dienophile Scavenging 209
8.3.1.5 Supported Hydrazines 209
8.3.1.6 Supported Acids/Bases for Scavenging 209
8.3.1.7 Scavengers in "Tablets" 211
8.3.1.8 Magnetically-Tagged Nanopartide for Impurity Removal 211
X Contents
8.3.1.9 Phase Switching-Bipyridyl Tagging Approaches to Scavengers 212
8.3.1.10 PEG-Supported Amine Scavenger Microgels 212
8.3.1.11 Application of Polystyrene Resin-Supported Scavengers towards the
Synthesis of Natural Products 213
8.3.1.12 Application of Polystyrene Resin-Supported Scavengers towards Library
Synthesis 214
8.3.1.13 Application of Polystyrene Resin-Supported Scavengers in a Flow-
through Platform towards Combinatorial Libraries and Natural Product
Synthesis 215
8.3.2 Silica-Supported Scavengers 217
8.3.2.1 Silica-Supported Amines 217
8.3.2.2 Silica-Supported Thiols 218
8.3.3 Fluorous-Tagged Scavengers 219
8.3.3.1 Fluorous-Tagged Thiols 219
8.3.3.2 Fluorous-Tagged Dienophile 220
8.3.4 Supported Ionic Platforms for Scavenging Electrophiles 220
8.3.4.1 Task Specific Ionic Liquid Amine 220
8.3.5 ROMP-Derived Nudeophilic Scavengers 222
8.4 Conclusion 223
References 223
9 Metal Scavengers 227
Aubrey Mendonca
9.1 Background 227
9.2 Medicinal Chemistry Uses of Metals 228
9.2.1 New Chemistries 228
9.2.2 Examples of Drugs Involving Use of Metals as Catalysts 229
9.3 Process Chemistry Uses of Metals 230
9.3.1 Large-Scale Removal of Metals in Chemistry 230
9.3.2 Alternatives to Functional Resins 230
9.4 Players in the Field 231
9.4.1 ChemRoutes 231
9.4.2 Silicyde 231
9.4.3 Aldrich 232
9.4.4 Reaxa 233
9.4.5 Polymer Laboratories/Varian 233
9.4.6 Degussa 235
9.4.7 Johnson Matthey Chemicals 236
9.5 Silica Manufacture of the Metal Scavenger Resins 236
9.5.1 Irregular Silica 237
9.5.2 Uniform Silica 237
9.6 Polymer Manufacture of the Metal Scavenger Resins 237
9.6.1 Polystyrene Based Resins 237
9.6.2 Macroporous Based Resin 238
9.6.3 Gel-Type Resin 238
Content! | XI
9.7 Palladium Removal in Organic Chemistry 239
9.8 Platinum Removal in Organic Chemistry 240
9.9 Ruthenium and Tin Removal in Organic Chemistry 240
9.10 Other Metals Removal 241
9.11 Conclusion 241
List of Abbreviations 242
References 242
Part Three Resin-Bound Catalysts
10 Polymer-Supported Organocatalysts 247
Belin Altava, M. Isabel Burguete and Santiago V. Luis
10.1 Introduction 247
10.2 Polymer-Supported Acidic Catalysts 250
10.2.1 Catalysis by Strongly Acidic Ion Exchange Resins 250
10.2.1.1 Conventional Polystyrene Sulfonic Resins 250
10.2.1.2 Modification of Conventional Sulfonated Polystyrene Resins 254
10.2.2 Catalysis by Perfluorinated Sulfonic Acid Polymers 256
10.2.3 Catalysis by Functional Polymers Containing Specific Acidic Sites 260
10.3 Polymer-Supported Basic Catalysts 261
10.3.1 Catalysis by Anion Exchange Resins 261
10.3.2 Catalysis by Non-chiral Polymer-Supported Amines and
Phosphines 263
10.3.3 Polymer-Supported Chiral Basic Catalysts 270
10.4 Polymer-Supported Phase Transfer Catalysts 273
10.4.1 Non-chiral PTC Using Insoluble Supports 273
10.4.2 Chiral PTC Using Insoluble Supports 276
10.4.3 PTC Using Soluble Supports 278
10.5 Polymer-Supported Oxidation Catalysts 280
10.5.1 Non-chiral Polymer-Supported Oxidation Catalysts 280
10.5.2 Chiral Polymer-Supported Oxidation Catalysts 283
10.6 Polymer-Supported Organocatalysts Based on Amino Acids 285
10.6.1 Polymer-Supported Proline and Related Catalysts 286
10.6.2 Polymer-Supported Peptides and Related Catalysts 290
10.7 Polymer-Supported Imidazolium, Thiazolium and Related
Structures 293
10.8 Miscellaneous Organocatalysts 294
10.9 Conclusions 296
list of Abbreviations 297
References 298
11 Transition Metal Catalysts 309
Rajiv Banavali, Martin J. Deetz and Alfred K. Schultz
11.1 Introduction 309
11.2 Synthetic Avenues for Producing Metal Loaded Organic Resins 309
XII Contents
11.2.1 Covalent Bonding 310
11.2.2 Coordination Complexes 310
11.2.3 Precipitation 311
11.2.4 Microstructural Aspects of Organic Functional Resins 313
11.3 Reactions Utilizing Transition Metal Catalysts Supported on Organic
Resins 316
11.3.1 Hydrogenation 326
11.3.2 Bi-functional Catalysis 319
11.3.3 Isomerization of Olefins 319
11.3.4 Hydrosilylation Reaction 320
11.3.5 Aldol Reactions 320
11.3.6 The C-0 Coupling Reaction 321
11.4 Commercial Interest in Transition Metal Catalysts 322
11.4.1 Methyl Isobutyl Ketone (MIBK) Synthesis 322
11.4.2 Conversion of Glycerol into 1,2-Propanediol 323
11.4.3 Oxidation-Synthesisof H2O2 324
11.4.4 Hydrogenation of N-O Bonds 324
11.4.5 Removal of Oxygen from Water 325
11.5 Conclusions and Future Outlook 326
Acknowledgments 326
References 326
12 Chiral Auxiliaries on Solid Support 329
Peter Caertner and Amitava Kundu
12.1 Introduction 329
12.2 Carbohydrate Derived Auxiliaries 330
12.3 Alcohols as Chiral Auxiliaries 332
12.4 Amine Derived Auxiliaries 336
12.5 Oxazolidinones, Oxazolidines and Oxazolines as Auxiliaries 341
12.6 Sulfoxide, Sulfmamide and Sulfoximine Auxiliaries 348
12.7 Cydohexanone as a Chiral Auxiliary 352
12.8 An Enone as a Chiral Auxiliary 352
12.9 Hydrobenzoin Derived Auxiliaries 355
12.10 Conclusion 360
References 361
13 Immobilized Enzymes in Organic Synthesis 365
Jesper Brask
13.1 Introduction 365
13.1.1 Enzyme Classification and Availability 366
13.1.2 Popular Enzymes for Biocatalysis 366
13.1.2.1 Upases 366
13.1.2.2 Oxidoreductases 367
13.1.2.3 Nitrile-Converting Enzymes 368
13.1.3 Solvents and Stability 368
Contents XIII
13.1.4 Predicting Hydrolase Enantiopreference 369
13.2 Immobilized Enzymes 370
13.2.1 Immobilization without Carrier 371
13.2.1.1 Cross-linking 371
13.2.1.2 Entrapment 372
13.2.2 Immobilization on a Carrier 372
13.2.2.1 Adsorption 373
13.2.2.2 Covalent Binding 374
13.3 Applications 375
13.3.1 Novozym 435 -A Versatile Immobilized Biocatalyst 375
13.3.2 Immobilized Enzymes in Industrial-Scale Biocatalysis 377
13.4 Concluding Remarks 377
References 378
Part Four Resins for Solid Phase Synthesis
14 Acid-Labile Resins 383
Peter D. White
14.1 Introduction: Linker Design 383
14.2 Linker Types 387
14.2.1 Benzyl-Based Linkers 387
14.2.2 Benzhydryl-Based Linkers 397
14.2.3 Trityl-Based Linkers 400
14.2.4 Cyclic Linkers 402
14.2.5 Silyl-Based Linkers 403
14.2.6 Acetal/Aminal-Type Linkers 404
14.3 The Cleavage Reaction 405
14.4 Functional Group and Linker Combinations 408
list of Abbreviations 412
References 413
15 Base/Nucleophile-Labile Resins 417
Francesc Rabanal
15.1 Introduction 417
15.2 Nudeophile-Labile Resins 417
15.2.1 Intermolecular Nudeophilic Displacement 420
15.2.1.1 Hydroxy Functionalized Linkers and Resins and Related Ones 420
15.2.1.2 Carboxy- and Sulfonic-Based Linkers and Resins 424
15.2.2 Intramolecular Nudeophilic Displacement: Cleavage by
Cydization 426
15.2.2.1 Cydic Peptides 426
15.2.2.2 Diketopiperazines 427
15.2.2.3 Hydantoins 427
15.2.2.4 Benzodiazepinones 428
15.3 Base-Labile linkers and Resins 429
XIV Contents
Acknowledgments 432
list of Abbreviations 432
References 433
16 Safety-Catch and Traceless Linkers in Solid Phase Organic
Synthesis 437
Matthias Sebastian Wiehn, Nicole Jung, and Stefan Erase
16.1 Introduction 437
16.2 Safety-Catch Linkers 437
16.3 Traceless Linkers 450
16.4 Conclusions 460
list of Abbreviations 460
References 462
17 Photolabile and Miscellaneous Linkers/Resins 467
Soo Sung Kang and Mark A. Upton
17.1 Introduction 467
17.2 Types of Photolabile linker 467
17.2.1 o-Nitrobenzyl as a Photolabile Group 467
17.2.1.1 o-Nitrobenzyl Linker 468
17.2.1.2 4-Bromomethyl-3-Nitrobenzoic Acid Derived Linker 469
17.2.1.3 Hydroxynitrobenzyl and Nitroveratryl Linkers 471
17.2.1.4 a-Substituted Nitrobenzyl Linkers 474
17.2.1.5 Comparison of o-Nitrobenzyl Linkers 476
17.2.2 Functionalized Phenylacyl Linkers 477
17.2.2.1 Benzoin Linker 478
17.2.2.2 Phenacyl Linker 479
17.2.2.3 o-Methylphenacyl Linker 482
17.2.3 Pivaloyl linker 484
17.2.4 Miscellaneous Photolabile Linkers 485
17.3 Miscellaneous linkers 487
17.3.1 1,3-Dithiane linker 487
17.3.2 p-Alkoxybenzyl linker 488
17.3.3 Alkene-Functionalized Linker 488
17.4 Conclusion 489
list of Abbreviations 490
References 490
Part Five Solid Phase Synthesis of Biomolecules. The State of the Art
(from the Resin Point of View)
18 Peptides 495
Judit Tulla-Puche and Fernando Albericio
18.1 Introduction 495
18.2 Methodological Remarks 496
18.2.1 Solid Supports 497
Contents XV
18.2.2 Protecting Groups 497
18.3 Coupling Reagents 498
18.4 Synthesis of Long Peptides 499
18.4.1 Convergent Approaches 500
18.4.1.1 Hybrid Approaches: The Synthesis of Enfuvirtide 500
18.4.1.2 Solid Phase Fragment Coupling: Synthesis of Hirudin 502
18.4.2 Stepwise Approaches 503
18.4.2.1 PEG Resins 504
18.4.2.2 Pseudoprolines 504
18.4.2.3 O-Acyl Isopeptide 506
18.5 Native Chemical Iigation 508
18.5.1 Example: Synthesis of a 203 Amino Acid Covalent Dimer, HIV-1
Protease [146] 515
18.6 Cyclic Peptides 516
18.6.1 Example: Solid Phase Synthesis of Argadin by a Side-Anchoring
Approach [169] 517
18.7 Depsipeptides 519
18.7.1 Example: Synthesis of H-L(1)EAKLKELEAKA.(12)AALEAKLKELEAKL-
OH (L12X.) 519
18.8 Click Chemistry 520
list of Abbreviations 521
References 522
19 Oligonucleotides and Their Derivatives 529
Dmitry A Stetsenko
19.1 Polymer Supported Oligonucleotide Synthesis: An Overview and
History 529
19.1.1 Introduction to Nucleic Acid Synthesis: Never-Ending Quest for
Excellence 529
19.1.2 Dawn of the Oligonucleotide Synthesis 530
19.1.3 Phosphodiester and Phosphotriester Methods: A Slow Maturity 530
19.1.4 Phosphite Triester and Phosphoramidite Methods:
A Breakthrough 534
19.1.5 H-Phosphonate Method: Encouraging Diversity 536
19.2 Supports for the Polymer-Supported Synthesis of
Oligonucleotides 538
19.2.1 Polystyrene (PS) Resins 538
19.2.1.1 "Popcorn" Polystyrene 538
19.2.1.2 Low Cross-linked Polystyrene 538
19.2.1.3 Highly Cross-linked (Macroporous) Polystyrene 540
19.2.1.4 Polystyrene - Poly (ethylene glycol) (PEG-PS) Composite
Supports 540
19.2.1.5 Linear Polystyrene Grafted onto Other Polymer 540
19.2.2 Polyacrylamide (PA) Resins 541
19.2.3 Silica Gel Supports 542
XVI Contents
19.2.4 Miscellaneous Polymers, Surface-Modified Materials and Composite
Supports 542
19.3 Linkers and Anchor Groups for Solid Phase Oligonucleotide
Synthesis 545
19.3.1 Linkers for the Synthesis of 3'- or 5'-Unmodified
Oligonudeotides 545
19.3.1.1 Acid-Labile Trityl Linkers 545
19.3.1.2 Base-Labile Acyl Linkers 546
19.3.1.3 Carbonic Acid Linkers, Carbamate and Carbonate 549
19.3.1.4 Silyl, Silanediyl and Disiloxanediyl Linkers 551
19.3.2 Linkers for the Synthesis of Phosphorylated, Thiophosphorylated or
Other Related Oligonudeotides 553
19.3.2.1 Phosphoramidate and Phosphorothiolate Linkages 553
19.3.2.2 Base-Labile Linkers Based on p-Elimination 554
19.3.2.3 Reduction Linkers Based on Disulfide Bond 556
19.3.2.4 Miscellaneous Phosphate Linkers 557
19.3.3 Linkers for the Synthesis of Oligonudeotides 3'-Functionalized with
Other Chemical Groups 559
19.3.3.1 Amino Group 559
19.3.3.2 Thiol Group 561
19.3.3.3 Carboxyl Group 563
19.3.4 Speciality Linkers 564
19.4 Oligonudeotide Synthesis on Soluble Polymer Supports 565
19.5 Oligonudeotide Synthesis with Polymer-Supported Reagents 568
19.6 Condusions 570
list of Abbreviations 570
References 572
20 Oligosaccharides 585
Peter H. Seeberger and Harold Wippo
20.1 Introduction 585
20.2 Insoluble Resins 586
20.2.1 Controlled-Pore Glass (CPG) 586
20.2.2 Polystyrene Resins 586
20.2.2.1 Polystyrene Resin Cross-linked with Divinylbenzene 586
20.2.2.2 PEG Grafted Polystyrenes 588
20.2.3 Magnetic Partides 588
20.3 Soluble Resins 590
20.3.1 MPEG Resins 590
20.3.2 Hyperbranched Soluble Resins 591
20.3.2.1 Hyperbranched Polyester 592
20.3.2.2 PAMAM 592
20.3.3 Ionic Liquids 594
20.4 Linkers 594
20.4.1 Add- and Base-Labile linkers 594
Contents XVII
20.4.1.1 Acid-Labile Linkers 594
20.4.1.2 Base-Labile Linkers 596
20.4.2 Linkers Cleaved by Olefin Metathesis 597
20.4.3 Photocleavable Linkers 597
20.4.4 Silyl Ether Linkers 598
20.4.5 Boronate Linkers 599
20.4.6 Thiol-Group Containing Linkers 600
20.4.7 Linkers Cleaved Under Oxidative Conditions 601
20.4.8 Linkers Cleaved by Reduction 602
20.4.9 Cleavage by Hydrogenolysis 602
20.4.10 Enzymatically Cleavable Linkers 603
20.5 Capture and Release Techniques 604
20.6 Conclusions 607
list of Abbreviations 607
References 609
21 High-Throughput Synthesis of Natural Products 613
Nicolas Winssinger, Sofia Barluenga and Pierre-Yves Dakas
21.1 Introduction 613
21.2 Solid Phase Elaboration of Natural Product Scaffolds 614
21.3 Solid Phase Synthesis of Natural Products 616
21.4 Synthesis of Natural Products Using Immobilized Reagents 623
21.5 Synthesis of Natural Products Using Isolation Tags 627
21.6 Combinatorial Synthesis of Libraries Based on Important Natural
Product Motifs 630
21.6.1 Structure-Based Libraries Targeting Kinases and Other Purine-
Dependent Enzymes 631
21.6.2 Libraries Based on a Privileged Scaffold-Discovery of
Fexaramine 633
21.6.3 Inhibitors of Histone Deacetylases (HDAC) 634
21.6.4 Secramine 634
21.6.5 Carpanone 635
21.6.6 Natural-Product Inspired Synthesis of ap-Unsaturated-8-Lactones 635
21.7 Conclusion 636
List of Abbreviations 636
References 637
Index 641 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023334202 |
callnumber-first | Q - Science |
callnumber-label | QD262 |
callnumber-raw | QD262 |
callnumber-search | QD262 |
callnumber-sort | QD 3262 |
callnumber-subject | QD - Chemistry |
classification_rvk | VK 5500 |
ctrlnum | (OCoLC)267126569 (DE-599)DNB987215787 |
dewey-full | 547.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547.2 |
dewey-search | 547.2 |
dewey-sort | 3547.2 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
edition | 1. Aufl. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023334202</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090116</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080609s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N06,0788</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987215787</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527319367</subfield><subfield code="c">Gb.</subfield><subfield code="9">978-3-527-31936-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527319360</subfield><subfield code="c">Gb.</subfield><subfield code="9">3-527-31936-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527319367</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131936 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)267126569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987215787</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD262</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 5500</subfield><subfield code="0">(DE-625)147401:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The power of functional resins in organic synthesis</subfield><subfield code="c">ed. by Judit Tulla-Puche ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Aufl.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 663 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gums and resins, Synthetic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic compounds</subfield><subfield code="x">Synthesis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organische Synthese</subfield><subfield code="0">(DE-588)4075695-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalisierung</subfield><subfield code="g">Chemie</subfield><subfield code="0">(DE-588)4279323-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harze</subfield><subfield code="0">(DE-588)4130013-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harze</subfield><subfield code="0">(DE-588)4130013-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionalisierung</subfield><subfield code="g">Chemie</subfield><subfield code="0">(DE-588)4279323-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Organische Synthese</subfield><subfield code="0">(DE-588)4075695-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tulla-Puche, Judit</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3060816&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016518089&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016518089</subfield></datafield></record></collection> |
id | DE-604.BV023334202 |
illustrated | Illustrated |
index_date | 2024-07-02T20:58:51Z |
indexdate | 2024-07-20T09:41:28Z |
institution | BVB |
isbn | 9783527319367 3527319360 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016518089 |
oclc_num | 267126569 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-19 DE-BY-UBM |
physical | XX, 663 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | WILEY-VCH |
record_format | marc |
spelling | The power of functional resins in organic synthesis ed. by Judit Tulla-Puche ... 1. Aufl. Weinheim WILEY-VCH 2008 XX, 663 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Gums and resins, Synthetic Organic compounds Synthesis Organische Synthese (DE-588)4075695-6 gnd rswk-swf Funktionalisierung Chemie (DE-588)4279323-3 gnd rswk-swf Harze (DE-588)4130013-0 gnd rswk-swf Harze (DE-588)4130013-0 s Funktionalisierung Chemie (DE-588)4279323-3 s Organische Synthese (DE-588)4075695-6 s DE-604 Tulla-Puche, Judit Sonstige oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3060816&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016518089&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The power of functional resins in organic synthesis Gums and resins, Synthetic Organic compounds Synthesis Organische Synthese (DE-588)4075695-6 gnd Funktionalisierung Chemie (DE-588)4279323-3 gnd Harze (DE-588)4130013-0 gnd |
subject_GND | (DE-588)4075695-6 (DE-588)4279323-3 (DE-588)4130013-0 |
title | The power of functional resins in organic synthesis |
title_auth | The power of functional resins in organic synthesis |
title_exact_search | The power of functional resins in organic synthesis |
title_exact_search_txtP | The power of functional resins in organic synthesis |
title_full | The power of functional resins in organic synthesis ed. by Judit Tulla-Puche ... |
title_fullStr | The power of functional resins in organic synthesis ed. by Judit Tulla-Puche ... |
title_full_unstemmed | The power of functional resins in organic synthesis ed. by Judit Tulla-Puche ... |
title_short | The power of functional resins in organic synthesis |
title_sort | the power of functional resins in organic synthesis |
topic | Gums and resins, Synthetic Organic compounds Synthesis Organische Synthese (DE-588)4075695-6 gnd Funktionalisierung Chemie (DE-588)4279323-3 gnd Harze (DE-588)4130013-0 gnd |
topic_facet | Gums and resins, Synthetic Organic compounds Synthesis Organische Synthese Funktionalisierung Chemie Harze |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3060816&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016518089&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tullapuchejudit thepoweroffunctionalresinsinorganicsynthesis |