Handbook of optical systems: 1 Fundamentals of technical optics
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2007
|
Ausgabe: | 1. ed., 1. reprint |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 826 S. graph. Darst. 25 cm |
ISBN: | 9783527403776 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV023333598 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080609s2007 d||| |||| 00||| eng d | ||
020 | |a 9783527403776 |9 978-3-527-40377-6 | ||
035 | |a (OCoLC)633627361 | ||
035 | |a (DE-599)BVBBV023333598 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-83 | ||
084 | |a UH 5000 |0 (DE-625)145647: |2 rvk | ||
245 | 1 | 0 | |a Handbook of optical systems |n 1 |p Fundamentals of technical optics |c ed. by Herbert Gross |
250 | |a 1. ed., 1. reprint | ||
264 | 1 | |a Weinheim |b Wiley-VCH |c 2007 | |
300 | |a XXII, 826 S. |b graph. Darst. |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Technische Optik |0 (DE-588)4078181-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Technische Optik |0 (DE-588)4078181-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gross, Herbert |d 1955- |e Sonstige |0 (DE-588)134121201 |4 oth | |
773 | 0 | 8 | |w (DE-604)BV019743683 |g 1 |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016517493&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016517493 |
Datensatz im Suchindex
_version_ | 1804137684237549572 |
---|---|
adam_text | CONTENTS PREFACE V 1 INTRODUCTION I 2 PARAXIAL IMAGING 5 2.1 GENERAL
REMARKS 7 2.1.1 PARAXIAL APPROXIMATION 7 2.1.2 LINEAR COLLINEATION 9
2.1-3 IMAGE LOCATIONS 10 2-1.4 MAGNIFICATION 14 2.1.5 LENS EQUATION 15
2.1.6 NEWTONS EQUATION 19 2.1.7 THREE-DIMENSIONAL SYSTEMS 20 2.2 SINGLE
SURFACE 21 2.2.1 REFRACTING PLANE SURFACE 21 2.2.2 REFRACTIVE SPHERICAL
SURFACE 22 2.2.3 MIRROR SURFACE 23 2.3 SINGLE LENS 24 2.3.1 PARAMETERS
OFA LENS 24 2.3.2 CARDINAL ELEMENTS 25 2.3.3 THIN LENS 28 2.3.4 THICK
LENS 29 2.3.5 GRAPHICAL IMAGE CONSTRUCTION .32 2.4 MULTIPLE-COMPONENT
SYSTEMS 33 2.4.1 SYSTEM CONSISTING OF TWO THIN COMPONENTS 33 2.4.2
SYSTEMS CONSISTING OF SEVERAL THIN LENSES 36 2.5 INVARIANTS 36 2.5.1
HELMHOLTZ-LAGRANGE INVARIANT 36 2.5.2 ABBE INVARIANT Q 39 2.5.3 PARAXIAL
INVARIANT 39 2.5.4 FURTHER INVARIANTS 40 2.5.5 MATRIX FORM OF THE
HELMHOLTZ INVARIANT 40 2.6 MATRIX CALCULUS 41 HANDBOOK OF OPTICAL
SYSTEMS: VOL. 1. FUNDAMENTALS OF TECHNICAL OPTICS. H. GROSS COPYRIGHT
2005 WILEY-VCH VERLAG GMBH & CO. KCAA, WEINHEIM ISBN: 3-527-40577-9 VIII
CONTENTS 2.6.1 PARAXIAL ABCD MATRICES 41 2.6.2 PROPERTIES OF THE
MATRICES 44 2.6.3 MATRICES OF SIMPLE COMPONENTS 45 2.6.4 FINITE IMAGING
WITH AN AFOCAL SYSTEM 48 2.6.5 DECORAPOSITIONS OF AN ABCD MATRIX 49 2.7
MATRICES DESCRIBING A MORE GENERAL GEOMETRY 5J 2.7.1 TWO-DIMENSIONAL
3X3MATRICES 51 2.7.2 CCNTERED 4X4TVIATRICES 54 2.7.3 GENERAL 5X5MATRICES
58 2.8 LITERATURE 59 3 INTERFACES 61 3.1 BASICS 62 3.1.1 BOUNDARY
CONDITIONS 62 3.1.2 THE LAW OF REFRACTION 63 3.1.3 THE LAW OF RCFLECTION
66 3.2 THE FRESNEL EQUATIONS 67 3.2.1 DEFINITION OF THE AMPLITUDE
COEFFICIENTS 67 3.2.2 REFLECTION 67 3.2.3 TRANSMISSION 69 3.2.4
PROPERTIES OF THE FRESNEL EQUATIONS 69 3.2.5 STOKES RELATIONS 72 3.2.6
AZIMUTHAI ANGLE 74 3.2.7 REFLECTIVITY AND TRANSMITTIVITY 75 3.2.8 PHASE
CHANGES 79 3.2.9 DESCRIPTION OF THE REFRACTION IN THE K-SPACE HO 5.2.10
RCFLECTION LOSSES IN OPTICAL SYSTEMS H2 3.3 POLARIZATION EFFECTS AT
INTERFACES 84 3.3.1 BREWSTER ANGLE 84 3.3.2 DEGREE OF POLARIZATION 86
3.4 EVANESCENT WAVES H8 3.4.1 TOTAL INTERNAL REFLECTION SS 3.4.2
EVANESCENT SURFACE WAVES 92 3.4.3 DAMPED TOTAL INTERNAL REFLECTION 94
3.4.4 FRUSTRATED TOTAL INTERNAL REFLECTION 95 3.5 NON-GEOMETRICAL
EFFECTS AT REFLECTION 96 3.5.1 THE GOOS-HAENCHEN EFFECT 96 3.5.2 TOTAL
INTERNAL REFLECTION OF A GAUSSIAN BEAM WO 3.6 ABSORBING MEDIA 102 3.6.1
COMPLEX REFRACTIVE INDEX 102 3.6.2 LAMBERT-BEER LAW 103 3.6.3 REFLECTION
AT AN ABSORBING MEDIUM 104 3.6.4 METALS 105 3.6.5 REFLECTION AT METALS
105 3.7 LITERATURE 109 4 MATERIALS 111 4.1 BASICS 113 4.1.1 INTRODUCTION
113 4.1.2 OPTICAL PARAMETERS 113 4.1.3 NON-OPTICAL PROPERTIES 114 4.2
DISPERSION 114 4.2.1 DEFINITION 114 4.2.2 WAVELENGTHS ?7I 4.2.3
CHARACTERIZING THE DISPERSION 117 4.2.4 OPTICAL CROWNS AND FLINTS 118
4.2.5 INTERPOLATION OF THE REFRACTIVE INDEX 120 4.2.6 DISPERSION OF THE
GROUP VELOCITY 123 4.2.7 CHROMATIC COORDINATES ACCORDING TO BUCHDAHL 124
4.3 RELATIVE PARTIAL DISPERSION 125 4.3.1 DEFINITION 125 4.3.2 LINE OF
NORMAL DISPERSION 128 4.3.3 GLASSES WITH ANOMALOUS PARTIAL DISPERSION
130 4.3.4 RELATIVE PARTIAL DISPERSION IN THE GLASS DIAGRAM 132 4.3.5
HOOGLAND DIAGRAM 133 4.4 TRANSMISSION 134 4.4.1 TRANSMISSION AND
INTERNAL TRANSMISSION 134 4.4.2 TRANSMISSION EDGE 136 4.4.3 TRANSMISSION
OF GLASSES AND PLASTICS 137 4.5 GLASSES [39 4.5.1 GENERAL REMARKS 139
4.5.2 GLASS DIAGRAM 139 4.5.3 GLASS RANGES 142 4.5.4 THERMAL PROPERTIES
143 4.5.5 DATASHEEL 146 4.5.6 MECHANICAL PROPERTIES OF GLASS 247 4.5.7
CHEMICAL PROPERTIES OF GLASS 149 4.5.8 DELIVERABLE FORMS OF GLASS 149
4.5-9 PRACTICAL ASPECTS OF THE CHOICE OF GLASS IN OPTICAL DESIGN 149
4.5.10 SPECIAL GLASSES ISO 4.6 CRYSTALS AND SPECIAL MATERIALS 153 4.6.1
MATERIALS FOR IR AND UV 151 4.6.2 QUARTZ 154 4.7 PLASTICS 157 4.7.1
GENERAL PROPERTIES 157 4.7.2 OPTICAL PROPERTIES 158 4.7.3 TRANSMISSION
160 4.8 GASES 161 4.8.1 GENERAL REMARKS 161 4.8.2 AIR 161 4.9 LIQUIDS
AND CEMCNTS 162 CONTENTS 4.9.1 WATER 162 4.9-2 TECHNICAL LIQUIDS 163
4.9.3 IMMERSION OILS 166 4.9.4 OPTICAL CEMENTS 767 4.10 METALS 168
4.10.1 OPTICAL PARAMETERS 168 4.10.2 REFLECTIVITY OF METALLIC MIRRORS
169 4.11 LITERATURE 171 S RAYTRACING 173 5.1 THE MEANING OF RAYTRACING
174 5.2 RAYTRACING SCHEINE 274 5.3 RAYTRACING FORMULA SETS 178 5.3.1
GENERAL REMARKS 178 5.3.2 PARAXIAL Y-U-METHOD 178 5.3.3 PARAXIAL
S-H-METHOD 179 5.3.4 MERIDIONAL S-U-METHOD 180 5.3.5 MERIDIONAL
Q-U-METHOD 181 5.3.6 SET OF VECTOR FORMULAS 182 5.3.7 ITERATIVE
CALCULATION OFTHE INTERSECTION POINT FOR ASPHERICAL SURFACES 186 5.4
RAYTRACING IN OPTICAL SYSTEMS 189 5.4.1 DCSCRIPTION OFTHE GEOMETRY 189
5.4.2 TYPES OF SURFACE 194 5.4.3 PARTICULAR PROPERTIES 206 5.4.4 OUTPUT
QUANTITIES 207 5.4.5 ERRORS 208 5.4.6 APODIZATION 208 5.4.7 POLARIZATION
RAYTRACING 209 5.5 SPECIAL COMPONENTS 210 5.5.1 IDEAL LENS 210 5.5.2
RAYTRACING IN GRIN MEDIA 211 5.5.3 RAYTRACING FOR DIFFRACTIVE ELEMENTS
215 5.5.4 KNIFE-EDGE DIFFRACTION MODEL IN RAYTRACING 2J9 5.6
DIFFERENTIAL RAYS 220 5.6.1 CENERAL REMARKS 220 5.6.2 CODDINGTON
EQUATIONS 220 5.6.3 GENERAL DIFFERENTIAL RAYS 221 5.6.4 RAYTUBES 223 5.7
NON-SEQUENTIAL RAYTRACING 224 5.7.1 GENERAL REMARKS 224 5.7.2
MONTE-CARLO RAYTRACING 226 5.8 LITERATURE 227 6 RADIOMETRY 229 6.1
INTRODUCTION 230 6.1.1 GENERAL REMARKS 230 6.1.2 DEFINITION OF THE
RADIOMETRIE QUANTITIES 230 6.1.3 PHOTOMETRIC QUANTITIES 232 6.1.4
RADIOMETRIE AND PHOTOMETRIC QUANTITIES 233 6.1.5 SOLI D ANGLE 233 6.1.6
DIFFERENTIAL FLUX 235 6.1.7 FUNDAMENTAL LAW OF RADIOMETRY 235 6.1.8
PROJECTION OF THE LRRADIANCE 236 6.1.9 LRRADIANCE 237 6.1.10 SPECTRAL
DENSITIES OF QUANTITIES 237 6.1.11 ENERGY, POWER AND PHOTONS 238 6.2
LAMBERTIAN RADIATOR 239 6.2.1 CLASSICAL LAMBERTIAN RADIATOR 239 6.2.2
GENERAL LAMBERTIAN RADIATOR 240 6.3 RADIATION TRANSFER 241 6.3.1 GENERAL
REMARKS 241 6.3.2 POINT SOURCE OF LIGHT 242 6.3.3 RADIATION TRANSFER
BETWEEN SURFACES 244 6.3.4 NUMERICAL RADIATION TRANSFER 247 6.4
RADIOMETRY OFOPTICAL SYSTEMS 24S 6.4.1 OPTICAL SYSTEM 248 6.4.2
RADIATION TRANSPORT WITH INTERACTION 249 6.4.3 APLANATIC SYSTEMS 250
6.4.4 NATURAL VIGNCTTING 252 6.4.5 RADIOMETRY IN REAL OPTICAL SYSTEMS
259 6.4.6 RAY TUBE MODEL 260 6.5 DCSCRIPTION OF RADIATION TRANSPORT IN
THE PHASE SPACE 263 6.5.1 HELMHOLTZ - LAGRANGE INVARIANT 263 6.5.2 PHASE
SPACE COORDINATES 264 6.5.3 PHASE SPACE REPRESENTATION OF RADIATION
TRANSPORT 265 6.6 LITERATURE 267 7 LIGHT SOURCES 269 7.1 INTRODUCTION
271 7.1.1 CLASSIFICATION 271 7.1.2 EFFICIENCY 271 7.1.3 ELECTROMAGNETIC
SPECTRUM 273 7.1.4 STANDARD LIGHT SOURCES 275 7.1.5 DAYLIGHT AND
SUNLIGHT 276 7.2 THERMAL RADIATORS 278 7.2.1 PLANCKS FORMULA 278 7.2.2
OPTICAL EFFICIENCY 281 7.2.3 RADIATION TEMPERATURE 282 XII CONTENTS
7.2.4 WIENS DISPLACEMENT LAW 283 7.2.5 STEFAN-BOLTZMANN LAW 284 7.2.6
RAYLEIGH-JEANS RADIATION FORMULA 284 7.2.7 WIENS LAW OF RADIATION 28.5
7.3 CLASSICAL LAMPS 285 7.3.1 INCANDESCENT BULBS 285 7.3.2 HALOGEN LAMPS
288 7.3.3 ELECTRICAL ARE LAMPS / DISCHARGE LAMPS 288 7.3.4 XENON LAMPS
290 7.3.5 MERCURY-XERION LAMPS 291 7.3.6 HIGH-PRESSURE MERCURY LAMPS 291
7.4 DIODES 292 7.4.1 TYPES OF LIGHT EMITTING DIODES 292 7.4.2 ORGANIC
LIGHT EMITTING DIODES 294 7.4.3 SPCCTRA OF LIGHT EMITTING DIODES 295
7.4.4 EMISSION CHARACTERISTIC OF LEDS 297 7.4.5 WHITE LIGHT EMITTING
DIODES 299 7.5 LASER LIGHT SOURCES 300 7.5.1 OVERVIEW 300 7.5.2
COMPARISON OF LASERS WITH CLASSICAL LIGHT SOURCES 300 7.5.3
SEMICONDUCTOR LASER 303 7.5.4 GAS LASER 309 7.5.5 SOLID STATE LASER 309
7.5.6 EXCIMER LASER 311 7.6 MODEL DESCRIPTIONS OF RADIATION SOURCES 314
7.6.1 MODELS OF LIGHT SOURCES 314 7.6.2 CHARACTERIZATION OF THE SPATIAL
EMISSION 315 7.6.3 SPECTRAL CHARACTERISTIC 318 7.6.4 RAYTRACING MODEL
DESCRIPTION OF SOURCES 319 7.7 LITERATURE 321 8 SENSOR TECHNOLOGY AND
SIGNAL PROCESSING 323 8.1 LNTRODUCTION 325 8.1.1 SIGNAL CHAIN 325 8.1.2
INFORMATION TRANSFER IN OPTICS 325 8.1.3 ADJUSTMENT OFTHE BEAM 327 8.
1.4 INFORMATION GAIN 328 8.1.5 SPATIAL DISCRETIZATION AND RESOLUTION 331
8.1.6 DISCRETIZATION OFTHE SIGNAL STRENGTH 333 8.2 SENSOR
CHARACTERISTICS 335 8.2.1 GENERAL REMARKS 335 8.2.2 SIGNAL-TO-NOISE
RATIO 336 8.2.3 PRECISION OF A SENSOR 337 8.2.4 DYNAMIC RANGE 339 8.2.5
TIME BEHAVIOR 340 8.2.6 DIRECTIONAL SENSITIVITY 342 8.2.7 DETECTION OF
COLOR SIGNALS 343 8.3 SPECIAL TYPES OF SENSOR 345 8.3.1 CLASSIFICATION
345 8.3.2 PHOTOCONDUCTIVE DETECTOR 346 8.3.3 CCD ARRAYS 348 8.3.4
AVALANCHE PHOTODIODES 354 8.3.5 PHOTOGRAPHIC: FILM 354 8.4 SAMPLING 357
8.4.1 FOURIER TRANSFORMATION 357 8.4.2 SAMPLING THEOREM 358 8.4.3
SAMPLING OF A BAND-LIMITED SIGNAL 361 8.4.4 DETECTOR SAMPLING 362 8.5
SIGNAL PROCESSING 364 8.5.1 GENERAL REMARKS 364 8.5.2 POINT OPERATIONS
364 8.5.3 NEAREST-NEIGHBOR OPERATIONS 365 8.5.4 FOURIER FILTER 365 8.5.5
SAVITZKY-GOLAY FILTER 368 8.6 NOISE 370 8.6.1 INTRODUCTION 370 8.6.2
TYPES OF NOISE 372 8.6.3 FREQUENCY-DEPERIDENCE OF THC NOISE 374 8.6.4
CORRECTION OF THE BACKGROUND NOISE 375 8.7 SPECIAL METHODS OF DETECTION
376 8.7.1 HETERODYNE DETECTION 376 8.7.2 LOCK-IN PRINCIPLE 377 8.8
LITCRATURE 378 9 THEORY OF COLOR VISION 379 9.1 INTRODUCTION 3S0 9.2
COLOR VISION OF THE HUMAN EYE 380 9.2.1 SPCCTRAL SENSITIVITY OF THE EYE
380 9.2.2 TRANSMISSION OF THE EYE 383 9.2.3 BEZOLD EFFECT AND
RESTIMULATION 385 9.2.4 PHYSIOLOGICAL CHROMATIC SENSATION 386 9.3
PHENOMENOLOGCAL THEORY OF COLOR VISION 387 9.3.1 GRASSMANNS BASIC LAWS
387 9.3.2 LIGHT AND SSODY COLOR 388 9.3.3 ADDITIVE COLOR MIXTURE 390
9.3.4 THREE-COLOR MIXTURE 390 9.3.5 MAXWELLS COLOR TRIANGLE 391 9.4
COLORIMETRY 394 9.4.1 GENERAL REMARKS 394 9.4.2 SPCCTRAL MATCHING
FUNCTIONS 394 XIV CONTENTS 9.4.3 CONVERSION MATRICES 398 9.4.4 STANDARD
SPECTRAL VALUE FUNCTIONS OF THE CIE STANDARD SYSTEM 399 9.4.5 NORMALIZED
COLOR COORDINATES 400 9.5 COLOR TRIANGLE 402 9.5.1 BASIC PROPERTIES 402
9.5.2 COMPLEMENTARY COLORS 403 9.5.3 COLOR SATURATION 405 9.5.4
HEIMHOLTE COLOR VALUES 408 9.5.5 MIXTURE OF COLORS IN THE COLOR TRIANGLE
409 9.5.6 CLASSICAL COLOR TERMS 410 9.5.7 COLOR TEMPERATURE 412 9.5.8
BRIGHTNESS 414 9.5.9 COLOR BODY 415 9.5.10 COLOR DIFFERENCES 416 9.6
ALTERNATIVE BASIC SYSTEMS 417 9.6.1 RGB PRIMARY COLORS 417 9.6.2 IHS
COLOR REPRESENTATION ACCORDING TO MUNSELL 421 9.6.3 U -V -CHROMATICITY
CHART 423 9.7 LITERATURE 424 10 OPTICAL SYSTEMS 425 LUE.L SPECIAL
PROPERTIES OF LENSES 426 10.1.1 BENDING OF LENSES 426 10.1.2 POSITION
PARAMETER 429 10.1.3 IDEAL LENS 430 10.1.4 VOLUME OFA LENS 431 10.2
SPECIAL RAYS IN OPTICAL SYSTEMS 432 10.2.1 NUMERICAL APERTURE AND STOP
NUMBER 432 10.2.2 CANONICAL COORDINATES 434 10.2.3 BUNDLES AND RAY FANS
438 10.2.4 SPECIAL RAYS 439 10.2.5 PRINCIPAL PLANES 441 10.3 PUPILS 442
10.3.1 DIAPHRAGMS 442 10.3.2 DEFINITION OF PUPILS 444 10.3.3 SPHERICAL
PUPILS 446 10.3.4 PUPIL SAMPLING 448 10.3.5 VIGNETTING 451 10.3.6
VARIABLE PUPIL POSITION 454 10.3.7 SPECIAL STOP POSITIONS 455 10.3.8
INTERLINKED BUNDLES 458 10.3.9 PERSPECTIVE 458 10.4 DELANO DIAGRAM 463
10.4.1 DEFINITION 463 10.4.2 PROPERTIES OF THE DELANO DIAGRAM 464 10.4.3
EXAMPLES 468 10.4.4 VIGNETTING 472 20.5 SPECIAL ASPECTS 474 10.5.1
CURVED OBJECTS 474 10.5.2 SCHEIMPFLUG IMAGING 475 10.5.3 ANAMORPHOTIC
IMAGING 479 10.5.4 INTRODUCTION OF THICK LENSES 480 10.6 LITERATURE 483
11 ABERRATIONS 4S5 11.1 GENERAL CONSIDERATIONS 486 11.2 DESCRIPTION OF
ABERRATIONS 487 11.3 RAY ABERRATIONS 490 11.3.1 LONGITUDMAL ABERRATIONS
490 11.3.2 TRANSVERSE ABERRATIONS 491 11.3.3 SPOT DIAGRAMS 492 11.3.4
CAUSTICS 493 11.3.5 SEIDEL ABERRATIONS 494 11.4 THE SINE CONDITION 495
11.5 WAVE ABERRATIONS 497 11.5.1 DEFINITION 497 11.5.2 TILT 499 11..5.3
DEFOCNS 500 11.5.4 ZCRNIKE POLYNOMIALS 50/ 11.6 SPHERICAL ABERRATION 506
11.6.1 INTRODUCTION 506 11.6.2 APLANATIC SURFACES 507 11.6.3 APLANATIC
LENSES 509 11.7 ASTIGMATISM 510 11.8 FICLD CURVATURE 511 11.8.1 IMAGE
SURFACES 511 11.8.2 PETZVAL THEOREM 513 11.9 COMA 514 11.10 DISTORTION
5!6 11.11 CHROMATIC LONGITUDINAL ABERRATIONS 518 11.12 CHROMATIC
TRANSVERSE ABERRATIONS 520 11.13 LITERATURE 521 12 WAVEOPTICS 523 12.1
BASIC PRINCIPLES 524 12.1.1 WAVE EQUATION 524 12.1.2 TEA AND LPIA
APPROXIMATIONS FOR THIN COMPONENTS 525 12.1.3 KIRCHHOFFINTEGRAL 527
12.1.4 FRESNEL APPROXIMATION 530 12.1.5 FRAUNHOFER INTEGRAL 531 XVI
CONTENTS 12.1.6 FRESNEL NUMBER 532 12.1.7 DIFFRACTION OF AN APERTURE
5.5.3 12.1.8 PARAXIAL APPROXIMATION 535 12.1.9 MODEL APPROXIMATION^ FOR
TBE DESCRIPTION OF OPTICAL SYSTEMS 536 12.1.10 SPOT MODEL CALCULATIONS
538 12.2 POINT-SPREAD FUNCTION 539 12.2.1 IDEAL POINT IMAGE 539 12.2.2
SCALING FACTORS 542 12.2.3 TRANSVERSE AIRY DISTRIBUTION 543 12.2.4 AXIAL
DISTRIBUTION 545 12.2.5 POINT-SPREAD FUNCTION AND ABERRATIONS 546 12.3
FOURIER THEORY OF IMAGE FORMATION 548 12.3.1 SPATIAL FREQUENCY AND
EXPANSION IN PLANE WAVES 548 12.3.2 PLANE WAVE REPRESENTATION 549 12.3.3
PHASE EFFECT OFA LENS 550 12.3.4 RESOLUTION MODEL 55J 12.3.5 4-F-FOURIER
MODEL 554 12.3.6 CORNPLETE 6-F-FOURIER MODEL 557 12.3.7 COHERENT IMAGE
FORMATION 559 12.3.8 INCOHERENT IMAGE FORMATION 560 12.4 TRANSFER
FUNCTIONS 562 12.4.1 DEFINITION 562 12.4.2 OTFOF IDEAL SYSTEMS 564
12.4.3 CONTRAST TRANSFER 565 12.4.4 SAGITTAL AND TANGENTIAL STRUCTURES
566 12.5 LITERATURE 568 13 PLANO-OPTICAL COMPONENTS 13.1 PLANE-PARALLEL
PLATES 571 13.1.1 BEAM DISPLACEMENT 571 13.1.2 ABERRATIONS 572 13.1.3
PLANE-PARALLEL PLATE IN A CONVERGENT BEAM 574 13.1.4 REFLECTIONS AT
PLANE-PARALLEL PLATES 576 13.2 DISPERSION PRISMS 576 13.2.1 GENERAL
CONSIDCRATIONS 577 13.2.2 DISPERSION BY A PRISM 578 13.2.3 THIN-PRISM
APPROXIMATION 579 13.2.4 SYMMETRIE PRISMS 580 13.2.5 PRISM MAGNIFICATION
580 13.2.6 ASTIGMATISM OFA WEDGE PRISM 582 13.2.7 CURVED SPECTRAL LINES
PRODUCED BY A PRISM 582 13.2.8 VARIABLE-ANGLE PRISMS 583 13.2.9
ACHROMATIC PRISM PAIRS 584 13.2.10 DIRECT-VISION PRISMS 585 13.2.11
DOUBLE AMICI PRISMS 586 13.2.12 WERNICKE-TYPE DIRECT-VISION PRISMS 587
13.2.13 WADSWORTH PRISM MOUNTING 588 13.2.14 FERY PRISMS 589 13.3
REFLECTION PRISMS 590 13.3.1 FUNCTION OF REFLECTION PRISMS 590 13.3.2
THE TUNNEL DIAGRAM 591 1 3.3.3 DIMENSIONING OF PRISMS 592 13.3.4 TOTAL
INTERNAL REFLECTION 595 13.3.5 IMAGE REORIENTATION 596 13.3.6 MATRIX
CAICULATIONS FOR REFLECTION PRISMS 599 13.3.7 ROOFPRISMS 601 1.3.3.8
CLASSIFICATION OF THE REFLECTION PRISMS 604 13.4 CONSTRUCTION DESIGNS
FOR REFLECTION PRISMS 605 13.4.1 GENERAL CONSIDERATION 605 13.4.2 SINGLE
PRISM TYPES 606 13.4.3 COMPOSITE PRISMS 624 13.5 PRISM SYSTEMS 630
13.5.1 SLIDING PRIS M PAIR 630 13.5.2 SCANNING BY ROTATING WEDGE PAIR
631 13.5.3 ANAMORPHOTIC PRISM PAIR 632 13.5.4 DOUBLE DOVE PRISM 633
13.5.5 BEAM SPLITTERS 635 13.6 FILTERS 639 13.6.1 GENERAL PRINCIPLES OF
OPERATION 639 13.6.2 CHARACTERIZATION OF FILTERS 640 13.6.3 FILTER TYPES
643 13.6.4 INTERFERENCE FILTERS 644 13.6.5 ABSORPTION FILTERS 645 13.7
LITERATURE 645 14 GRAETINGS 647 14.1 DIFFRACTION BY A SLIT 648 14.2
DIFFRACTION GRAETINGS 651 14.2.1 GENERAL CONSIDERATIONS 651 14.2.2
INTERFERENCE FUNCTION 652 14.2.3 DIFFRACTION BY A GRAETING 655 14.2.4
WIDTH OF THE DIFFRACTION ORDERS 658 14.2.5 GRAETING DISPERSION 659 14.2.6
GRAETING EFFICIENCY 662 14.3 BLAZED GRAETINGS 663 14.3.1 THE CONCEPT OF
BLAZING 663 14.3.2 PARTICUTAR CASE OF NORMAL INCIDENCE 666 14.3.3
LITTROW ARRANGEMENT 667 14.3.4 REAL BLAZED GRAETINGS 668 14.4 FOURIER
THEORY OF THE GRAETING DIFFRACTION 669 XVIII CONTENTS 14.4.1 EWALD MODEL
OF THE GRAETING DIFFRACTION 669 14.4.2 RECTANGULAR AMPLITUDE GRAETING 671
14.4.3 GRAETING STRUCTURE FUNCTION 672 14.4.4 FOURIER OPTICS OF THE
BLAZED GRAETING 672 14.5 TRANSMISSION GRAETINGS 673 14.5.1 BLAZE CONDITION
673 14.5.2 CARPENTER PRISTNS 674 14.5.3 DIFFRACTIVE LENSES 675 14.6
TYPES OF GRAETING 677 14.6.1 CLASSIFICATION 677 14.6.2 SINE PHASE
GRAETINGS 679 14.6.3 LAMINAR} REFIECTION GRAETINGS 680 14.6.4 ECHELETTE
GRAETINGS 681 14.6.5 RONCHI GRAETINGS 682 14.6.6 DAMMAN GRAETINGS 684 14.7
GRAETINGS IN IMAGE FORMATION SYSTEMS 686 14.8 DIFFRACTION BY A GRAETING IN
THE GENERAL CASE 688 14.8.1 NON-PARAXIAL DIFFRACTION BY A GRAETING 688
14.8.2 CONICAL DIFFRACTION BY A GRAETING 690 14.9 LITERATURE 692 15
SPECIAL COMPONENTS 693 15.1 ASPHERICAL DEVICES 695 15.1.1 INTRODUCTION
695 15.1.2 CONIC SECTIONS 695 15.1.3 POLYNOMIAL ASPHERICAL SURFACES 700
15.1.4 CONICAL SURFACES 701 15.1.5 PARAMETERS FOR ASPHERICAL SURFACES
704 15.2 GRADIENT-INDEX LENSES 705 15.2.1 PARABOLIC LATERAL
GRADIENT-INDEX 705 15.2.2 AXIAL LINEAR GRADIENT-INDEX MEDIA 707 15.2.3
GRADIUM MEDIA 708 15.2.4 SPHCRICALLY CORRECTED GRADIENT-INDEX LENSES 711
15.3 DIFFUSING DISKS 714 15.3.1 DESCRIPTION OF THE EFFECT OF A DIFFUSING
DISK 714 15.4 CYLINDER LENSES 717 15.5 SIMPLE CYLINDER LENSES 717 15.5.1
ROTATABLE PAIR OF CYLINDER LENSES 717 15.5.2 ALVAREZLENS 718 15.6
DYNAMIC LIGHT MODULATORS 719 15.6.1 GENERAL REMARKS 719 15.6.2 DIGITAL
MIRROR DEVICE 720 15.6.3 LIQUID CRYSTAL DEVICES 72J 15.7 FRESNEL LENSES
729 15.7.1 PRINCIPLE 729 15.7.2 BASIC EQUATIONS 730 15.7.3 TOTAL
INTERNAL REFLECTION 731 15.7.4 ABERRATIONS 732 15.7.5 STRAY LIGHT 733
15.7.6 APPLICATIONS 734 15.7.7 RADIOMETRIE ASPECTS 735 15.8 LIGHT PIPES
737 15.8.1 LIGHT-GUIDING RODS 737 15.8.2 SLAB HOMOGENIZER 738 15.8.3
TAPERS 747 15.9 AXICONS 751 15.9.1 REFRACTIVE AXICONS 751 15.9.2
REFRACTIVE AXICON WITH LENS 752 15.9.3 REFLECTIVE AXICONS 753 15.9.4
AXICON FOR AN AXIAL PROFILE FORMATION 755 15.10 LITERATURE 757 16
OPTICAL MEASUREMENT AND TESTING TECHNIQUES 759 16.1 OVERVIEW 761 16.2
MEASUREMENT OFTHE FOCAL LENGTH 761 16.2.1 MEASUREMENT WITH A COLLIMATOR
761 16.2.2 GAUSS METHOD 762 16.3 MEASUREMENT OFANGLES 763 16.3.1
AUTOCOLLIMATOR 763 16.3.2 INTERFEROMETRIC TEST OF PRISM ANGLES 764
16.3.3 ALIGNMENT TELESCOPE 768 16.4 CENTERING 769 16.4.1 MEASURING
CENTERING IN REFLECTION 769 16.4.2 MEASURING CENTERING IN TRANSMISSION
770 16.4.3 INTERFERENCE METHOD 771 16.5 MEASURING THE INDEX OI
REFRACTION 773 16.5.1 REFRACTOMETER 773 16.5.2 TOEPLERS SCHLIEREN METHOD
775 16.6 SURFACE-SHAPE MEASUREMENT 776 16.6.1 TRIANGULATION 776 16.6.2
FRINGE PROJECTION 776 16.6.3 OPTICAL COHERENCE TOMOGRAPHY 778 16.7
TESTING OF SURFACE RADII AND SHAPES 780 16.7.1 NEWTON INTERFEROMETER 780
16.7.2 TWYMAN-GREEN INTERFEROMETER 782 16.7.3 FIZEAU INTERFEROMETER 784
16.7.4 EVALUATION OF THE FRINGES 785 16.8 MEASURING WAVEFRONTS 736
16.8.1 HARTMANN-SHACK WAVEFRONT SENSOR 786 16.8.2 1 LARTMANN TEST 790 XX
CONTENTS 16.9 MEASUREMENT OF THE OPTICAL TRANSFER FUNCTION 793 16.9-1
GENERAL CONSIDERATIONS 793 16.9.2 MEASUREMENT BY EDGE IMAGING 794 16.9.3
MEASUREMENT BY LINE IMAGING 796 16.9.4 MEASUREMENT OF GRAETING STRUCTURES
797 16.10 BEAM-QUALITY MEASUREMENT 799 16.10.1 OVERVIEW 799 16.10.2
KNIFE-EDGE METHOD 800 16.10.3 SCANNING-SLIT METHOD 802 16.10.4
RONCHITEST 803 16.11 COHERENCE MEASUREMENT 807 16.11.1 YOUNGS EXPERIMENT
807 16.12 POLARIZATION MEASUREMENT 808 16.13 STRAY-LIGHT MEASUREMENT 810
16.14 COLOR MEASUREMENT 811 16.14.1 OVERVIEW 811 16.14.2 SPECTRAL
PHOTOMETRY 812 16.15 LITERATURE 813 INDEX 815
|
adam_txt |
CONTENTS PREFACE V 1 INTRODUCTION I 2 PARAXIAL IMAGING 5 2.1 GENERAL
REMARKS 7 2.1.1 PARAXIAL APPROXIMATION 7 2.1.2 LINEAR COLLINEATION 9
2.1-3 IMAGE LOCATIONS 10 2-1.4 MAGNIFICATION 14 2.1.5 LENS EQUATION 15
2.1.6 NEWTONS EQUATION 19 2.1.7 THREE-DIMENSIONAL SYSTEMS 20 2.2 SINGLE
SURFACE 21 2.2.1 REFRACTING PLANE SURFACE 21 2.2.2 REFRACTIVE SPHERICAL
SURFACE 22 2.2.3 MIRROR SURFACE 23 2.3 SINGLE LENS 24 2.3.1 PARAMETERS
OFA LENS 24 2.3.2 CARDINAL ELEMENTS 25 2.3.3 THIN LENS 28 2.3.4 THICK
LENS 29 2.3.5 GRAPHICAL IMAGE CONSTRUCTION .32 2.4 MULTIPLE-COMPONENT
SYSTEMS 33 2.4.1 SYSTEM CONSISTING OF TWO THIN COMPONENTS 33 2.4.2
SYSTEMS CONSISTING OF SEVERAL THIN LENSES 36 2.5 INVARIANTS 36 2.5.1
HELMHOLTZ-LAGRANGE INVARIANT 36 2.5.2 ABBE INVARIANT Q 39 2.5.3 PARAXIAL
INVARIANT 39 2.5.4 FURTHER INVARIANTS 40 2.5.5 MATRIX FORM OF THE
HELMHOLTZ INVARIANT 40 2.6 MATRIX CALCULUS 41 HANDBOOK OF OPTICAL
SYSTEMS: VOL. 1. FUNDAMENTALS OF TECHNICAL OPTICS. H. GROSS COPYRIGHT
2005 WILEY-VCH VERLAG GMBH & CO. KCAA, WEINHEIM ISBN: 3-527-40577-9 VIII
CONTENTS 2.6.1 PARAXIAL ABCD MATRICES 41 2.6.2 PROPERTIES OF THE
MATRICES 44 2.6.3 MATRICES OF SIMPLE COMPONENTS 45 2.6.4 FINITE IMAGING
WITH AN AFOCAL SYSTEM 48 2.6.5 DECORAPOSITIONS OF AN ABCD MATRIX 49 2.7
MATRICES DESCRIBING A MORE GENERAL GEOMETRY 5J 2.7.1 TWO-DIMENSIONAL
3X3MATRICES 51 2.7.2 CCNTERED 4X4TVIATRICES 54 2.7.3 GENERAL 5X5MATRICES
58 2.8 LITERATURE 59 3 INTERFACES 61 3.1 BASICS 62 3.1.1 BOUNDARY
CONDITIONS 62 3.1.2 THE LAW OF REFRACTION 63 3.1.3 THE LAW OF RCFLECTION
66 3.2 THE FRESNEL EQUATIONS 67 3.2.1 DEFINITION OF THE AMPLITUDE
COEFFICIENTS 67 3.2.2 REFLECTION 67 3.2.3 TRANSMISSION 69 3.2.4
PROPERTIES OF THE FRESNEL EQUATIONS 69 3.2.5 STOKES RELATIONS 72 3.2.6
AZIMUTHAI ANGLE 74 3.2.7 REFLECTIVITY AND TRANSMITTIVITY 75 3.2.8 PHASE
CHANGES 79 3.2.9 DESCRIPTION OF THE REFRACTION IN THE K-SPACE HO 5.2.10
RCFLECTION LOSSES IN OPTICAL SYSTEMS H2 3.3 POLARIZATION EFFECTS AT
INTERFACES 84 3.3.1 BREWSTER ANGLE 84 3.3.2 DEGREE OF POLARIZATION 86
3.4 EVANESCENT WAVES H8 3.4.1 TOTAL INTERNAL REFLECTION SS 3.4.2
EVANESCENT SURFACE WAVES 92 3.4.3 DAMPED TOTAL INTERNAL REFLECTION 94
3.4.4 FRUSTRATED TOTAL INTERNAL REFLECTION 95 3.5 NON-GEOMETRICAL
EFFECTS AT REFLECTION 96 3.5.1 THE GOOS-HAENCHEN EFFECT 96 3.5.2 TOTAL
INTERNAL REFLECTION OF A GAUSSIAN BEAM WO 3.6 ABSORBING MEDIA 102 3.6.1
COMPLEX REFRACTIVE INDEX 102 3.6.2 LAMBERT-BEER LAW 103 3.6.3 REFLECTION
AT AN ABSORBING MEDIUM 104 3.6.4 METALS 105 3.6.5 REFLECTION AT METALS
105 3.7 LITERATURE 109 4 MATERIALS 111 4.1 BASICS 113 4.1.1 INTRODUCTION
113 4.1.2 OPTICAL PARAMETERS 113 4.1.3 NON-OPTICAL PROPERTIES 114 4.2
DISPERSION 114 4.2.1 DEFINITION 114 4.2.2 WAVELENGTHS ?7I 4.2.3
CHARACTERIZING THE DISPERSION 117 4.2.4 OPTICAL CROWNS AND FLINTS 118
4.2.5 INTERPOLATION OF THE REFRACTIVE INDEX 120 4.2.6 DISPERSION OF THE
GROUP VELOCITY 123 4.2.7 CHROMATIC COORDINATES ACCORDING TO BUCHDAHL 124
4.3 RELATIVE PARTIAL DISPERSION 125 4.3.1 DEFINITION 125 4.3.2 LINE OF
NORMAL DISPERSION 128 4.3.3 GLASSES WITH ANOMALOUS PARTIAL DISPERSION
130 4.3.4 RELATIVE PARTIAL DISPERSION IN THE GLASS DIAGRAM 132 4.3.5
HOOGLAND DIAGRAM 133 4.4 TRANSMISSION 134 4.4.1 TRANSMISSION AND
INTERNAL TRANSMISSION 134 4.4.2 TRANSMISSION EDGE 136 4.4.3 TRANSMISSION
OF GLASSES AND PLASTICS 137 4.5 GLASSES [39 4.5.1 GENERAL REMARKS 139
4.5.2 GLASS DIAGRAM 139 4.5.3 GLASS RANGES 142 4.5.4 THERMAL PROPERTIES
143 4.5.5 DATASHEEL 146 4.5.6 MECHANICAL PROPERTIES OF GLASS 247 4.5.7
CHEMICAL PROPERTIES OF GLASS 149 4.5.8 DELIVERABLE FORMS OF GLASS 149
4.5-9 PRACTICAL ASPECTS OF THE CHOICE OF GLASS IN OPTICAL DESIGN 149
4.5.10 SPECIAL GLASSES ISO 4.6 CRYSTALS AND SPECIAL MATERIALS 153 4.6.1
MATERIALS FOR IR AND UV 151 4.6.2 QUARTZ 154 4.7 PLASTICS 157 4.7.1
GENERAL PROPERTIES 157 4.7.2 OPTICAL PROPERTIES 158 4.7.3 TRANSMISSION
160 4.8 GASES 161 4.8.1 GENERAL REMARKS 161 4.8.2 AIR 161 4.9 LIQUIDS
AND CEMCNTS 162 CONTENTS 4.9.1 WATER 162 4.9-2 TECHNICAL LIQUIDS 163
4.9.3 IMMERSION OILS 166 4.9.4 OPTICAL CEMENTS 767 4.10 METALS 168
4.10.1 OPTICAL PARAMETERS 168 4.10.2 REFLECTIVITY OF METALLIC MIRRORS
169 4.11 LITERATURE 171 S RAYTRACING 173 5.1 THE MEANING OF RAYTRACING
174 5.2 RAYTRACING SCHEINE 274 5.3 RAYTRACING FORMULA SETS 178 5.3.1
GENERAL REMARKS 178 5.3.2 PARAXIAL Y-U-METHOD 178 5.3.3 PARAXIAL
S-H-METHOD 179 5.3.4 MERIDIONAL S-U-METHOD 180 5.3.5 MERIDIONAL
Q-U-METHOD 181 5.3.6 SET OF VECTOR FORMULAS 182 5.3.7 ITERATIVE
CALCULATION OFTHE INTERSECTION POINT FOR ASPHERICAL SURFACES 186 5.4
RAYTRACING IN OPTICAL SYSTEMS 189 5.4.1 DCSCRIPTION OFTHE GEOMETRY 189
5.4.2 TYPES OF SURFACE 194 5.4.3 PARTICULAR PROPERTIES 206 5.4.4 OUTPUT
QUANTITIES 207 5.4.5 ERRORS 208 5.4.6 APODIZATION 208 5.4.7 POLARIZATION
RAYTRACING 209 5.5 SPECIAL COMPONENTS 210 5.5.1 IDEAL LENS 210 5.5.2
RAYTRACING IN GRIN MEDIA 211 5.5.3 RAYTRACING FOR DIFFRACTIVE ELEMENTS
215 5.5.4 KNIFE-EDGE DIFFRACTION MODEL IN RAYTRACING 2J9 5.6
DIFFERENTIAL RAYS 220 5.6.1 CENERAL REMARKS 220 5.6.2 CODDINGTON
EQUATIONS 220 5.6.3 GENERAL DIFFERENTIAL RAYS 221 5.6.4 RAYTUBES 223 5.7
NON-SEQUENTIAL RAYTRACING 224 5.7.1 GENERAL REMARKS 224 5.7.2
MONTE-CARLO RAYTRACING 226 5.8 LITERATURE 227 6 RADIOMETRY 229 6.1
INTRODUCTION 230 6.1.1 GENERAL REMARKS 230 6.1.2 DEFINITION OF THE
RADIOMETRIE QUANTITIES 230 6.1.3 PHOTOMETRIC QUANTITIES 232 6.1.4
RADIOMETRIE AND PHOTOMETRIC QUANTITIES 233 6.1.5 SOLI D ANGLE 233 6.1.6
DIFFERENTIAL FLUX 235 6.1.7 FUNDAMENTAL LAW OF RADIOMETRY 235 6.1.8
PROJECTION OF THE LRRADIANCE 236 6.1.9 LRRADIANCE 237 6.1.10 SPECTRAL
DENSITIES OF QUANTITIES 237 6.1.11 ENERGY, POWER AND PHOTONS 238 6.2
LAMBERTIAN RADIATOR 239 6.2.1 CLASSICAL LAMBERTIAN RADIATOR 239 6.2.2
GENERAL LAMBERTIAN RADIATOR 240 6.3 RADIATION TRANSFER 241 6.3.1 GENERAL
REMARKS 241 6.3.2 POINT SOURCE OF LIGHT 242 6.3.3 RADIATION TRANSFER
BETWEEN SURFACES 244 6.3.4 NUMERICAL RADIATION TRANSFER 247 6.4
RADIOMETRY OFOPTICAL SYSTEMS 24S 6.4.1 OPTICAL SYSTEM 248 6.4.2
RADIATION TRANSPORT WITH INTERACTION 249 6.4.3 APLANATIC SYSTEMS 250
6.4.4 NATURAL VIGNCTTING 252 6.4.5 RADIOMETRY IN REAL OPTICAL SYSTEMS
259 6.4.6 RAY TUBE MODEL 260 6.5 DCSCRIPTION OF RADIATION TRANSPORT IN
THE PHASE SPACE 263 6.5.1 HELMHOLTZ - LAGRANGE INVARIANT 263 6.5.2 PHASE
SPACE COORDINATES 264 6.5.3 PHASE SPACE REPRESENTATION OF RADIATION
TRANSPORT 265 6.6 LITERATURE 267 7 LIGHT SOURCES 269 7.1 INTRODUCTION
271 7.1.1 CLASSIFICATION 271 7.1.2 EFFICIENCY 271 7.1.3 ELECTROMAGNETIC
SPECTRUM 273 7.1.4 STANDARD LIGHT SOURCES 275 7.1.5 DAYLIGHT AND
SUNLIGHT 276 7.2 THERMAL RADIATORS 278 7.2.1 PLANCKS FORMULA 278 7.2.2
OPTICAL EFFICIENCY 281 7.2.3 RADIATION TEMPERATURE 282 XII CONTENTS
7.2.4 WIENS DISPLACEMENT LAW 283 7.2.5 STEFAN-BOLTZMANN LAW 284 7.2.6
RAYLEIGH-JEANS RADIATION FORMULA 284 7.2.7 WIENS LAW OF RADIATION 28.5
7.3 CLASSICAL LAMPS 285 7.3.1 INCANDESCENT BULBS 285 7.3.2 HALOGEN LAMPS
288 7.3.3 ELECTRICAL ARE LAMPS / DISCHARGE LAMPS 288 7.3.4 XENON LAMPS
290 7.3.5 MERCURY-XERION LAMPS 291 7.3.6 HIGH-PRESSURE MERCURY LAMPS 291
7.4 DIODES 292 7.4.1 TYPES OF LIGHT EMITTING DIODES 292 7.4.2 ORGANIC
LIGHT EMITTING DIODES 294 7.4.3 SPCCTRA OF LIGHT EMITTING DIODES 295
7.4.4 EMISSION CHARACTERISTIC OF LEDS 297 7.4.5 WHITE LIGHT EMITTING
DIODES 299 7.5 LASER LIGHT SOURCES 300 7.5.1 OVERVIEW 300 7.5.2
COMPARISON OF LASERS WITH CLASSICAL LIGHT SOURCES 300 7.5.3
SEMICONDUCTOR LASER 303 7.5.4 GAS LASER 309 7.5.5 SOLID STATE LASER 309
7.5.6 EXCIMER LASER 311 7.6 MODEL DESCRIPTIONS OF RADIATION SOURCES 314
7.6.1 MODELS OF LIGHT SOURCES 314 7.6.2 CHARACTERIZATION OF THE SPATIAL
EMISSION 315 7.6.3 SPECTRAL CHARACTERISTIC 318 7.6.4 RAYTRACING MODEL
DESCRIPTION OF SOURCES 319 7.7 LITERATURE 321 8 SENSOR TECHNOLOGY AND
SIGNAL PROCESSING 323 8.1 LNTRODUCTION 325 8.1.1 SIGNAL CHAIN 325 8.1.2
INFORMATION TRANSFER IN OPTICS 325 8.1.3 ADJUSTMENT OFTHE BEAM 327 8.
1.4 INFORMATION GAIN 328 8.1.5 SPATIAL DISCRETIZATION AND RESOLUTION 331
8.1.6 DISCRETIZATION OFTHE SIGNAL STRENGTH 333 8.2 SENSOR
CHARACTERISTICS 335 8.2.1 GENERAL REMARKS 335 8.2.2 SIGNAL-TO-NOISE
RATIO 336 8.2.3 PRECISION OF A SENSOR 337 8.2.4 DYNAMIC RANGE 339 8.2.5
TIME BEHAVIOR 340 8.2.6 DIRECTIONAL SENSITIVITY 342 8.2.7 DETECTION OF
COLOR SIGNALS 343 8.3 SPECIAL TYPES OF SENSOR 345 8.3.1 CLASSIFICATION
345 8.3.2 PHOTOCONDUCTIVE DETECTOR 346 8.3.3 CCD ARRAYS 348 8.3.4
AVALANCHE PHOTODIODES 354 8.3.5 PHOTOGRAPHIC: FILM 354 8.4 SAMPLING 357
8.4.1 FOURIER TRANSFORMATION 357 8.4.2 SAMPLING THEOREM 358 8.4.3
SAMPLING OF A BAND-LIMITED SIGNAL 361 8.4.4 DETECTOR SAMPLING 362 8.5
SIGNAL PROCESSING 364 8.5.1 GENERAL REMARKS 364 8.5.2 POINT OPERATIONS
364 8.5.3 NEAREST-NEIGHBOR OPERATIONS 365 8.5.4 FOURIER FILTER 365 8.5.5
SAVITZKY-GOLAY FILTER 368 8.6 NOISE 370 8.6.1 INTRODUCTION 370 8.6.2
TYPES OF NOISE 372 8.6.3 FREQUENCY-DEPERIDENCE OF THC NOISE 374 8.6.4
CORRECTION OF THE BACKGROUND NOISE 375 8.7 SPECIAL METHODS OF DETECTION
376 8.7.1 HETERODYNE DETECTION 376 8.7.2 LOCK-IN PRINCIPLE 377 8.8
LITCRATURE 378 9 THEORY OF COLOR VISION 379 9.1 INTRODUCTION 3S0 9.2
COLOR VISION OF THE HUMAN EYE 380 9.2.1 SPCCTRAL SENSITIVITY OF THE EYE
380 9.2.2 TRANSMISSION OF THE EYE 383 9.2.3 BEZOLD EFFECT AND
RESTIMULATION 385 9.2.4 PHYSIOLOGICAL CHROMATIC SENSATION 386 9.3
PHENOMENOLOGCAL THEORY OF COLOR VISION 387 9.3.1 GRASSMANNS BASIC LAWS
387 9.3.2 LIGHT AND SSODY COLOR 388 9.3.3 ADDITIVE COLOR MIXTURE 390
9.3.4 THREE-COLOR MIXTURE 390 9.3.5 MAXWELLS COLOR TRIANGLE 391 9.4
COLORIMETRY 394 9.4.1 GENERAL REMARKS 394 9.4.2 SPCCTRAL MATCHING
FUNCTIONS 394 XIV CONTENTS 9.4.3 CONVERSION MATRICES 398 9.4.4 STANDARD
SPECTRAL VALUE FUNCTIONS OF THE CIE STANDARD SYSTEM 399 9.4.5 NORMALIZED
COLOR COORDINATES 400 9.5 COLOR TRIANGLE 402 9.5.1 BASIC PROPERTIES 402
9.5.2 COMPLEMENTARY COLORS 403 9.5.3 COLOR SATURATION 405 9.5.4
HEIMHOLTE COLOR VALUES 408 9.5.5 MIXTURE OF COLORS IN THE COLOR TRIANGLE
409 9.5.6 CLASSICAL COLOR TERMS 410 9.5.7 COLOR TEMPERATURE 412 9.5.8
BRIGHTNESS 414 9.5.9 COLOR BODY 415 9.5.10 COLOR DIFFERENCES 416 9.6
ALTERNATIVE BASIC SYSTEMS 417 9.6.1 RGB PRIMARY COLORS 417 9.6.2 IHS
COLOR REPRESENTATION ACCORDING TO MUNSELL 421 9.6.3 U'-V'-CHROMATICITY
CHART 423 9.7 LITERATURE 424 10 OPTICAL SYSTEMS 425 LUE.L SPECIAL
PROPERTIES OF LENSES 426 10.1.1 BENDING OF LENSES 426 10.1.2 POSITION
PARAMETER 429 10.1.3 IDEAL LENS 430 10.1.4 VOLUME OFA LENS 431 10.2
SPECIAL RAYS IN OPTICAL SYSTEMS 432 10.2.1 NUMERICAL APERTURE AND STOP
NUMBER 432 10.2.2 CANONICAL COORDINATES 434 10.2.3 BUNDLES AND RAY FANS
438 10.2.4 SPECIAL RAYS 439 10.2.5 PRINCIPAL PLANES 441 10.3 PUPILS 442
10.3.1 DIAPHRAGMS 442 10.3.2 DEFINITION OF PUPILS 444 10.3.3 SPHERICAL
PUPILS 446 10.3.4 PUPIL SAMPLING 448 10.3.5 VIGNETTING 451 10.3.6
VARIABLE PUPIL POSITION 454 10.3.7 SPECIAL STOP POSITIONS 455 10.3.8
INTERLINKED BUNDLES 458 10.3.9 PERSPECTIVE 458 10.4 DELANO DIAGRAM 463
10.4.1 DEFINITION 463 10.4.2 PROPERTIES OF THE DELANO DIAGRAM 464 10.4.3
EXAMPLES 468 10.4.4 VIGNETTING 472 20.5 SPECIAL ASPECTS 474 10.5.1
CURVED OBJECTS 474 10.5.2 SCHEIMPFLUG IMAGING 475 10.5.3 ANAMORPHOTIC
IMAGING 479 10.5.4 INTRODUCTION OF THICK LENSES 480 10.6 LITERATURE 483
11 ABERRATIONS 4S5 11.1 GENERAL CONSIDERATIONS 486 11.2 DESCRIPTION OF
ABERRATIONS 487 11.3 RAY ABERRATIONS 490 11.3.1 LONGITUDMAL ABERRATIONS
490 11.3.2 TRANSVERSE ABERRATIONS 491 11.3.3 SPOT DIAGRAMS 492 11.3.4
CAUSTICS 493 11.3.5 SEIDEL ABERRATIONS 494 11.4 THE SINE CONDITION 495
11.5 WAVE ABERRATIONS 497 11.5.1 DEFINITION 497 11.5.2 TILT 499 11.5.3
DEFOCNS 500 11.5.4 ZCRNIKE POLYNOMIALS 50/ 11.6 SPHERICAL ABERRATION 506
11.6.1 INTRODUCTION 506 11.6.2 APLANATIC SURFACES 507 11.6.3 APLANATIC
LENSES 509 11.7 ASTIGMATISM 510 11.8 FICLD CURVATURE 511 11.8.1 IMAGE
SURFACES 511 11.8.2 PETZVAL THEOREM 513 11.9 COMA 514 11.10 DISTORTION
5!6 11.11 CHROMATIC LONGITUDINAL ABERRATIONS 518 11.12 CHROMATIC
TRANSVERSE ABERRATIONS 520 11.13 LITERATURE 521 12 WAVEOPTICS 523 12.1
BASIC PRINCIPLES 524 12.1.1 WAVE EQUATION 524 12.1.2 TEA AND LPIA
APPROXIMATIONS FOR THIN COMPONENTS 525 12.1.3 KIRCHHOFFINTEGRAL 527
12.1.4 FRESNEL APPROXIMATION 530 12.1.5 FRAUNHOFER INTEGRAL 531 XVI
CONTENTS 12.1.6 FRESNEL NUMBER 532 12.1.7 DIFFRACTION OF AN APERTURE
5.5.3 12.1.8 PARAXIAL APPROXIMATION 535 12.1.9 MODEL APPROXIMATION^ FOR
TBE DESCRIPTION OF OPTICAL SYSTEMS 536 12.1.10 SPOT MODEL CALCULATIONS
538 12.2 POINT-SPREAD FUNCTION 539 12.2.1 IDEAL POINT IMAGE 539 12.2.2
SCALING FACTORS 542 12.2.3 TRANSVERSE AIRY DISTRIBUTION 543 12.2.4 AXIAL
DISTRIBUTION 545 12.2.5 POINT-SPREAD FUNCTION AND ABERRATIONS 546 12.3
FOURIER THEORY OF IMAGE FORMATION 548 12.3.1 SPATIAL FREQUENCY AND
EXPANSION IN PLANE WAVES 548 12.3.2 PLANE WAVE REPRESENTATION 549 12.3.3
PHASE EFFECT OFA LENS 550 12.3.4 RESOLUTION MODEL 55J 12.3.5 4-F-FOURIER
MODEL 554 12.3.6 CORNPLETE 6-F-FOURIER MODEL 557 12.3.7 COHERENT IMAGE
FORMATION 559 12.3.8 INCOHERENT IMAGE FORMATION 560 12.4 TRANSFER
FUNCTIONS 562 12.4.1 DEFINITION 562 12.4.2 OTFOF IDEAL SYSTEMS 564
12.4.3 CONTRAST TRANSFER 565 12.4.4 SAGITTAL AND TANGENTIAL STRUCTURES
566 12.5 LITERATURE 568 13 PLANO-OPTICAL COMPONENTS 13.1 PLANE-PARALLEL
PLATES 571 13.1.1 BEAM DISPLACEMENT 571 13.1.2 ABERRATIONS 572 13.1.3
PLANE-PARALLEL PLATE IN A CONVERGENT BEAM 574 13.1.4 REFLECTIONS AT
PLANE-PARALLEL PLATES 576 13.2 DISPERSION PRISMS 576 13.2.1 GENERAL
CONSIDCRATIONS 577 13.2.2 DISPERSION BY A PRISM 578 13.2.3 THIN-PRISM
APPROXIMATION 579 13.2.4 SYMMETRIE PRISMS 580 13.2.5 PRISM MAGNIFICATION
580 13.2.6 ASTIGMATISM OFA WEDGE PRISM 582 13.2.7 CURVED SPECTRAL LINES
PRODUCED BY A PRISM 582 13.2.8 VARIABLE-ANGLE PRISMS 583 13.2.9
ACHROMATIC PRISM PAIRS 584 13.2.10 DIRECT-VISION PRISMS 585 13.2.11
DOUBLE AMICI PRISMS 586 13.2.12 WERNICKE-TYPE DIRECT-VISION PRISMS 587
13.2.13 WADSWORTH PRISM MOUNTING 588 13.2.14 FERY PRISMS 589 13.3
REFLECTION PRISMS 590 13.3.1 FUNCTION OF REFLECTION PRISMS 590 13.3.2
THE TUNNEL DIAGRAM 591 1 3.3.3 DIMENSIONING OF PRISMS 592 13.3.4 TOTAL
INTERNAL REFLECTION 595 13.3.5 IMAGE REORIENTATION 596 13.3.6 MATRIX
CAICULATIONS FOR REFLECTION PRISMS 599 13.3.7 ROOFPRISMS 601 1.3.3.8
CLASSIFICATION OF THE REFLECTION PRISMS 604 13.4 CONSTRUCTION DESIGNS
FOR REFLECTION PRISMS 605 13.4.1 GENERAL CONSIDERATION 605 13.4.2 SINGLE
PRISM TYPES 606 13.4.3 COMPOSITE PRISMS 624 13.5 PRISM SYSTEMS 630
13.5.1 SLIDING PRIS M PAIR 630 13.5.2 SCANNING BY ROTATING WEDGE PAIR
631 13.5.3 ANAMORPHOTIC PRISM PAIR 632 13.5.4 DOUBLE DOVE PRISM 633
13.5.5 BEAM SPLITTERS 635 13.6 FILTERS 639 13.6.1 GENERAL PRINCIPLES OF
OPERATION 639 13.6.2 CHARACTERIZATION OF FILTERS 640 13.6.3 FILTER TYPES
643 13.6.4 INTERFERENCE FILTERS 644 13.6.5 ABSORPTION FILTERS 645 13.7
LITERATURE 645 14 GRAETINGS 647 14.1 DIFFRACTION BY A SLIT 648 14.2
DIFFRACTION GRAETINGS 651 14.2.1 GENERAL CONSIDERATIONS 651 14.2.2
INTERFERENCE FUNCTION 652 14.2.3 DIFFRACTION BY A GRAETING 655 14.2.4
WIDTH OF THE DIFFRACTION ORDERS 658 14.2.5 GRAETING DISPERSION 659 14.2.6
GRAETING EFFICIENCY 662 14.3 BLAZED GRAETINGS 663 14.3.1 THE CONCEPT OF
BLAZING 663 14.3.2 PARTICUTAR CASE OF NORMAL INCIDENCE 666 14.3.3
LITTROW ARRANGEMENT 667 14.3.4 REAL BLAZED GRAETINGS 668 14.4 FOURIER
THEORY OF THE GRAETING DIFFRACTION 669 XVIII CONTENTS 14.4.1 EWALD MODEL
OF THE GRAETING DIFFRACTION 669 14.4.2 RECTANGULAR AMPLITUDE GRAETING 671
14.4.3 GRAETING STRUCTURE FUNCTION 672 14.4.4 FOURIER OPTICS OF THE
BLAZED GRAETING 672 14.5 TRANSMISSION GRAETINGS 673 14.5.1 BLAZE CONDITION
673 14.5.2 CARPENTER PRISTNS 674 14.5.3 DIFFRACTIVE LENSES 675 14.6
TYPES OF GRAETING 677 14.6.1 CLASSIFICATION 677 14.6.2 SINE PHASE
GRAETINGS 679 14.6.3 LAMINAR}' REFIECTION GRAETINGS 680 14.6.4 ECHELETTE
GRAETINGS 681 14.6.5 RONCHI GRAETINGS 682 14.6.6 DAMMAN GRAETINGS 684 14.7
GRAETINGS IN IMAGE FORMATION SYSTEMS 686 14.8 DIFFRACTION BY A GRAETING IN
THE GENERAL CASE 688 14.8.1 NON-PARAXIAL DIFFRACTION BY A GRAETING 688
14.8.2 CONICAL DIFFRACTION BY A GRAETING 690 14.9 LITERATURE 692 15
SPECIAL COMPONENTS 693 15.1 ASPHERICAL DEVICES 695 15.1.1 INTRODUCTION
695 15.1.2 CONIC SECTIONS 695 15.1.3 POLYNOMIAL ASPHERICAL SURFACES 700
15.1.4 CONICAL SURFACES 701 15.1.5 PARAMETERS FOR ASPHERICAL SURFACES
704 15.2 GRADIENT-INDEX LENSES 705 15.2.1 PARABOLIC LATERAL
GRADIENT-INDEX 705 15.2.2 AXIAL LINEAR GRADIENT-INDEX MEDIA 707 15.2.3
GRADIUM MEDIA 708 15.2.4 SPHCRICALLY CORRECTED GRADIENT-INDEX LENSES 711
15.3 DIFFUSING DISKS 714 15.3.1 DESCRIPTION OF THE EFFECT OF A DIFFUSING
DISK 714 15.4 CYLINDER LENSES 717 15.5 SIMPLE CYLINDER LENSES 717 15.5.1
ROTATABLE PAIR OF CYLINDER LENSES 717 15.5.2 ALVAREZLENS 718 15.6
DYNAMIC LIGHT MODULATORS 719 15.6.1 GENERAL REMARKS 719 15.6.2 DIGITAL
MIRROR DEVICE 720 15.6.3 LIQUID CRYSTAL DEVICES 72J 15.7 FRESNEL LENSES
729 15.7.1 PRINCIPLE 729 15.7.2 BASIC EQUATIONS 730 15.7.3 TOTAL
INTERNAL REFLECTION 731 15.7.4 ABERRATIONS 732 15.7.5 STRAY LIGHT 733
15.7.6 APPLICATIONS 734 15.7.7 RADIOMETRIE ASPECTS 735 15.8 LIGHT PIPES
737 15.8.1 LIGHT-GUIDING RODS 737 15.8.2 SLAB HOMOGENIZER 738 15.8.3
TAPERS 747 15.9 AXICONS 751 15.9.1 REFRACTIVE AXICONS 751 15.9.2
REFRACTIVE AXICON WITH LENS 752 15.9.3 REFLECTIVE AXICONS 753 15.9.4
AXICON FOR AN AXIAL PROFILE FORMATION 755 15.10 LITERATURE 757 16
OPTICAL MEASUREMENT AND TESTING TECHNIQUES 759 16.1 OVERVIEW 761 16.2
MEASUREMENT OFTHE FOCAL LENGTH 761 16.2.1 MEASUREMENT WITH A COLLIMATOR
761 16.2.2 GAUSS METHOD 762 16.3 MEASUREMENT OFANGLES 763 16.3.1
AUTOCOLLIMATOR 763 16.3.2 INTERFEROMETRIC TEST OF PRISM ANGLES 764
16.3.3 ALIGNMENT TELESCOPE 768 16.4 CENTERING 769 16.4.1 MEASURING
CENTERING IN REFLECTION 769 16.4.2 MEASURING CENTERING IN TRANSMISSION
770 16.4.3 INTERFERENCE METHOD 771 16.5 MEASURING THE INDEX OI'
REFRACTION 773 16.5.1 REFRACTOMETER 773 16.5.2 TOEPLERS SCHLIEREN METHOD
775 16.6 SURFACE-SHAPE MEASUREMENT 776 16.6.1 TRIANGULATION 776 16.6.2
FRINGE PROJECTION 776 16.6.3 OPTICAL COHERENCE TOMOGRAPHY 778 16.7
TESTING OF SURFACE RADII AND SHAPES 780 16.7.1 NEWTON INTERFEROMETER 780
16.7.2 TWYMAN-GREEN INTERFEROMETER 782 16.7.3 FIZEAU INTERFEROMETER 784
16.7.4 EVALUATION OF THE FRINGES 785 16.8 MEASURING WAVEFRONTS 736
16.8.1 HARTMANN-SHACK WAVEFRONT SENSOR 786 16.8.2 1 LARTMANN TEST 790 XX
CONTENTS 16.9 MEASUREMENT OF THE OPTICAL TRANSFER FUNCTION 793 16.9-1
GENERAL CONSIDERATIONS 793 16.9.2 MEASUREMENT BY EDGE IMAGING 794 16.9.3
MEASUREMENT BY LINE IMAGING 796 16.9.4 MEASUREMENT OF GRAETING STRUCTURES
797 16.10 BEAM-QUALITY MEASUREMENT 799 16.10.1 OVERVIEW 799 16.10.2
KNIFE-EDGE METHOD 800 16.10.3 SCANNING-SLIT METHOD 802 16.10.4
RONCHITEST 803 16.11 COHERENCE MEASUREMENT 807 16.11.1 YOUNGS EXPERIMENT
807 16.12 POLARIZATION MEASUREMENT 808 16.13 STRAY-LIGHT MEASUREMENT 810
16.14 COLOR MEASUREMENT 811 16.14.1 OVERVIEW 811 16.14.2 SPECTRAL
PHOTOMETRY 812 16.15 LITERATURE 813 INDEX 815 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)134121201 |
building | Verbundindex |
bvnumber | BV023333598 |
classification_rvk | UH 5000 |
ctrlnum | (OCoLC)633627361 (DE-599)BVBBV023333598 |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. ed., 1. reprint |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01294nam a2200337 cc4500</leader><controlfield tag="001">BV023333598</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080609s2007 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527403776</subfield><subfield code="9">978-3-527-40377-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633627361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023333598</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5000</subfield><subfield code="0">(DE-625)145647:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of optical systems</subfield><subfield code="n">1</subfield><subfield code="p">Fundamentals of technical optics</subfield><subfield code="c">ed. by Herbert Gross</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed., 1. reprint</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 826 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Optik</subfield><subfield code="0">(DE-588)4078181-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Optik</subfield><subfield code="0">(DE-588)4078181-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gross, Herbert</subfield><subfield code="d">1955-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)134121201</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV019743683</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016517493&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016517493</subfield></datafield></record></collection> |
id | DE-604.BV023333598 |
illustrated | Illustrated |
index_date | 2024-07-02T20:58:38Z |
indexdate | 2024-07-09T21:16:07Z |
institution | BVB |
isbn | 9783527403776 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016517493 |
oclc_num | 633627361 |
open_access_boolean | |
owner | DE-703 DE-83 |
owner_facet | DE-703 DE-83 |
physical | XXII, 826 S. graph. Darst. 25 cm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Handbook of optical systems 1 Fundamentals of technical optics ed. by Herbert Gross 1. ed., 1. reprint Weinheim Wiley-VCH 2007 XXII, 826 S. graph. Darst. 25 cm txt rdacontent n rdamedia nc rdacarrier Technische Optik (DE-588)4078181-1 gnd rswk-swf Technische Optik (DE-588)4078181-1 s DE-604 Gross, Herbert 1955- Sonstige (DE-588)134121201 oth (DE-604)BV019743683 1 OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016517493&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Handbook of optical systems Technische Optik (DE-588)4078181-1 gnd |
subject_GND | (DE-588)4078181-1 |
title | Handbook of optical systems |
title_auth | Handbook of optical systems |
title_exact_search | Handbook of optical systems |
title_exact_search_txtP | Handbook of optical systems |
title_full | Handbook of optical systems 1 Fundamentals of technical optics ed. by Herbert Gross |
title_fullStr | Handbook of optical systems 1 Fundamentals of technical optics ed. by Herbert Gross |
title_full_unstemmed | Handbook of optical systems 1 Fundamentals of technical optics ed. by Herbert Gross |
title_short | Handbook of optical systems |
title_sort | handbook of optical systems fundamentals of technical optics |
topic | Technische Optik (DE-588)4078181-1 gnd |
topic_facet | Technische Optik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016517493&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV019743683 |
work_keys_str_mv | AT grossherbert handbookofopticalsystems1 |