Protein-nucleic acid interactions: structural biology
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge
Royal Society of Chemistry
2008
|
Schriftenreihe: | RSC biomolecular sciences
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 397 S. Ill., graph. Darst. |
ISBN: | 9780854042722 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023326711 | ||
003 | DE-604 | ||
005 | 20090403 | ||
007 | t | ||
008 | 080603s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780854042722 |9 978-0-85404-272-2 | ||
035 | |a (OCoLC)212431625 | ||
035 | |a (DE-599)GBV55641618X | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-355 | ||
050 | 0 | |a QP624.75.P74 | |
082 | 0 | |a 572.86 |2 22 | |
084 | |a WD 5300 |0 (DE-625)148199: |2 rvk | ||
245 | 1 | 0 | |a Protein-nucleic acid interactions |b structural biology |c ed. by Phoebe A. Rice ... |
264 | 1 | |a Cambridge |b Royal Society of Chemistry |c 2008 | |
300 | |a XVII, 397 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a RSC biomolecular sciences | |
650 | 4 | |a DNA-Binding Proteins |x chemistry | |
650 | 4 | |a DNA-Binding Proteins |x genetics | |
650 | 4 | |a DNA-protein interactions | |
650 | 4 | |a RNA-Binding Proteins |x chemistry | |
650 | 4 | |a RNA-Binding Proteins |x genetics | |
650 | 4 | |a RNA-protein interactions | |
650 | 0 | 7 | |a Wechselwirkung |0 (DE-588)4064937-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Proteine |0 (DE-588)4076388-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Proteinstoffwechsel |0 (DE-588)4014135-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a DNS |0 (DE-588)4070512-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nucleinsäuren |0 (DE-588)4172117-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a DNS |0 (DE-588)4070512-2 |D s |
689 | 0 | 1 | |a Proteinstoffwechsel |0 (DE-588)4014135-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a DNS |0 (DE-588)4070512-2 |D s |
689 | 1 | 1 | |a Proteine |0 (DE-588)4076388-2 |D s |
689 | 1 | 2 | |a Wechselwirkung |0 (DE-588)4064937-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Proteine |0 (DE-588)4076388-2 |D s |
689 | 2 | 1 | |a Nucleinsäuren |0 (DE-588)4172117-2 |D s |
689 | 2 | 2 | |a Wechselwirkung |0 (DE-588)4064937-4 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
700 | 1 | |a Rice, Phoebe A. |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016510705&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016510705 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137668105207808 |
---|---|
adam_text | Contents
Chapter
1
Introduction
Carl
С.
Correli
and Phoebe A. Rice
1.1
Overview
1
1.2
Fundamentals of
DNA
and
RNA
Structure
1
1.2.1
Stabilizing Forces
1
1.2.2
Chemical Differences between
DNA
and
RNA
3
1.2.3
Canonical A- and B-form Helices
4
1.2.4
Deviation is the Norm
6
1.2.5
Bending and Supercoiling
DNA
6
1.2.6
Folded
RNA
and Noncanonical
DNA
7
1.3
Principles of Recognition
7
1.3.1
Forces that Contribute to Complex
Formation
8
1.3.2
Site Recognition Overview
8
1.3.3
Recognizing Duplex
DNA
via Direct and
Indirect Readout
8
1.3.4
Recognizing Single-stranded Nucleic Acids
9
1.3.5
Recognizing Folded RNAs
9
1.3.6
Recognizing Noncanonical
DNA
Structures
10
1.3.7
Conformational Rearrangements
10
1.4
Futun
;
Directions
11
References
11
Vlil
Contents
Chapter
2
Role of Water and Effects of Small Ions in Site-specific
Protein-DNA Interactions
Linda Jen-Jacobson and Lewis
A. Jacobson
2.1
Introduction
13
2.2
Affinity and Specificity
14
2.3
Macromolecular
Hydration
Influences
АЯ°,
ÅS°
and AC°p
15
2.4
Water Release Attending Protein-DNA
Association
17
2.5
Retained Water Molecules Contribute to Affinity
and Specificity
26
2.6
Thermodynamic Effects of Retained Water
27
2.7
Overview of Small Ion Effects on Protein-DNA
Interactions
28
2.8
Multiple Physical Phenomena Associated
with Salt Dependence
28
2.9
Cation Release Favors Protein-DNA Association
30
2.10
Selective Effects of Anions on Protein-DNA Binding
32
2.11
Divalent Cation Binding at Active Sites Relieves
Electrostatic Strain
34
2.12
Ion Effects and Cosolute Effects
are Mechanistically Independent
36
2.13
Comparison with Nonspecific Binding:
How Water and Ions Affect Specificity
36
2.14
Conclusions
39
Acknowledgements
40
References
40
Chapter
3
Structural Basis for Sequence-specific
DNA
Recognition
by Transcription Factors and their Complexes
Manqing Hong and
Ronen Marmorstein
3.1
Introduction
47
3.2
Transcriptional
Regulators
that Bind Core
DNA
Elements
48
3.2.1
Helix-turn-helix and Winged Helix-turn-helix
48
3.2.2
Basic Leucine-zipper and Basic
Helix-loop-helix
50
3.2.3
Zinc-binding Domains that Bind
as
Monomeric
Units
52
3.2.4 DNA
Recognition by
ß-Ribbons
53
3.2.5
Immunoglobulin Fold
53
3.2.6
HMG Domain
54
Contents
3.3 Transcriptional Regulators
that Bind as
Dimers
to two
DNA Half Sites
with Different Spacing and Polarity
54
3.3.1
Zn2Cys6 Binuclear Cluster
54
3.3.2
Nuclear Receptors
57
3.4
Transcription Regulatory Complexes that use
a Combination of Different DNA-binding Motifs
59
3.4.1
Combinatorial
DNA
Interactions
59
3.4.2
ETS
Family Ternary Complexes
60
3.4.3
NFAT/Fos-Jun/DNA Quaternary Complex
62
3.5
Conclusions
62
References
63
Chapter
4
Indirect Readout of
DNA
Sequence by Proteins
Catherine L. Lawson and Helen M. Berman
4.1
Introduction
66
4.1.1
DNA
Sequence Recognition:
A Historical Perspective
66
4.2
Indirect Readout
68
4.2.1
Direct vs. Indirect Readout
68
4.2.2
Language of Indirect Readout:
DNA
Geometry
69
4.2.3
Sequence-dependent Polymorphisms
of B-DNA
69
4.2.3.1
Base Stacking
70
4.2.3.2
Hydrogen Bonding
72
4.2.3.3
Steric Repulsion
72
4.2.3.4 DNA
Bending
72
4.2.4
Indirect Readout: A Universal Feature
of Protein-DNA Interactions
72
4.3
DNA
Sequence Recognition by CAP
73
4.3.1
Direct Readout by CAP
76
4.3.2
Indirect Readout by CAP
79
4.3.2.1
Conformation and Flexibility
of the
DNA Site
for CAP
79
4.3.2.2
Indirect Readout at Positions
1-2
80
4.3.2.3
Indirect Readout at Position
6
80
4.3.2.4
Comparison with Other
Protein-induced Positive
Roll Deformations
81
4.3.3
DNA
Bending vs.
DNA
Kinking
-
A Dynamic Duo?
83
4.4
Conclusions
86
Acknowledgements
86
References
86
Contents
Chapter
5
Single-stranded Nucleic Acid (SSNA)-binding Proteins
Martin P.
Horváth
5.1
Introduction
91
5.2
Basic
Elements
93
5.2.1
Interaction Types
93
5.2.1.1
Salt Bridges and Electrostatics
93
5.2.1.2
Stacking Interactions
95
5.2.1.3
Steric Packing and van
der Waals
Interactions
95
5.2.1.4
Hydrogen Bonding
96
5.2.2
Folds, Evolution and Function
98
5.2.2.1
OB-fold
98
5.2.2.2
Sm-fold
103
5.2.2.3
RRM
106
5.2.2.4
KH
106
5.2.2.5
Others: Pumilio, TRAP
and Whirly
108
5.3
Emerj
lent Properties
110
5.3.1
Molecular Recognition: Specificity,
Adaptability and Degeneracy
111
5.3.1.1
Specific yet Adaptable Recognition
by Modular
Puf
Proteins
112
5.3.1.2
A Hot-spot for Recognition
of Telomere
DNA
by Cdcl3
113
5.3.1.3
Nucleotide Shuffling
and
ΤΕΒΡ-α/β
113
5.3.1.4
Degeneracy in Splicing Branch Site
Identification
114
5.3.2
Cooperativity
115
5.3.2.1
SSB and Multiple Cooperativity
Modes
115
5.3.2.2
Anti-cooperativity and TEBP-a
116
5.3.2.3
Positive Heterotypic Cooperativity
at Telomere Ends
117
5.3.3
Allostery
117
5.3.3.1
Small Molecule Effectors
and SSNA-binding
118
5.3.3.2
Proteins as Allosteric
Effectors for Binding and
Release of SSNA
119
5.4
Conclusion and
I Perspective
120
Acknowledgements
120
References
121
Contents xi
Chapter
6 DNA
Junctions and their Interaction with Resolving
Enzymes
David
MJ.
Lilley
6.1
The Four-way Junction in Genetic Recombination
129
6.2
Structure and Dynamics of
DNA
Junctions
129
6.2.1
Dynamics of the Four-way Junction
131
6.2.2
Metal Ions and the Electrostatics
of the Four-way Junction
131
6.2.3
Branch Migration
132
6.2.4
Comparison with Four-way
RNA
Junctions
134
6.3
Proteins that Interact with
DNA
Junctions
134
6.4
Junction-resolving Enzymes
134
6.4.1
Occurrence of the Junction-resolving Enzymes
135
6.4.2
Phylogeny
135
6.4.3
Junction-resolving Enzymes are Dimeric
135
6.4.4
Structures of the Junction-resolving
Enzymes
135
6.5
Molecular Recognition and Distortion of the
Structure of
DNA
Junctions by Resolving Enzymes
137
6.5.1
Sequence Specificity of the Junction-resolving
Enzymes
138
6.5.2
Structural Distortion of
DNA
Junctions
by the Junction-resolving Enzymes
138
6.5.3
Coordination of the Resolution Process
139
6.6
T7 Endonuclease I
139
6.6.1
Biochemistry of Endonuclease I
139
6.6.2
Structure of Endonuclease I
140
6.6.3
The Active Site
141
6.6.4
Catalysis of Phosphodiester Bond Hydrolysis
141
6.6.5
Interaction between Endonuclease I
and
DNA
Junctions
142
6.7
In Conclusion
144
Acknowledgements
145
References
145
Chapter
7
RNA-protein Interactions in Ribonudeoprotein Particles
and Ribonucleases
Hong Li
7.1
Introduction
150
7.2
Experimental Methods used to Determine
RNA-protein Complex Structures
151
Contents
7.3 RNA-protein
Interactions
in Ribonucleoprotein
Particles
152
7.3.1 Ribosome 153
7.3.2 RNAi
Complexes
156
7.3.3 Signal
Recognition Particle
159
7.3.4
s(no)RNPs
160
7.3.5
RNA
Editing Complexes
164
7.4
RNA-protein Interactions in Ribonucleases
165
7.4.1
RNaseE
165
7.4.2
RNasell
166
7.4.3
RNase HI
167
7.4.4
Restrictocin
168
7.4.5
RNA
Splicing Endonucleases
169
7.4.6
tRNase Z
170
7.5
Concluding Remarks
170
Acknowledgements
171
References
171
Chapter
8
Bending and Compaction of
DNA
by Proteins
Reid C. Johnson,
Stefano
Stella
and John K. Heiss
. 1
Introduction
176
.2
Forces
;
Controlling
DNA
Rigidity
178
8.2.1
DNA
Elasticity and the Influence
of
DNA
Sequence
178
8.2.2
Base Stacking Primarily Controls
Helix Rigidity
179
8.2.3
Electrostatic Forces Modulate
DNA
Bending
180
.3
Bending of
DNA
at High Resolution
183
8.3.1
Helix Parameters Controlling
DNA
Structure
184
8.3.1.1
Roll and Tilt
184
8.3.1.2
Twist
185
8.3.1.3
Propeller Twist, Slide,
and Shift
186
8.3.1.4
Changes in
DNA
Groove Width
186
8.3.2
Influence of Exocyclic Groups
on Base Stacking
188
8.3.3
Flexibility of Dinucleotide Steps
189
8.3.3.1
Pyrimidine-purine (Y-R) Steps
189
8.3.3.2
Purine-purine (R-R) or
Pyrimidine-pyrimidine (Y-Y) Steps
189
8.3.3.3
Purine-pyrimidine (R-Y) Steps
190
Contents xiij
8.4
Examples of
DNA Bending Proteins 191
8.4.1 Histone
Binding to
DNA 191
8.4.2 Phage
λ
Xis
Protein 194
8.4.3 Papillomaviras E2 Protein 194
8.4.4 Escherichia
coli
Fis
Protein 197
8.4.4.1
Long-range
DNA
Condensation
by
Fis
198
8.4.5
Escherichia
coli
CAP Protein
201
8.4.6
Prokaryotic HU/IHF Protein Family
203
8.4.6.1 Single-DNA
Molecule Analysis
of HU/IHF Protein Binding
207
8.4.7
HMGB Protein Family
208
8.4.7.1
Single
DNA
Molecule Analyses
of HMGB Protein Binding
211
8.4.7.2 DNA
Binding by HMGB Shares
Features with TBP
212
8.5
Concluding Remarks
212
References
213
Chapter
9
Mode of Action of Proteins with
RNA
Chaperone Activity
Sabine Stampfl, Lukas Rajkowitsch, Katharina Semrad
and
Renée Schroeder
9.1
Introduction
221
9.1.1
RNA
Folding
221
9.1.2
Proteins with
RNA
Chaperone Activity (RCA)
222
9.1.3
Measuring RCA
223
9.2
Mode of Action of Proteins with RCA
223
9.2.1
RNA
Annealing Activity
223
9.2.1.1
Annealing of Protein-bound Guide
RNAs with Target RNAs
226
9.2.2
Nucleic Acid Melting Activity
227
9.3
RNA
Binding and Restructuring
228
9.3.1
Proteins with RCA Interact with
RNA
only Weakly
228
9.3.2
Proteins with Specific RNA-binding Affinity
229
9.3.3
Protein Structure and
RNA
Chaperone
Activity
230
Acknowledgements
231
References
231
Chapter
10
Structure and Function of
DNA
Topoisomerases
Ken
С
Dong and James M.
Berger
10.1
Introduction
234
10.2
Type IA Topoisomerases
238
xiv Contents
10.2.1
Overview
238
10.2.2
Structures and Mechanism
239
10.2.3
Type IA Topoisomerase
Paralogs
242
10.2.3.1
Topoisomerase III
243
10.2.3.2
Reverse Gyrase
243
10.3
Type IB Topoisomerases
244
10.3.1
Overview
244
10.3.2
General Architecture
245
10.3.3 DNA
Recognition and Cleavage
246
10.3.4
Mechanism
248
10.4
Topoisomerase V
-
The Defining Member
of the Type
1С
Topoisomerases?
249
10.5
Type
ПА
Topoisomerases
249
10.5.1
Overview
249
10.5.2
Structural Organization
253
10.5.2.1
ATPase Domain
253
10.5.2.2 DNA
Breakage/Reunion Domain
and the
DNA
Binding/Cleavage
Core
254
10.5.3
Duplex
DNA
Transport Mechanism
255
10.5.3.1
Type IIA Topoisomerase
Paralogs:
Role of the
C-terminal
Domain in
Modulating Duplex Transport
256
10.5.4
Physiological Specialization of Type IIA
Topoisomerases
258
10.6
Type IIB Topoisomerases
259
10.6.1
Overview
259
10.6.2
Structure
259
10.6.3
Mechanism
260
10.7
Conclusions
261
Acknowledgements
261
References
261
Chapter
11 DNA Transposases
Fred Dyda and Alison Burgess Hickman
11.1
Introduction
270
11.1.1
Nomenclature, Classification, and Overview
of Transposition Systems
271
11.1.1.1
Prokaryotic Elements
271
11.1.1.2
Eukaryotic Elements
273
11.2
Transposases and
DNA 274
11.2
Л
Ends of
Transposons
274
11.2.2
Chemistry of
DNA
Transposition
276
Contents xv
11.2.3 DDE Transposases 276
11.2.4 Cut-and-paste,
Copy-in, and Copy-out
Transposition 277
11.2.4.1
Mechanism of
DNA
Cleavage
and Strand Transfer 277
11.2.4.2
Second
Strand
Cleavage
by Cut-and-paste
Transposases 280
11.2.4.3
Replicative
Transposition 281
11.2.5 Transposition Happens in
Context
281
11.3 Tn5 Transposase: The Minimum
Necessary
282
11.3.1
Overview of the
Тп5
Transposition Pathway
283
11.3.2
Structure of a Tn5 Transposase Dimer
Bound to
DNA 283
11.4
Bacteriophage
Mu
284
11.4.1
Organization of the
Mu
Genome Ends
285
11.4.2
Domain Structure of MuA
285
11.4.3
Putting Mu Ends and MuA together:
The Mu Transpososome
287
11.5
Tel ¡mariner Transposases
288
11.5.1
Tc3 N-terminal Domains and
DNA 289
11.5.2
Mosl Transposase
290
11.5.3
What is the Active Assembly?
290
11.6
hATElements: A First Glimpse
290
11.6.1
Domain Organization of Hermes
292
11.7
Transposases that Form Covalent Phosphotyrosine
or Phosphoserine Intermediates
293
11.7.1
Y
and
S
Transposases
293
11.7.2
Y2 Transposases
294
11.7.3
Yl Transposases
296
11.7.3.1
ISHp608TnpA
296
Acknowledgements
299
References
299
Chapter
12
Site-specific Recombinases
Gregory D. Van Duyne
12.1
Introduction
303
12.2
Tyrosine Recombinases
307
12.2.1
Cre and Fip Recombinases
309
12.2.2
λ
-Integrase
and XerCD Recombinases
313
12.2.3
Integran Integrases
316
12.2.4
Other Tyrosine Recombinases
318
12.3
Serine
Recombinases
318
12.3.1
Tn3 and
γδ
-Resolvases
321
12.3.2 Hin
and Gin Recombinases
323
Contents
12.3.3 Regulation
by Accessory
Sites 324
12.3.4
Large Serine Recombinases
326
12.4
Summary
327
References
328
Chapter
13 DNA
Nucleases
Nancy
С.
Horton
13.1
Introduction
333
13.2
Summaries by Fold
334
13.2.1
Restriction Endonuclease-like Fold
334
13.2.2
RNaseH-like Fold
341
13.2.3
Homing Endonuclease-like Fold
343
13.2.4
His-Me Finger Endonucleases
345
13.2.5
SAM Domain-like/PIN Domain-like Fold
348
13.2.6
DNase I-like Fold
350
13.2.7
Phospholipase C/Pl Nuclease Fold
352
13.2.8
Phospholipase D/Nuclease Fold
354
13.2.9
TIM beta/alpha Barrel Fold
355
13.2.10
DHH Phosphoesterases Fold
357
13.2.11
GIY-YIG Endonuclease Fold
358
13.2.12
Metallo-dependent Phosphatases Fold
360
13.2.13
Bacillus chorismate Mutase-like Fold
361
13.3
Conclusion
361
References
363
Chapter
14
RNA-modifying Enzymes
Adrian R.
Ferré-D amaré
14.1
Introduction: Scope of
RNA
Modification
367
14.2
The tRNA Adenosine Deaminase TadA
369
14.2.1
RNA
Recognition by Loop
Eversion
369
14.2.2
Hydrolytic Deamination by a Zinc-activated
Water
370
14.3
The tRNA Pseudouridine Synthase RluA
372
14.3.1
RNA
Recognition through Protein-induced
Base-pairing
374
14.3.2
In-line Displacement or Michael
Addition?
374
14.4
The tRNA Archaeosine Transglycosylase
ArcTGT
376
14.4.1
RNA
Recognition by Tertiary Structure
Rearrangement
376
Contents xvii
14.4.2 Transglycosylation
Using Two
Aspartate
Residues
378
14.5
Conclusions
379
Acknowledgements
379
References
380
Subject Index
382
|
adam_txt |
Contents
Chapter
1
Introduction
Carl
С.
Correli
and Phoebe A. Rice
1.1
Overview
1
1.2
Fundamentals of
DNA
and
RNA
Structure
1
1.2.1
Stabilizing Forces
1
1.2.2
Chemical Differences between
DNA
and
RNA
3
1.2.3
Canonical A- and B-form Helices
4
1.2.4
Deviation is the Norm
6
1.2.5
Bending and Supercoiling
DNA
6
1.2.6
Folded
RNA
and Noncanonical
DNA
7
1.3
Principles of Recognition
7
1.3.1
Forces that Contribute to Complex
Formation
8
1.3.2
Site Recognition Overview
8
1.3.3
Recognizing Duplex
DNA
via Direct and
Indirect Readout
8
1.3.4
Recognizing Single-stranded Nucleic Acids
9
1.3.5
Recognizing Folded RNAs
9
1.3.6
Recognizing Noncanonical
DNA
Structures
10
1.3.7
Conformational Rearrangements
10
1.4
Futun
;
Directions
11
References
11
Vlil
Contents
Chapter
2
Role of Water and Effects of Small Ions in Site-specific
Protein-DNA Interactions
Linda Jen-Jacobson and Lewis
A. Jacobson
2.1
Introduction
13
2.2
Affinity and Specificity
14
2.3
Macromolecular
Hydration
Influences
АЯ°,
ÅS°
and AC°p
15
2.4
Water Release Attending Protein-DNA
Association
17
2.5
Retained Water Molecules Contribute to Affinity
and Specificity
26
2.6
Thermodynamic Effects of Retained Water
27
2.7
Overview of Small Ion Effects on Protein-DNA
Interactions
28
2.8
Multiple Physical Phenomena Associated
with Salt Dependence
28
2.9
Cation Release Favors Protein-DNA Association
30
2.10
Selective Effects of Anions on Protein-DNA Binding
32
2.11
Divalent Cation Binding at Active Sites Relieves
Electrostatic Strain
34
2.12
Ion Effects and Cosolute Effects
are Mechanistically Independent
36
2.13
Comparison with Nonspecific Binding:
How Water and Ions Affect Specificity
36
2.14
Conclusions
39
Acknowledgements
40
References
40
Chapter
3
Structural Basis for Sequence-specific
DNA
Recognition
by Transcription Factors and their Complexes
Manqing Hong and
Ronen Marmorstein
3.1
Introduction
47
3.2
Transcriptional
Regulators
that Bind Core
DNA
Elements
48
3.2.1
Helix-turn-helix and Winged Helix-turn-helix
48
3.2.2
Basic Leucine-zipper and Basic
Helix-loop-helix
50
3.2.3
Zinc-binding Domains that Bind
as
Monomeric
Units
52
3.2.4 DNA
Recognition by
ß-Ribbons
53
3.2.5
Immunoglobulin Fold
53
3.2.6
HMG Domain
54
Contents
3.3 Transcriptional Regulators
that Bind as
Dimers
to two
DNA Half Sites
with Different Spacing and Polarity
54
3.3.1
Zn2Cys6 Binuclear Cluster
54
3.3.2
Nuclear Receptors
57
3.4
Transcription Regulatory Complexes that use
a Combination of Different DNA-binding Motifs
59
3.4.1
Combinatorial
DNA
Interactions
59
3.4.2
ETS
Family Ternary Complexes
60
3.4.3
NFAT/Fos-Jun/DNA Quaternary Complex
62
3.5
Conclusions
62
References
63
Chapter
4
Indirect Readout of
DNA
Sequence by Proteins
Catherine L. Lawson and Helen M. Berman
4.1
Introduction
66
4.1.1
DNA
Sequence Recognition:
A Historical Perspective
66
4.2
Indirect Readout
68
4.2.1
Direct vs. Indirect Readout
68
4.2.2
Language of Indirect Readout:
DNA
Geometry
69
4.2.3
Sequence-dependent Polymorphisms
of B-DNA
69
4.2.3.1
Base Stacking
70
4.2.3.2
Hydrogen Bonding
72
4.2.3.3
Steric Repulsion
72
4.2.3.4 DNA
Bending
72
4.2.4
Indirect Readout: A Universal Feature
of Protein-DNA Interactions
72
4.3
DNA
Sequence Recognition by CAP
73
4.3.1
Direct Readout by CAP
76
4.3.2
Indirect Readout by CAP
79
4.3.2.1
Conformation and Flexibility
of the
DNA Site
for CAP
79
4.3.2.2
Indirect Readout at Positions
1-2
80
4.3.2.3
Indirect Readout at Position
6
80
4.3.2.4
Comparison with Other
Protein-induced Positive
Roll Deformations
81
4.3.3
DNA
Bending vs.
DNA
Kinking
-
A Dynamic Duo?
83
4.4
Conclusions
86
Acknowledgements
86
References
86
Contents
Chapter
5
Single-stranded Nucleic Acid (SSNA)-binding Proteins
Martin P.
Horváth
5.1
Introduction
91
5.2
Basic
Elements
93
5.2.1
Interaction Types
93
5.2.1.1
Salt Bridges and Electrostatics
93
5.2.1.2
Stacking Interactions
95
5.2.1.3
Steric Packing and van
der Waals
Interactions
95
5.2.1.4
Hydrogen Bonding
96
5.2.2
Folds, Evolution and Function
98
5.2.2.1
OB-fold
98
5.2.2.2
Sm-fold
103
5.2.2.3
RRM
106
5.2.2.4
KH
106
5.2.2.5
Others: Pumilio, TRAP
and Whirly
108
5.3
Emerj
lent Properties
110
5.3.1
Molecular Recognition: Specificity,
Adaptability and Degeneracy
111
5.3.1.1
Specific yet Adaptable Recognition
by Modular
Puf
Proteins
112
5.3.1.2
A "Hot-spot" for Recognition
of Telomere
DNA
by Cdcl3
113
5.3.1.3
"Nucleotide Shuffling"
and
ΤΕΒΡ-α/β
113
5.3.1.4
Degeneracy in Splicing Branch Site
Identification
114
5.3.2
Cooperativity
115
5.3.2.1
SSB and Multiple Cooperativity
Modes
115
5.3.2.2
Anti-cooperativity and TEBP-a
116
5.3.2.3
Positive Heterotypic Cooperativity
at Telomere Ends
117
5.3.3
Allostery
117
5.3.3.1
Small Molecule Effectors
and SSNA-binding
118
5.3.3.2
Proteins as Allosteric
Effectors for Binding and
Release of SSNA
119
5.4
Conclusion and
I Perspective
120
Acknowledgements
120
References
121
Contents xi
Chapter
6 DNA
Junctions and their Interaction with Resolving
Enzymes
David
MJ.
Lilley
6.1
The Four-way Junction in Genetic Recombination
129
6.2
Structure and Dynamics of
DNA
Junctions
129
6.2.1
Dynamics of the Four-way Junction
131
6.2.2
Metal Ions and the Electrostatics
of the Four-way Junction
131
6.2.3
Branch Migration
132
6.2.4
Comparison with Four-way
RNA
Junctions
134
6.3
Proteins that Interact with
DNA
Junctions
134
6.4
Junction-resolving Enzymes
134
6.4.1
Occurrence of the Junction-resolving Enzymes
135
6.4.2
Phylogeny
135
6.4.3
Junction-resolving Enzymes are Dimeric
135
6.4.4
Structures of the Junction-resolving
Enzymes
135
6.5
Molecular Recognition and Distortion of the
Structure of
DNA
Junctions by Resolving Enzymes
137
6.5.1
Sequence Specificity of the Junction-resolving
Enzymes
138
6.5.2
Structural Distortion of
DNA
Junctions
by the Junction-resolving Enzymes
138
6.5.3
Coordination of the Resolution Process
139
6.6
T7 Endonuclease I
139
6.6.1
Biochemistry of Endonuclease I
139
6.6.2
Structure of Endonuclease I
140
6.6.3
The Active Site
141
6.6.4
Catalysis of Phosphodiester Bond Hydrolysis
141
6.6.5
Interaction between Endonuclease I
and
DNA
Junctions
142
6.7
In Conclusion
144
Acknowledgements
145
References
145
Chapter
7
RNA-protein Interactions in Ribonudeoprotein Particles
and Ribonucleases
Hong Li
7.1
Introduction
150
7.2
Experimental Methods used to Determine
RNA-protein Complex Structures
151
Contents
7.3 RNA-protein
Interactions
in Ribonucleoprotein
Particles
152
7.3.1 Ribosome 153
7.3.2 RNAi
Complexes
156
7.3.3 Signal
Recognition Particle
159
7.3.4
s(no)RNPs
160
7.3.5
RNA
Editing Complexes
164
7.4
RNA-protein Interactions in Ribonucleases
165
7.4.1
RNaseE
165
7.4.2
RNasell
166
7.4.3
RNase HI
167
7.4.4
Restrictocin
168
7.4.5
RNA
Splicing Endonucleases
169
7.4.6
tRNase Z
170
7.5
Concluding Remarks
170
Acknowledgements
171
References
171
Chapter
8
Bending and Compaction of
DNA
by Proteins
Reid C. Johnson,
Stefano
Stella
and John K. Heiss
. 1
Introduction
176
.2
Forces
;
Controlling
DNA
Rigidity
178
8.2.1
DNA
Elasticity and the Influence
of
DNA
Sequence
178
8.2.2
Base Stacking Primarily Controls
Helix Rigidity
179
8.2.3
Electrostatic Forces Modulate
DNA
Bending
180
.3
Bending of
DNA
at High Resolution
183
8.3.1
Helix Parameters Controlling
DNA
Structure
184
8.3.1.1
Roll and Tilt
184
8.3.1.2
Twist
185
8.3.1.3
Propeller Twist, Slide,
and Shift
186
8.3.1.4
Changes in
DNA
Groove Width
186
8.3.2
Influence of Exocyclic Groups
on Base Stacking
188
8.3.3
Flexibility of Dinucleotide Steps
189
8.3.3.1
Pyrimidine-purine (Y-R) Steps
189
8.3.3.2
Purine-purine (R-R) or
Pyrimidine-pyrimidine (Y-Y) Steps
189
8.3.3.3
Purine-pyrimidine (R-Y) Steps
190
Contents xiij
8.4
Examples of
DNA Bending Proteins 191
8.4.1 Histone
Binding to
DNA 191
8.4.2 Phage
λ
Xis
Protein 194
8.4.3 Papillomaviras E2 Protein 194
8.4.4 Escherichia
coli
Fis
Protein 197
8.4.4.1
Long-range
DNA
Condensation
by
Fis
198
8.4.5
Escherichia
coli
CAP Protein
201
8.4.6
Prokaryotic HU/IHF Protein Family
203
8.4.6.1 Single-DNA
Molecule Analysis
of HU/IHF Protein Binding
207
8.4.7
HMGB Protein Family
208
8.4.7.1
Single
DNA
Molecule Analyses
of HMGB Protein Binding
211
8.4.7.2 DNA
Binding by HMGB Shares
Features with TBP
212
8.5
Concluding Remarks
212
References
213
Chapter
9
Mode of Action of Proteins with
RNA
Chaperone Activity
Sabine Stampfl, Lukas Rajkowitsch, Katharina Semrad
and
Renée Schroeder
9.1
Introduction
221
9.1.1
RNA
Folding
221
9.1.2
Proteins with
RNA
Chaperone Activity (RCA)
222
9.1.3
Measuring RCA
223
9.2
Mode of Action of Proteins with RCA
223
9.2.1
RNA
Annealing Activity
223
9.2.1.1
Annealing of Protein-bound Guide
RNAs with Target RNAs
226
9.2.2
Nucleic Acid Melting Activity
227
9.3
RNA
Binding and Restructuring
228
9.3.1
Proteins with RCA Interact with
RNA
only Weakly
228
9.3.2
Proteins with Specific RNA-binding Affinity
229
9.3.3
Protein Structure and
RNA
Chaperone
Activity
230
Acknowledgements
231
References
231
Chapter
10
Structure and Function of
DNA
Topoisomerases
Ken
С
Dong and James M.
Berger
10.1
Introduction
234
10.2
Type IA Topoisomerases
238
xiv Contents
10.2.1
Overview
238
10.2.2
Structures and Mechanism
239
10.2.3
Type IA Topoisomerase
Paralogs
242
10.2.3.1
Topoisomerase III
243
10.2.3.2
Reverse Gyrase
243
10.3
Type IB Topoisomerases
244
10.3.1
Overview
244
10.3.2
General Architecture
245
10.3.3 DNA
Recognition and Cleavage
246
10.3.4
Mechanism
248
10.4
Topoisomerase V
-
The Defining Member
of the Type
1С
Topoisomerases?
249
10.5
Type
ПА
Topoisomerases
249
10.5.1
Overview
249
10.5.2
Structural Organization
253
10.5.2.1
ATPase Domain
253
10.5.2.2 DNA
Breakage/Reunion Domain
and the
DNA
Binding/Cleavage
Core
254
10.5.3
Duplex
DNA
Transport Mechanism
255
10.5.3.1
Type IIA Topoisomerase
Paralogs:
Role of the
C-terminal
Domain in
Modulating Duplex Transport
256
10.5.4
Physiological Specialization of Type IIA
Topoisomerases
258
10.6
Type IIB Topoisomerases
259
10.6.1
Overview
259
10.6.2
Structure
259
10.6.3
Mechanism
260
10.7
Conclusions
261
Acknowledgements
261
References
261
Chapter
11 DNA Transposases
Fred Dyda and Alison Burgess Hickman
11.1
Introduction
270
11.1.1
Nomenclature, Classification, and Overview
of Transposition Systems
271
11.1.1.1
Prokaryotic Elements
271
11.1.1.2
Eukaryotic Elements
273
11.2
Transposases and
DNA 274
11.2
Л
Ends of
Transposons
274
11.2.2
Chemistry of
DNA
Transposition
276
Contents xv
11.2.3 DDE Transposases 276
11.2.4 Cut-and-paste,
Copy-in, and Copy-out
Transposition 277
11.2.4.1
Mechanism of
DNA
Cleavage
and Strand Transfer 277
11.2.4.2
Second
Strand
Cleavage
by Cut-and-paste
Transposases 280
11.2.4.3
Replicative
Transposition 281
11.2.5 Transposition Happens in
Context
281
11.3 Tn5 Transposase: The Minimum
Necessary
282
11.3.1
Overview of the
Тп5
Transposition Pathway
283
11.3.2
Structure of a Tn5 Transposase Dimer
Bound to
DNA 283
11.4
Bacteriophage
Mu
284
11.4.1
Organization of the
Mu
Genome Ends
285
11.4.2
Domain Structure of MuA
285
11.4.3
Putting Mu Ends and MuA together:
The Mu Transpososome
287
11.5
Tel ¡mariner Transposases
288
11.5.1
Tc3 N-terminal Domains and
DNA 289
11.5.2
Mosl Transposase
290
11.5.3
What is the Active Assembly?
290
11.6
hATElements: A First Glimpse
290
11.6.1
Domain Organization of Hermes
292
11.7
Transposases that Form Covalent Phosphotyrosine
or Phosphoserine Intermediates
293
11.7.1
Y
and
S
Transposases
293
11.7.2
Y2 Transposases
294
11.7.3
Yl Transposases
296
11.7.3.1
ISHp608TnpA
296
Acknowledgements
299
References
299
Chapter
12
Site-specific Recombinases
Gregory D. Van Duyne
12.1
Introduction
303
12.2
Tyrosine Recombinases
307
12.2.1
Cre and Fip Recombinases
309
12.2.2
λ
-Integrase
and XerCD Recombinases
313
12.2.3
Integran Integrases
316
12.2.4
Other Tyrosine Recombinases
318
12.3
Serine
Recombinases
318
12.3.1
Tn3 and
γδ
-Resolvases
321
12.3.2 Hin
and Gin Recombinases
323
Contents
12.3.3 Regulation
by Accessory
Sites 324
12.3.4
Large Serine Recombinases
326
12.4
Summary
327
References
328
Chapter
13 DNA
Nucleases
Nancy
С.
Horton
13.1
Introduction
333
13.2
Summaries by Fold
334
13.2.1
Restriction Endonuclease-like Fold
334
13.2.2
RNaseH-like Fold
341
13.2.3
Homing Endonuclease-like Fold
343
13.2.4
His-Me Finger Endonucleases
345
13.2.5
SAM Domain-like/PIN Domain-like Fold
348
13.2.6
DNase I-like Fold
350
13.2.7
Phospholipase C/Pl Nuclease Fold
352
13.2.8
Phospholipase D/Nuclease Fold
354
13.2.9
TIM beta/alpha Barrel Fold
355
13.2.10
DHH Phosphoesterases Fold
357
13.2.11
GIY-YIG Endonuclease Fold
358
13.2.12
Metallo-dependent Phosphatases Fold
360
13.2.13
Bacillus chorismate Mutase-like Fold
361
13.3
Conclusion
361
References
363
Chapter
14
RNA-modifying Enzymes
Adrian R.
Ferré-D 'amaré
14.1
Introduction: Scope of
RNA
Modification
367
14.2
The tRNA Adenosine Deaminase TadA
369
14.2.1
RNA
Recognition by Loop
Eversion
369
14.2.2
Hydrolytic Deamination by a Zinc-activated
Water
370
14.3
The tRNA Pseudouridine Synthase RluA
372
14.3.1
RNA
Recognition through Protein-induced
Base-pairing
374
14.3.2
In-line Displacement or Michael
Addition?
374
14.4
The tRNA Archaeosine Transglycosylase
ArcTGT
376
14.4.1
RNA
Recognition by Tertiary Structure
Rearrangement
376
Contents xvii
14.4.2 Transglycosylation
Using Two
Aspartate
Residues
378
14.5
Conclusions
379
Acknowledgements
379
References
380
Subject Index
382 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023326711 |
callnumber-first | Q - Science |
callnumber-label | QP624 |
callnumber-raw | QP624.75.P74 |
callnumber-search | QP624.75.P74 |
callnumber-sort | QP 3624.75 P74 |
callnumber-subject | QP - Physiology |
classification_rvk | WD 5300 |
ctrlnum | (OCoLC)212431625 (DE-599)GBV55641618X |
dewey-full | 572.86 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.86 |
dewey-search | 572.86 |
dewey-sort | 3572.86 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02364nam a2200601 c 4500</leader><controlfield tag="001">BV023326711</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090403 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080603s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780854042722</subfield><subfield code="9">978-0-85404-272-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)212431625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV55641618X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP624.75.P74</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.86</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5300</subfield><subfield code="0">(DE-625)148199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Protein-nucleic acid interactions</subfield><subfield code="b">structural biology</subfield><subfield code="c">ed. by Phoebe A. Rice ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Royal Society of Chemistry</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 397 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">RSC biomolecular sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA-Binding Proteins</subfield><subfield code="x">chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA-Binding Proteins</subfield><subfield code="x">genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-Binding Proteins</subfield><subfield code="x">chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-Binding Proteins</subfield><subfield code="x">genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-protein interactions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wechselwirkung</subfield><subfield code="0">(DE-588)4064937-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proteine</subfield><subfield code="0">(DE-588)4076388-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proteinstoffwechsel</subfield><subfield code="0">(DE-588)4014135-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">DNS</subfield><subfield code="0">(DE-588)4070512-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nucleinsäuren</subfield><subfield code="0">(DE-588)4172117-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">DNS</subfield><subfield code="0">(DE-588)4070512-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Proteinstoffwechsel</subfield><subfield code="0">(DE-588)4014135-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">DNS</subfield><subfield code="0">(DE-588)4070512-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Proteine</subfield><subfield code="0">(DE-588)4076388-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Wechselwirkung</subfield><subfield code="0">(DE-588)4064937-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Proteine</subfield><subfield code="0">(DE-588)4076388-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Nucleinsäuren</subfield><subfield code="0">(DE-588)4172117-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Wechselwirkung</subfield><subfield code="0">(DE-588)4064937-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rice, Phoebe A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016510705&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016510705</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023326711 |
illustrated | Illustrated |
index_date | 2024-07-02T20:55:52Z |
indexdate | 2024-07-09T21:15:57Z |
institution | BVB |
isbn | 9780854042722 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016510705 |
oclc_num | 212431625 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR |
physical | XVII, 397 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Royal Society of Chemistry |
record_format | marc |
series2 | RSC biomolecular sciences |
spelling | Protein-nucleic acid interactions structural biology ed. by Phoebe A. Rice ... Cambridge Royal Society of Chemistry 2008 XVII, 397 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier RSC biomolecular sciences DNA-Binding Proteins chemistry DNA-Binding Proteins genetics DNA-protein interactions RNA-Binding Proteins chemistry RNA-Binding Proteins genetics RNA-protein interactions Wechselwirkung (DE-588)4064937-4 gnd rswk-swf Proteine (DE-588)4076388-2 gnd rswk-swf Proteinstoffwechsel (DE-588)4014135-4 gnd rswk-swf DNS (DE-588)4070512-2 gnd rswk-swf Nucleinsäuren (DE-588)4172117-2 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content DNS (DE-588)4070512-2 s Proteinstoffwechsel (DE-588)4014135-4 s DE-604 Proteine (DE-588)4076388-2 s Wechselwirkung (DE-588)4064937-4 s Nucleinsäuren (DE-588)4172117-2 s 1\p DE-604 Rice, Phoebe A. Sonstige oth Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016510705&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Protein-nucleic acid interactions structural biology DNA-Binding Proteins chemistry DNA-Binding Proteins genetics DNA-protein interactions RNA-Binding Proteins chemistry RNA-Binding Proteins genetics RNA-protein interactions Wechselwirkung (DE-588)4064937-4 gnd Proteine (DE-588)4076388-2 gnd Proteinstoffwechsel (DE-588)4014135-4 gnd DNS (DE-588)4070512-2 gnd Nucleinsäuren (DE-588)4172117-2 gnd |
subject_GND | (DE-588)4064937-4 (DE-588)4076388-2 (DE-588)4014135-4 (DE-588)4070512-2 (DE-588)4172117-2 (DE-588)4143413-4 |
title | Protein-nucleic acid interactions structural biology |
title_auth | Protein-nucleic acid interactions structural biology |
title_exact_search | Protein-nucleic acid interactions structural biology |
title_exact_search_txtP | Protein-nucleic acid interactions structural biology |
title_full | Protein-nucleic acid interactions structural biology ed. by Phoebe A. Rice ... |
title_fullStr | Protein-nucleic acid interactions structural biology ed. by Phoebe A. Rice ... |
title_full_unstemmed | Protein-nucleic acid interactions structural biology ed. by Phoebe A. Rice ... |
title_short | Protein-nucleic acid interactions |
title_sort | protein nucleic acid interactions structural biology |
title_sub | structural biology |
topic | DNA-Binding Proteins chemistry DNA-Binding Proteins genetics DNA-protein interactions RNA-Binding Proteins chemistry RNA-Binding Proteins genetics RNA-protein interactions Wechselwirkung (DE-588)4064937-4 gnd Proteine (DE-588)4076388-2 gnd Proteinstoffwechsel (DE-588)4014135-4 gnd DNS (DE-588)4070512-2 gnd Nucleinsäuren (DE-588)4172117-2 gnd |
topic_facet | DNA-Binding Proteins chemistry DNA-Binding Proteins genetics DNA-protein interactions RNA-Binding Proteins chemistry RNA-Binding Proteins genetics RNA-protein interactions Wechselwirkung Proteine Proteinstoffwechsel DNS Nucleinsäuren Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016510705&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ricephoebea proteinnucleicacidinteractionsstructuralbiology |