Geometric control theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2008
|
Ausgabe: | Paperback re-issue |
Schriftenreihe: | Cambridge studies in advanced mathematics
52 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 492 S. Ill., graph. Darst. |
ISBN: | 9780521058247 9780521495028 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023325875 | ||
003 | DE-604 | ||
005 | 20191024 | ||
007 | t | ||
008 | 080603s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780521058247 |9 978-0-521-05824-7 | ||
020 | |a 9780521495028 |9 978-0-521-49502-8 | ||
035 | |a (OCoLC)604957665 | ||
035 | |a (DE-599)BVBBV023325875 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-824 |a DE-739 |a DE-83 | ||
082 | 0 | |a 515.64 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 880 |0 (DE-625)143266: |2 rvk | ||
084 | |a 93B29 |2 msc | ||
084 | |a 70Q05 |2 msc | ||
084 | |a 49K15 |2 msc | ||
100 | 1 | |a Jurdjevic, Velimir |d 1940- |0 (DE-588)137500033 |4 aut | |
245 | 1 | 0 | |a Geometric control theory |c Velimir Jurdjevic |
250 | |a Paperback re-issue | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2008 | |
300 | |a XVIII, 492 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 52 | |
650 | 4 | |a Control theory | |
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Cambridge studies in advanced mathematics |v 52 |w (DE-604)BV000003678 |9 52 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016509891&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016509891 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137666884665344 |
---|---|
adam_text | Contents
Introduction page
xiii
Acknowledgments
xvii
Part
one: Reachable sets and controllability
1
1
Basic formalism and typical problems
3
1
Differentiable manifolds
3
1.1
Differentiable mappings
6
1.2
The tangent space
7
1.3
The cotangent space
8
2
Vector fields, flows, and differential forms
1
1
2.1
Derivations
11
2.2
The tangent bundle and cotangent bundle
12
2.3
Vector fields and differential forms
14
3
Control systems
20
3.1
Families of vector fields and control systems
27
Notes and sources
31
2
Orbits of families of vector fields
32
1
The orbit theorem
32
1.1
Submanifolds
33
1.2
Integral submanifolds
35
і
.3
Proof of the orbit theorem
36
2
Lie brackets of vector fields and involutivity
40
2.1
Lie brackets of vector fields
40
?.?-
Lie algebras
42
2.3
Involutivity and integral manifolds
43
3
Analytic vector fields and their orbit properties
48
3.1
Lie groups
50
vn
viii Contents
3.2
Group
translations
and invariant vector fields
51
3.3
Orbits of invariant vector fields
52
3.4
GL„ (R)
and its subgroups
54
3.5
Homogeneous spaces
55
4
Zero-time orbits of families of vector fields
56
4.1
Zero-time orbits of analytic vector fields
59
Notes and sources
63
3
Reachable sets of Lie-determined systems
64
1
Topological properties of reachable sets
65
1.1
Reachable sets of the form A^(x, <F)
65
1.2
Reachable sets of the form A?(x
,
T)
70
2
The closure of the reachable sets and its invariants
75
2.1
Closure and convexification of families of vector fields
76
2.2
Time scaling and normalizers
82
3
The Lie saturate and controllability
86
4
Exact time controllability
89
Notes and sources
94
4
Control
affine
systems
95
1
Kinematic equations of a rolling sphere
96
2
Linear systems
100
3
Control of a rigid body by means of jet torques
103
4
Reachability by piecewise-constant controls
105
5
Reachability by smooth controls
110
6
Recurrent drifts and control of a rigid body
112
7
Compact constraints and the closure of the reachable sets
117
8
Non-holonomic aspects of control theory
121
Notes and sources
124
5
Linear and polynomial control systems
125
1
Feedback, controllability, and the structure of linear systems
126
1.1
Controllability indices and the feedback-decomposition
theorem
129
1.2
Controllability and the spectrum
133
2
Bounded controls and the bang-bang principle
134
3
Controllability of linear systems with bounded controls
137
4
Polynomial drifts
14
1
4.1
Homogeneous polynomial vector fields and their Lie
algebras
143
4.2
Controllability
147
Notes and sources
148
Contents ix
6 Systems
on Lie groups and homogeneous
Spaces 150
1
Families of right-invariant vector fields on a Lie group
153
1.1
Compact Lie groups
154
1.2
Orthogonal and symplectic groups and the unitary group
159
1.3
Stiff Serret-Frenet frames
162
1.4
The
Grassmann
manifolds
163
1.5
Motions of a sphere rolling on another sphere
165
1.6
Quaternions and rotations
169
2
Semidirect products of Lie groups
177
3
Controllability properties of
affine
systems
182
4
Controllability on
semisimple
Lie groups
185
Notes and sources
193
Part two? Optimal control theory
195
7
Linear systems with quadratic costs
199
1
Assumptions and their consequences
200
1.
і
Optimality and the boundaries of the reachable sets
202
2
The maximum principle
204
2.1
Canonical coordinates and Hamiltonian vector fields
204
2.2
Necessary and sufficient conditions of optimality
207
2.3
The Euler-Lagrange equation
214
3
Conjugate points for the regular problem
216
4
Applications: Wirtinger s inequality and Hardy-Littlewood
systems
219
Notes and sources
226
8
The Riccati equation and quadratic systems
228
1
Symplectic vector spaces
230
1.1
The geometry of linear Lagrangians
232
2
Lagrangians and the Riccati equation
234
3
The algebraic Riccati equation
241
4
Infinite-horizon optimal problems
244
5
Hardy-Littlewood inequalities
231
Notes and sources
258
9
Singular linear quadratic problems
2559
Î
The structure of the strong Lie saturate
261
1.1
The structure of jump fields
267
і
.2
The saturated linear quadratic system
272
2
The maximum principle and its consequences
275
3
The reduction procedure
283
x
Contents
4
The optimal synthesis
290
Notes and sources
299
10
Time-optimal problems and Fuller s phenomenon
300
1
Linear time-optimal problems: the maximum principle
301
1.1
Time-optimal control of linear mechanical systems
307
2
The brachistochrone problem and Zermelo s navigation
problem
311
3
Linear quadratic problems with constraints, and Fuller s
phenomenon
319
Notes and sources
331
11
The maximum principle
332
1
The maximum principle in
IR
333
1.1
Background
333
1.2
The basic optimal problem and the maximum
principie
335
1.3
The maximum principle and the classic necessary
conditions for optimality
338
1.4
The minimal surface of revolution 34S
2
Extensions to differentiable manifolds
348
2.1
The symplectic structure of the cotangent bundle
349
2.2
Variational problems on manifolds and the maximum
principle
354
2.3
Euler s elastic problem and the problem of Dubins
360
Notes and sources
367
12
Optimal problems on Lie groups
368
1
Hamiltonian vector fields
369
1.
1 Realization of the cotangent bundle as the product
G x C*
369
1.2
The
sympîectic
form
370
2
The rigid body and the equations for the heavy top
372
3
Left-invariant control systems and co-adjoint orbits
379
4
The elastic problem in
Ћ?
and the kinetic analogue of
Kirchhoff 384
5 Casimir
functions and the conservation laws
394
5.1
Left-invariant optimal problems on the group of motions
of a plane
398
5.2
Left-invariant optimal problems on SO^(R) and SO(2,
1) 401
Notes and sources
406
13
Symmetry, integrability, and the Hamilton-
Jacobi theory
407
1
Symmetry, Noether s theorem, and the maximum principle
409
Contents xi
2
The geometry of Lagrangian manifolds and the Hamilton-
Jacobi theory
414
3
Integrability
424
3.1
Integrable
systems on the
Heisenberg
group
424
3.2
Integrable
systems on the group of motions of a plane
430
3.3
Integrability on
S
Оъ(Ш)
436
Notes and sources
443
14
Integrable Hamiltonian
systems on Lie groups: the elastic
problem, its non-Euclidean analogues, and the rolling-sphere
problem
444
1
The symmetric elastic problem in
Ш3
446
1.1
Euler
angles and elastic curves
453
2
Non-Euclidean symmetric elastic problems
456
2.1
Algebraic preliminaries
456
2.2
The structure of extremal curves
458
2.3
The Kowalewski elastic problem
465
3
Rolling-sphere problems
467
3.1
The extremals for the rolling sphere in E2
468
3.2
Noninflectional solutions
477
3.3
Inflectional solutions
479
Notes and sources
481
References
483
Index
489
|
adam_txt |
Contents
Introduction page
xiii
Acknowledgments
xvii
Part
one: Reachable sets and controllability
1
1
Basic formalism and typical problems
3
1
Differentiable manifolds
3
1.1
Differentiable mappings
6
1.2
The tangent space
7
1.3
The cotangent space
8
2
Vector fields, flows, and differential forms
1
1
2.1
Derivations
11
2.2
The tangent bundle and cotangent bundle
12
2.3
Vector fields and differential forms
14
3
Control systems
20
3.1
Families of vector fields and control systems
27
Notes and sources
31
2
Orbits of families of vector fields
32
1
The orbit theorem
32
1.1
Submanifolds
33
1.2
Integral submanifolds
35
і
.3
Proof of the orbit theorem
36
2
Lie brackets of vector fields and involutivity
40
2.1
Lie brackets of vector fields
40
?.?-
Lie algebras
42
2.3
Involutivity and integral manifolds
43
3
Analytic vector fields and their orbit properties
48
3.1
Lie groups
50
vn
viii Contents
3.2
Group
translations
and invariant vector fields
51
3.3
Orbits of invariant vector fields
52
3.4
GL„ (R)
and its subgroups
54
3.5
Homogeneous spaces
55
4
Zero-time orbits of families of vector fields
56
4.1
Zero-time orbits of analytic vector fields
59
Notes and sources
63
3
Reachable sets of Lie-determined systems
64
1
Topological properties of reachable sets
65
1.1
Reachable sets of the form A^(x, <F)
65
1.2
Reachable sets of the form A?(x
,
T)
70
2
The closure of the reachable sets and its invariants
75
2.1
Closure and convexification of families of vector fields
76
2.2
Time scaling and normalizers
82
3
The Lie saturate and controllability
86
4
Exact time controllability
89
Notes and sources
94
4
Control
affine
systems
95
1
Kinematic equations of a rolling sphere
96
2
Linear systems
100
3
Control of a rigid body by means of jet torques
103
4
Reachability by piecewise-constant controls
105
5
Reachability by smooth controls
110
6
Recurrent drifts and control of a rigid body
112
7
Compact constraints and the closure of the reachable sets
117
8
Non-holonomic aspects of control theory
121
Notes and sources
124
5
Linear and polynomial control systems
125
1
Feedback, controllability, and the structure of linear systems
126
1.1
Controllability indices and the feedback-decomposition
theorem
129
1.2
Controllability and the spectrum
133
2
Bounded controls and the bang-bang principle
134
3
Controllability of linear systems with bounded controls
137
4
Polynomial drifts
14
1
4.1
Homogeneous polynomial vector fields and their Lie
algebras
143
4.2
Controllability
147
Notes and sources
148
Contents ix
6 Systems
on Lie groups and homogeneous
Spaces 150
1
Families of right-invariant vector fields on a Lie group
153
1.1
Compact Lie groups
154
1.2
Orthogonal and symplectic groups and the unitary group
159
1.3
Stiff Serret-Frenet frames
162
1.4
The
Grassmann
manifolds
163
1.5
Motions of a sphere rolling on another sphere
165
1.6
Quaternions and rotations
169
2
Semidirect products of Lie groups
177
3
Controllability properties of
affine
systems
182
4
Controllability on
semisimple
Lie groups
185
Notes and sources
193
Part two? Optimal control theory
195
7
Linear systems with quadratic costs
199
1
Assumptions and their consequences
200
1.
і
Optimality and the boundaries of the reachable sets
202
2
The maximum principle
204
2.1
Canonical coordinates and Hamiltonian vector fields
204
2.2
Necessary and sufficient conditions of optimality
207
2.3
The Euler-Lagrange equation
214
3
Conjugate points for the regular problem
216
4
Applications: Wirtinger's inequality and Hardy-Littlewood
systems
219
Notes and sources
226
8
The Riccati equation and quadratic systems
228
1
Symplectic vector spaces
230
1.1
The geometry of linear Lagrangians
232
2
Lagrangians and the Riccati equation
234
3
The algebraic Riccati equation
241
4
Infinite-horizon optimal problems
244
5
Hardy-Littlewood inequalities
231
Notes and sources
258
9
Singular linear quadratic problems
2559
Î
The structure of the strong Lie saturate
261
1.1
The structure of jump fields
267
і
.2
The saturated linear quadratic system
272
2
The maximum principle and its consequences
275
3
The reduction procedure
283
x
Contents
4
The optimal synthesis
290
Notes and sources
299
10
Time-optimal problems and Fuller's phenomenon
300
1
Linear time-optimal problems: the maximum principle
301
1.1
Time-optimal control of linear mechanical systems
307
2
The brachistochrone problem and Zermelo's navigation
problem
311
3
Linear quadratic problems with constraints, and Fuller's
phenomenon
319
Notes and sources
331
11
The maximum principle
332
1
The maximum principle in
IR"
333
1.1
Background
333
1.2
The basic optimal problem and the maximum
principie
335
1.3
The maximum principle and the classic necessary
conditions for optimality
338
1.4
The minimal surface of revolution 34S
2
Extensions to differentiable manifolds
348
2.1
The symplectic structure of the cotangent bundle
349
2.2
Variational problems on manifolds and the maximum
principle
354
2.3
Euler's elastic problem and the problem of Dubins
360
Notes and sources
367
12
Optimal problems on Lie groups
368
1
Hamiltonian vector fields
369
1.
1 Realization of the cotangent bundle as the product
G x C*
369
1.2
The
sympîectic
form
370
2
The rigid body and the equations for the heavy top
372
3
Left-invariant control systems and co-adjoint orbits
379
4
The elastic problem in
Ћ?
and the kinetic analogue of
Kirchhoff 384
5 Casimir
functions and the conservation laws
394
5.1
Left-invariant optimal problems on the group of motions
of a plane
398
5.2
Left-invariant optimal problems on SO^(R) and SO(2,
1) 401
Notes and sources
406
13
Symmetry, integrability, and the Hamilton-
Jacobi theory
407
1
Symmetry, Noether's theorem, and the maximum principle
409
Contents xi
2
The geometry of Lagrangian manifolds and the Hamilton-
Jacobi theory
414
3
Integrability
424
3.1
Integrable
systems on the
Heisenberg
group
424
3.2
Integrable
systems on the group of motions of a plane
430
3.3
Integrability on
S
Оъ(Ш)
436
Notes and sources
443
14
Integrable Hamiltonian
systems on Lie groups: the elastic
problem, its non-Euclidean analogues, and the rolling-sphere
problem
444
1
The symmetric elastic problem in
Ш3
446
1.1
Euler
angles and elastic curves
453
2
Non-Euclidean symmetric elastic problems
456
2.1
Algebraic preliminaries
456
2.2
The structure of extremal curves
458
2.3
The Kowalewski elastic problem
465
3
Rolling-sphere problems
467
3.1
The extremals for the rolling sphere in E2
468
3.2
Noninflectional solutions
477
3.3
Inflectional solutions
479
Notes and sources
481
References
483
Index
489 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Jurdjevic, Velimir 1940- |
author_GND | (DE-588)137500033 |
author_facet | Jurdjevic, Velimir 1940- |
author_role | aut |
author_sort | Jurdjevic, Velimir 1940- |
author_variant | v j vj |
building | Verbundindex |
bvnumber | BV023325875 |
classification_rvk | SK 370 SK 880 |
ctrlnum | (OCoLC)604957665 (DE-599)BVBBV023325875 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Paperback re-issue |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01979nam a2200493 cb4500</leader><controlfield tag="001">BV023325875</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191024 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080603s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521058247</subfield><subfield code="9">978-0-521-05824-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521495028</subfield><subfield code="9">978-0-521-49502-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)604957665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023325875</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">93B29</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70Q05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49K15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jurdjevic, Velimir</subfield><subfield code="d">1940-</subfield><subfield code="0">(DE-588)137500033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric control theory</subfield><subfield code="c">Velimir Jurdjevic</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Paperback re-issue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 492 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">52</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">52</subfield><subfield code="w">(DE-604)BV000003678</subfield><subfield code="9">52</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016509891&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016509891</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV023325875 |
illustrated | Illustrated |
index_date | 2024-07-02T20:55:32Z |
indexdate | 2024-07-09T21:15:56Z |
institution | BVB |
isbn | 9780521058247 9780521495028 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016509891 |
oclc_num | 604957665 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-824 DE-739 DE-83 |
owner_facet | DE-19 DE-BY-UBM DE-824 DE-739 DE-83 |
physical | XVIII, 492 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Jurdjevic, Velimir 1940- (DE-588)137500033 aut Geometric control theory Velimir Jurdjevic Paperback re-issue Cambridge [u.a.] Cambridge Univ. Press 2008 XVIII, 492 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cambridge studies in advanced mathematics 52 Control theory Geometry, Differential Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Differentialgeometrie (DE-588)4012248-7 s Kontrolltheorie (DE-588)4032317-1 s DE-604 Cambridge studies in advanced mathematics 52 (DE-604)BV000003678 52 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016509891&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jurdjevic, Velimir 1940- Geometric control theory Cambridge studies in advanced mathematics Control theory Geometry, Differential Kontrolltheorie (DE-588)4032317-1 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4032317-1 (DE-588)4012248-7 (DE-588)1071861417 |
title | Geometric control theory |
title_auth | Geometric control theory |
title_exact_search | Geometric control theory |
title_exact_search_txtP | Geometric control theory |
title_full | Geometric control theory Velimir Jurdjevic |
title_fullStr | Geometric control theory Velimir Jurdjevic |
title_full_unstemmed | Geometric control theory Velimir Jurdjevic |
title_short | Geometric control theory |
title_sort | geometric control theory |
topic | Control theory Geometry, Differential Kontrolltheorie (DE-588)4032317-1 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Control theory Geometry, Differential Kontrolltheorie Differentialgeometrie Konferenzschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016509891&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003678 |
work_keys_str_mv | AT jurdjevicvelimir geometriccontroltheory |