Instantaneous power theory and applications to power conditioning:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley-Interscience [u.a.]
2007
|
Schriftenreihe: | IEEE Press series on power engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XIV, 379 S. Ill., graph. Darst. |
ISBN: | 0470107618 9780470107614 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023320595 | ||
003 | DE-604 | ||
005 | 20131031 | ||
007 | t | ||
008 | 080529s2007 ad|| |||| 00||| eng d | ||
020 | |a 0470107618 |c (hbk.) : £58.95 |9 0-470-10761-8 | ||
020 | |a 9780470107614 |c (hbk.) : £58.95 |9 978-0-470-10761-4 | ||
035 | |a (OCoLC)255534161 | ||
035 | |a (DE-599)GBV522443818 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-523 |a DE-83 | ||
050 | 0 | |a TK7872.F5 | |
082 | 0 | |a 621.3815324 | |
084 | |a ZN 5740 |0 (DE-625)157479: |2 rvk | ||
100 | 1 | |a Akagi, Hirofumi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Instantaneous power theory and applications to power conditioning |c Hirofumi Akagi ; Edson Hirokazu Watanabe ; Mauricio Aredes |
264 | 1 | |a Hoboken, NJ |b Wiley-Interscience [u.a.] |c 2007 | |
300 | |a XIV, 379 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a IEEE Press series on power engineering | |
500 | |a Literaturangaben | ||
650 | 4 | |a Electric filters, Active | |
650 | 4 | |a Power electronics | |
650 | 0 | 7 | |a Aktives Filter |0 (DE-588)4141756-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Aktives Filter |0 (DE-588)4141756-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Watanabe, Edson Hirokazu |e Verfasser |4 aut | |
700 | 1 | |a Aredes, Maurício |e Verfasser |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016504697&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016504697 |
Datensatz im Suchindex
_version_ | 1804137659097939968 |
---|---|
adam_text | INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING
HIROFUMI AKAGI PROFESSOR OF ELECTRICA! ENGINEERING TIT * TOKYO INSTITUTE
OF TECHNOLOGY, JAPAN EDSON HIROKAZU WATANABE PROFESSOR OF ELECTRICA!
ENGINEERING UFRJ * FEDERAL UNIVERSITY OF RIO DE JANEIRO, BRAZIL MAURICIO
AREDES ASSOCIATE PROFESSOR OF ELECTRICA! ENGINEERING UFRJ * FEDERAL
UNIVERSITY OF RIO DE JANEIRO, BRAZIL POWER ENGINEERING MOHAMED E.
EL-HAWARY, SERIES EDITOR IEEE PRESS 18 0 7 W1LEY 2 OO 7
WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS
PREFACE XIII 1. INTRODUCTION 1 1.1. CONCEPTS AND EVOLUTION OF ELECTRIC
POWER THEORY 2 1.2. APPLICATIONS OF THE P-Q THEORY TO POWER ELECTRONICS
EQUIPMENT 4 1.3. HARMONIE VOLTAGES IN POWER SYSTEMS 5 1.4. IDENTIFIED
AND UNIDENTIFIED HARMONIC-PRODUCING LOADS 7 1.5. HARMONIE CURRENT AND
VOLTAGE SOURCES 8 1.6. BASIC PRINCIPLES OF HARMONIE COMPENSATION 11 1.7.
BASIC PRINCIPLES OF POWER FLOW CONTROL 14 REFERENCES 17 2. ELECTRIC
POWER DEFINITIONS: BACKGROUND 19 2.1. POWER DEFINITIONS UNDER SINUSOIDAL
CONDITIONS 20 2.2. VOLTAGE AND CURRENT PHASORS AND THE COMPLEX IMPEDANCE
22 2.3. COMPLEX POWER AND POWER FACTOR 24 2.4. CONCEPTS OF POWER UNDER
NON-SINUSOIDAL CONDITIONS* 25 CONVENTIONAL APPROACHES 2.4.1. POWER
DEFINITIONS BY BUDEANU 25 2.4.1 .A. POWER TETRAHEDRON AND DISTORTION
FACTOR 28 2.4.2. POWER DEFINITIONS BY FRYZE 30 2.5. ELECTRIC POWER IN
THREE-PHASE SYSTEMS 31 2.5.1. CLASSIFICATIONS OF THREE-PHASE SYSTEMS 31
2.5.2. POWER IN BALANCED THREE-PHASE SYSTEMS 34 2.5.3. POWER IN
THREE-PHASE UNBALANCED SYSTEMS 36 VII VIII CONTENTS 2.6. SUMMARY 37
REFERENCES 38 THE INSTANTANEOUS POWER THEORY 41 3.1. BASIS OF THE P-Q
THEORY 42 3.1.1. HISTORICAL BACKGROUND OF THE P-Q THEORY 42 3.1.2. THE
CLARKE TRANSFORMATION 43 3.1.2.A. CALCULATION OF VOLTAGE AND CURRENT
VECTORS WHEN 45 ZERO-SEQUENCE COMPONENTS ARE EXCLUDED 3.1.3. THREE-PHASE
INSTANTANEOUS ACTIVE POWER IN TERMS OF 47 CLARKE COMPONENTS 3.1.4. THE
INSTANTANEOUS POWERS OF THE P-Q THEORY 48 3.2. THE P-Q THEORY IN
THREE-PHASE, THREE-WIRE SYSTEMS 49 3.2.1. COMPARISONS WITH THE
CONVENTIONAL THEORY 53 3.2.I.A. EXAMPLE #1*SINUSOIDAL VOLTAGES AND
CURRENTS 53 3.2.I.B. EXAMPLE #2*BALANCED VOLTAGES AND CAPACITIVE 54
LOADS 3.2.L.C. EXAMPLE #3*SINUSOIDAL BALANCED VOLTAGE AND 55 NONLINEAR
LOAD 3.2.2. USE OF THEP-Q THEORY FOR SHUNT CURRENT COMPENSATION 59
3.2.2.A. EXAMPLES OFAPPEARANCE OFHIDDEN CURRENTS 64 3.2.2.A.1 PRESENCE
OF THE FIFTH HARMONIE IN 64 LOAD CURRENT 3.2.2.A.2 PRESENCE OF THE
SEVENTH HARMONIE IN 67 LOAD CURRENT 3.2.3. THE DUAL P-Q THEORY 68 3.3.
THE P-Q THEORY IN THREE-PHASE, FOUR-WIRE SYSTEMS 71 3.3.1. THE
ZERO-SEQUENCE POWER IN A THREE-PHASE SINUSOIDAL 72 VOLTAGE SOURCE 3.3.2.
PRESENCE OFNEGATIVE-SEQUENCE COMPONENTS 74 3.3.3. GENERAL CASE-INCLUDING
DISTORTIONS AND IMBALANCES IN 75 THE VOLTAGES AND IN THE CURRENTS 3.3.4.
PHYSICAL MEANINGS OF THE INSTANTANEOUS REAL, IMAGINARY, 79 AND
ZERO-SEQUENCE POWERS 3.3.5. AVOIDING THE CLARKE TRANSFORMATION IN THE
P-Q THEORY 80 3.3.6. MODIFIED P-Q THEORY 82 3.4. INSTANTANEOUS ABC
THEORY 87 3.4.1. ACTIVE AND NONACTIVE CURRENT CALCULATION BY MEANS OF A
89 MINIMIZATION METHOD 3.4.2. GENERALIZED FRYZE CURRENTS MINIMIZATION
METHOD 94 3.5. COMPARISONS BETWEEN THE P-Q THEORY AND THE ABC THEORY 98
3.5.1. SELECTION OF POWER COMPONENTS TO BE COMPENSATED 101 3.6. SUMMARY
102 REFERENCES 104 CONTENTS IX 4 SHUNT ACTIVE FILTERS 109 4. 1 . GENERAL
DESCRIPTION OF SHUNT ACTIVE FILTERS 111 4.1.1. PWM CONVERTERS FOR SHUNT
ACTIVE FILTERS 112 4.1.2. ACTIVE FILTER CONTROLLERS 113 4.2.
THREE-PHASE, THREE-WIRE SHUNT ACTIVE FILTERS 116 4.2.1. ACTIVE FILTERS
FOR CONSTANT POWER COMPENSATION 118 4.2.2. ACTIVE FILTERS FOR SINUSOIDAL
CURRENT CONTROL 134 4.2.2.A. POSITIVE-SEQUENCE VOLTAGE DETECTOR 138
4.2.2.A.1 MAIN CIRCUIT OFTHE VOLTAGE DETECTOR 138 4.2.2.A.2
PHASE-LOCKED-LOOP (PLL) CIRCUIT 141 4.2.2.B. SIMULATION RESULTS 145
4.2.3. ACTIVE FILTERS FOR CURRENT MINIMIZATION 145 4.2.4. ACTIVE FILTERS
FOR HARMONIE DAMPING 150 4.2.4.A. SHUNT ACTIVE FILTER BASED ON VOLTAGE
DETECTION 151 4.2.4.B. ACTIVE FILTER CONTROLLER BASED ON VOLTAGE 152
DETECTION 4.2.4.C. AN APPLICATION CASE OF ACTIVE FILTER FOR HARMONIE 157
DAMPING 4.2.4.C. 1 THE POWER DISTRIBUTION LINE FOR THE 158 TEST CASE
4.2.4.C.2 THE ACTIVE FILTER FOR DAMPING OF 159 HARMONIE PROPAGATION
4.2.4.C.3 EXPERIMENTAL RESULTS 160 4.2.4.C.4 ADJUST OFTHE ACTIVE FILTER
GAIN 168 4.2.5. A DIGITAL CONTROLLER 173 4.2.5.A. SYSTEM CONFIGURATION
OFTHE DIGITAL CONTROLLER 174 4.2.5.A.1 OPERATINGPRINCIPLEOFPLLANDPWM 175
UNITS 4.2.5.A.2 SAMPLING OPERATION IN THE A/D UNIT 177 4.2.5.B. CURRENT
CONTROL METHODS 178 4.2.5.B.1 MODELINGOF DIGITAL CURRENT CONTROL 178
4.2.5.B.2 PROPORTIONAL CONTROL 179 4.2.5.B.3 DEADBEAT CONTROL 180
4.2.5.B.4 FREQUENCY RESPONSE OF CURRENT CONTROL 181 4.3. THREE-PHASE,
FOUR-WIRE SHUNT ACTIVE FILTERS 182 4.3.1. CONVERTER TOPOLOGIES FOR
THREE-PHASE, FOUR-WIRE SYSTEMS 183 4.3.2. DYNAMIC HYSTERESIS-BAND
CURRENT CONTROLLER 184 4.3.3. ACTIVE FILTER DE VOLTAGE REGULATOR 186
4.3.4. OPTIMAL POWER FLOW CONDITIONS 187 4.3.5. CONSTANT INSTANTANEOUS
POWER CONTROL STRATEGY 189 4.3.6. SINUSOIDAL CURRENT CONTROL STRATEGY
192 4.3.7. PERFORMANCE ANALYSIS AND PARAMETER OPTIMIZATION 195 4.3.7.A.
INFLUENCE OFTHE SYSTEM PARAMETERS 195 4.3.7.B. DYNAMIC RESPONSE OFTHE
SHUNT ACTIVE FILTER 196 X CONTENTS 4.3.7.C. ECONOMICAL ASPECTS 201
4.3.7.D. EXPERIMENTAL RESULTS 203 4.4. SHUNT SELECTIVE HARMONIE
COMPENSATION 208 4.5. SUMMARY 216 REFERENCES 217 HYBRID AND SERIES
ACTIVE FILTERS 221 5.1. BASIC SERIES ACTIVE FILTER 221 5.2. COMBINED
SERIES ACTIVE FILTER AND SHUNT PASSIVE FILTER 223 5.2.1. EXAMPLE OF AN
EXPERIMENTAL SYSTEM 226 5.2.I.A. COMPENSATIONPRINCIPLE 226 5.2.1.A.1
SOURCE HARMONIE CURRENT I SH 228 5.2. I.A.2 OUTPUT VOLTAGE OF SERIES
ACTIVE 229 FILTER: V C 5.2.I.A.3 SHUNT PASSIVE FILTER HARMONIE 229
VOLTAGE: V FH 5.2.I.B. FILTERING CHARACTERISTICS 230 5.2.1 .B. 1
HARMONIE CURRENT FLOWING FROM THE 230 LOAD TO THE SOURCE 5.2.1 .B.2
HARMONIE CURRENT FLOWING FROM THE 231 SOURCE TO THE SHUNT PASSIVE FILTER
5.2.L.C. CONTROL CIRCUIT 231 5.2.I.D. FILTER TO SUPPRESS SWITCHING
RIPPLES 233 5.2.I.E. EXPERIMENTAL RESULTS 234 5.2.2. SOME REMARKS ABOUT
THE HYBRID FILTERS 237 5.3. SERIES ACTIVE FILTER INTEGRATED WITH A
DOUBLE-SERIES DIODE RECTIFIER 238 5.3.1. THE FIRST-GENERATION CONTROL
CIRCUIT 241 5.3.I.A. CIRCUIT CONFIGURATION AND DELAY TIME 241 5.3.L.B.
STABILITYOFTHE ACTIVE FILTER 242 5.3.2. THE SECOND-GENERATION CONTROL
CIRCUIT 244 5.3.3. STABILITY ANALYSIS AND CHARACTERISTICS COMPARISON 246
5.3.3.A. TRANSFER FUNCTION OF THE CONTROL CIRCUITS 246 5.3.3.B.
CHARACTERISTICS COMPARISONS 247 5.3.4. DESIGN OFA SWITCHING-RIPPLE
FILTER 248 5.3.4.A. DESIGN PRINCIPLE 248 5.3.4.B. EFFECT ON THE SYSTEM
STABILITY 250 5.3.4.C. EXPERIMENTAL TESTING 251 5.3.5. EXPERIMENTAL
RESULTS 252 5.4. COMPARISONS BETWEEN HYBRID AND PURE ACTIVE FILTERS 253
5.4.1. LOW-VOLTAGE TRANSFORMERLESS HYBRID ACTIVE FILTER 255 5.4.2.
LOW-VOLTAGE TRANSFORMERLESS PURE SHUNT ACTIVE FILTER 258 5.4.3.
COMPARISONS THROUGH SIMULATION RESULTS 259 5.5. CONCLUSIONS 261
REFERENCES 262 CONTENTS XI 6 COMBINED SERIES AND SHUNT POWER
CONDITIONERS 265 6.1. THE UNIFIED POWER FLOW CONTROLLER (UPFC) 267
6.1.1. FACTS AND UPFC PRINCIPLES 268 6.1.1.A. VOLTAGE REGULATION
PRINCIPLE 269 6.1.1 .B. POWER FLOW CONTROL PRINCIPLE 270 6.1.2. A
CONTROLLER DESIGN FOR THE UPFC 274 6.1.3. UPFC APPROACH USING A SHUNT
MULTIPULSE CONVERTER 281 6.I.3.A. SIX-PULSE CONVERTER 282 6.I.3.B. QUASI
24-PULSE CONVERTER 286 6.1.3.C CONTROL OF ACTIVE AND REACTIVE POWER IN
288 MULTIPULSE CONVERTERS 6.1.3.D. SHUNT MULTIPULSE CONVERTER CONTROLLER
290 6.2. THE UNIFIED POWER QUALITY CONDITIONER (UPQC) 293 6.2.1. GENERAL
DESCRIPTION OF THE UPQC 294 6.2.2. A THREE-PHASE, FOUR-WIRE UPQC 297
6.2.2.A. POWER CIRCUIT OF THE UPQC 297 6.2.2.B. THE UPQC CONTROLLER 299
6.2.2.B.1 PWM VOLTAGE CONTROL WITH MINOR 300 FEEDBACK CONTROL LOOP
6.2.2.B.2 SERIES ACTIVE FILTER CONTROLLER 301 6.2.2.B.3 INTEGRATION OF
THE SERIES AND SHUNT 305 ACTIVE FILTER CONTROLLERS 6.2.2.B.4 GENERAL
ASPECTS 307 6.2.2.C. ANALYSISOFTHE UPQC DYNAMIC 308 6.2.2.C.1 OPTIMIZING
THE POWER SYSTEM PARAMETERS 309 6.2.2.C.2 OPTIMIZING THE PARAMETERS IN
THE CONTROL 311 SYSTEMS 6.2.2.C.3 SIMULATION RESULTS 312 6.2.2.C.4
EXPERIMENTAL RESULTS 320 6.2.3. THE UPQC COMBINED WITH PASSIVE FILTERS
(HYBRID UPQC) 326 6.2.3.A. CONTROLLER OFTHE HYBRID UPQC 331 6.2.3.B.
EXPERIMENTAL RESULTS 337 6.3. THE UNIVERSAL ACTIVE POWER LINE
CONDITIONER (UPLC) 343 6.3.1. GENERAL DESCRIPTION OF THE UPLC 3 44
6.3.2. THE CONTROLLER OFTHE UPLC 347 6.3.2.A. CONTROLLER FOR THE
CONFIGURATION #2 OF UPLC 355 6.3.3. PERFORMANCE OFTHE UPLC 355 6.3.3.A.
NORMALIZED SYSTEM PARAMETERS 355 6.3.3.B. SIMULATION RESULTS OF
CONFIGURATION #1 OF UPLC 360 6.3.3.C. SIMULATION RESULTS OF
CONFIGURATION #2 OF UPLC 368 6.3.4. GENERAL ASPECTS 370 6.4. SUMMARY 371
REFERENCES 371 INDEX 375
|
adam_txt |
INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING
HIROFUMI AKAGI PROFESSOR OF ELECTRICA! ENGINEERING TIT * TOKYO INSTITUTE
OF TECHNOLOGY, JAPAN EDSON HIROKAZU WATANABE PROFESSOR OF ELECTRICA!
ENGINEERING UFRJ * FEDERAL UNIVERSITY OF RIO DE JANEIRO, BRAZIL MAURICIO
AREDES ASSOCIATE PROFESSOR OF ELECTRICA! ENGINEERING UFRJ * FEDERAL
UNIVERSITY OF RIO DE JANEIRO, BRAZIL POWER ENGINEERING MOHAMED E.
EL-HAWARY, SERIES EDITOR IEEE PRESS 18 0 7 W1LEY 2 OO 7
WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS
PREFACE XIII 1. INTRODUCTION 1 1.1. CONCEPTS AND EVOLUTION OF ELECTRIC
POWER THEORY 2 1.2. APPLICATIONS OF THE P-Q THEORY TO POWER ELECTRONICS
EQUIPMENT 4 1.3. HARMONIE VOLTAGES IN POWER SYSTEMS 5 1.4. IDENTIFIED
AND UNIDENTIFIED HARMONIC-PRODUCING LOADS 7 1.5. HARMONIE CURRENT AND
VOLTAGE SOURCES 8 1.6. BASIC PRINCIPLES OF HARMONIE COMPENSATION 11 1.7.
BASIC PRINCIPLES OF POWER FLOW CONTROL 14 REFERENCES 17 2. ELECTRIC
POWER DEFINITIONS: BACKGROUND 19 2.1. POWER DEFINITIONS UNDER SINUSOIDAL
CONDITIONS 20 2.2. VOLTAGE AND CURRENT PHASORS AND THE COMPLEX IMPEDANCE
22 2.3. COMPLEX POWER AND POWER FACTOR 24 2.4. CONCEPTS OF POWER UNDER
NON-SINUSOIDAL CONDITIONS* 25 CONVENTIONAL APPROACHES 2.4.1. POWER
DEFINITIONS BY BUDEANU 25 2.4.1 .A. POWER TETRAHEDRON AND DISTORTION
FACTOR 28 2.4.2. POWER DEFINITIONS BY FRYZE 30 2.5. ELECTRIC POWER IN
THREE-PHASE SYSTEMS 31 2.5.1. CLASSIFICATIONS OF THREE-PHASE SYSTEMS 31
2.5.2. POWER IN BALANCED THREE-PHASE SYSTEMS 34 2.5.3. POWER IN
THREE-PHASE UNBALANCED SYSTEMS 36 VII VIII CONTENTS 2.6. SUMMARY 37
REFERENCES 38 THE INSTANTANEOUS POWER THEORY 41 3.1. BASIS OF THE P-Q
THEORY 42 3.1.1. HISTORICAL BACKGROUND OF THE P-Q THEORY 42 3.1.2. THE
CLARKE TRANSFORMATION 43 3.1.2.A. CALCULATION OF VOLTAGE AND CURRENT
VECTORS WHEN 45 ZERO-SEQUENCE COMPONENTS ARE EXCLUDED 3.1.3. THREE-PHASE
INSTANTANEOUS ACTIVE POWER IN TERMS OF 47 CLARKE COMPONENTS 3.1.4. THE
INSTANTANEOUS POWERS OF THE P-Q THEORY 48 3.2. THE P-Q THEORY IN
THREE-PHASE, THREE-WIRE SYSTEMS 49 3.2.1. COMPARISONS WITH THE
CONVENTIONAL THEORY 53 3.2.I.A. EXAMPLE #1*SINUSOIDAL VOLTAGES AND
CURRENTS 53 3.2.I.B. EXAMPLE #2*BALANCED VOLTAGES AND CAPACITIVE 54
LOADS 3.2.L.C. EXAMPLE #3*SINUSOIDAL BALANCED VOLTAGE AND 55 NONLINEAR
LOAD 3.2.2. USE OF THEP-Q THEORY FOR SHUNT CURRENT COMPENSATION 59
3.2.2.A. EXAMPLES OFAPPEARANCE OFHIDDEN CURRENTS 64 3.2.2.A.1 PRESENCE
OF THE FIFTH HARMONIE IN 64 LOAD CURRENT 3.2.2.A.2 PRESENCE OF THE
SEVENTH HARMONIE IN 67 LOAD CURRENT 3.2.3. THE DUAL P-Q THEORY 68 3.3.
THE P-Q THEORY IN THREE-PHASE, FOUR-WIRE SYSTEMS 71 3.3.1. THE
ZERO-SEQUENCE POWER IN A THREE-PHASE SINUSOIDAL 72 VOLTAGE SOURCE 3.3.2.
PRESENCE OFNEGATIVE-SEQUENCE COMPONENTS 74 3.3.3. GENERAL CASE-INCLUDING
DISTORTIONS AND IMBALANCES IN 75 THE VOLTAGES AND IN THE CURRENTS 3.3.4.
PHYSICAL MEANINGS OF THE INSTANTANEOUS REAL, IMAGINARY, 79 AND
ZERO-SEQUENCE POWERS 3.3.5. AVOIDING THE CLARKE TRANSFORMATION IN THE
P-Q THEORY 80 3.3.6. MODIFIED P-Q THEORY 82 3.4. INSTANTANEOUS ABC
THEORY 87 3.4.1. ACTIVE AND NONACTIVE CURRENT CALCULATION BY MEANS OF A
89 MINIMIZATION METHOD 3.4.2. GENERALIZED FRYZE CURRENTS MINIMIZATION
METHOD 94 3.5. COMPARISONS BETWEEN THE P-Q THEORY AND THE ABC THEORY 98
3.5.1. SELECTION OF POWER COMPONENTS TO BE COMPENSATED 101 3.6. SUMMARY
102 REFERENCES 104 CONTENTS IX 4 SHUNT ACTIVE FILTERS 109 4. 1 . GENERAL
DESCRIPTION OF SHUNT ACTIVE FILTERS 111 4.1.1. PWM CONVERTERS FOR SHUNT
ACTIVE FILTERS 112 4.1.2. ACTIVE FILTER CONTROLLERS 113 4.2.
THREE-PHASE, THREE-WIRE SHUNT ACTIVE FILTERS 116 4.2.1. ACTIVE FILTERS
FOR CONSTANT POWER COMPENSATION 118 4.2.2. ACTIVE FILTERS FOR SINUSOIDAL
CURRENT CONTROL 134 4.2.2.A. POSITIVE-SEQUENCE VOLTAGE DETECTOR 138
4.2.2.A.1 MAIN CIRCUIT OFTHE VOLTAGE DETECTOR 138 4.2.2.A.2
PHASE-LOCKED-LOOP (PLL) CIRCUIT 141 4.2.2.B. SIMULATION RESULTS 145
4.2.3. ACTIVE FILTERS FOR CURRENT MINIMIZATION 145 4.2.4. ACTIVE FILTERS
FOR HARMONIE DAMPING 150 4.2.4.A. SHUNT ACTIVE FILTER BASED ON VOLTAGE
DETECTION 151 4.2.4.B. ACTIVE FILTER CONTROLLER BASED ON VOLTAGE 152
DETECTION 4.2.4.C. AN APPLICATION CASE OF ACTIVE FILTER FOR HARMONIE 157
DAMPING 4.2.4.C. 1 THE POWER DISTRIBUTION LINE FOR THE 158 TEST CASE
4.2.4.C.2 THE ACTIVE FILTER FOR DAMPING OF 159 HARMONIE PROPAGATION
4.2.4.C.3 EXPERIMENTAL RESULTS 160 4.2.4.C.4 ADJUST OFTHE ACTIVE FILTER
GAIN 168 4.2.5. A DIGITAL CONTROLLER 173 4.2.5.A. SYSTEM CONFIGURATION
OFTHE DIGITAL CONTROLLER 174 4.2.5.A.1 OPERATINGPRINCIPLEOFPLLANDPWM 175
UNITS 4.2.5.A.2 SAMPLING OPERATION IN THE A/D UNIT 177 4.2.5.B. CURRENT
CONTROL METHODS 178 4.2.5.B.1 MODELINGOF DIGITAL CURRENT CONTROL 178
4.2.5.B.2 PROPORTIONAL CONTROL 179 4.2.5.B.3 DEADBEAT CONTROL 180
4.2.5.B.4 FREQUENCY RESPONSE OF CURRENT CONTROL 181 4.3. THREE-PHASE,
FOUR-WIRE SHUNT ACTIVE FILTERS 182 4.3.1. CONVERTER TOPOLOGIES FOR
THREE-PHASE, FOUR-WIRE SYSTEMS 183 4.3.2. DYNAMIC HYSTERESIS-BAND
CURRENT CONTROLLER 184 4.3.3. ACTIVE FILTER DE VOLTAGE REGULATOR 186
4.3.4. OPTIMAL POWER FLOW CONDITIONS 187 4.3.5. CONSTANT INSTANTANEOUS
POWER CONTROL STRATEGY 189 4.3.6. SINUSOIDAL CURRENT CONTROL STRATEGY
192 4.3.7. PERFORMANCE ANALYSIS AND PARAMETER OPTIMIZATION 195 4.3.7.A.
INFLUENCE OFTHE SYSTEM PARAMETERS 195 4.3.7.B. DYNAMIC RESPONSE OFTHE
SHUNT ACTIVE FILTER 196 X CONTENTS 4.3.7.C. ECONOMICAL ASPECTS 201
4.3.7.D. EXPERIMENTAL RESULTS 203 4.4. SHUNT SELECTIVE HARMONIE
COMPENSATION 208 4.5. SUMMARY 216 REFERENCES 217 HYBRID AND SERIES
ACTIVE FILTERS 221 5.1. BASIC SERIES ACTIVE FILTER 221 5.2. COMBINED
SERIES ACTIVE FILTER AND SHUNT PASSIVE FILTER 223 5.2.1. EXAMPLE OF AN
EXPERIMENTAL SYSTEM 226 5.2.I.A. COMPENSATIONPRINCIPLE 226 5.2.1.A.1
SOURCE HARMONIE CURRENT I SH 228 5.2. I.A.2 OUTPUT VOLTAGE OF SERIES
ACTIVE 229 FILTER: V C 5.2.I.A.3 SHUNT PASSIVE FILTER HARMONIE 229
VOLTAGE: V FH 5.2.I.B. FILTERING CHARACTERISTICS 230 5.2.1 .B. 1
HARMONIE CURRENT FLOWING FROM THE 230 LOAD TO THE SOURCE 5.2.1 .B.2
HARMONIE CURRENT FLOWING FROM THE 231 SOURCE TO THE SHUNT PASSIVE FILTER
5.2.L.C. CONTROL CIRCUIT 231 5.2.I.D. FILTER TO SUPPRESS SWITCHING
RIPPLES 233 5.2.I.E. EXPERIMENTAL RESULTS 234 5.2.2. SOME REMARKS ABOUT
THE HYBRID FILTERS 237 5.3. SERIES ACTIVE FILTER INTEGRATED WITH A
DOUBLE-SERIES DIODE RECTIFIER 238 5.3.1. THE FIRST-GENERATION CONTROL
CIRCUIT 241 5.3.I.A. CIRCUIT CONFIGURATION AND DELAY TIME 241 5.3.L.B.
STABILITYOFTHE ACTIVE FILTER 242 5.3.2. THE SECOND-GENERATION CONTROL
CIRCUIT 244 5.3.3. STABILITY ANALYSIS AND CHARACTERISTICS COMPARISON 246
5.3.3.A. TRANSFER FUNCTION OF THE CONTROL CIRCUITS 246 5.3.3.B.
CHARACTERISTICS COMPARISONS 247 5.3.4. DESIGN OFA SWITCHING-RIPPLE
FILTER 248 5.3.4.A. DESIGN PRINCIPLE 248 5.3.4.B. EFFECT ON THE SYSTEM
STABILITY 250 5.3.4.C. EXPERIMENTAL TESTING 251 5.3.5. EXPERIMENTAL
RESULTS 252 5.4. COMPARISONS BETWEEN HYBRID AND PURE ACTIVE FILTERS 253
5.4.1. LOW-VOLTAGE TRANSFORMERLESS HYBRID ACTIVE FILTER 255 5.4.2.
LOW-VOLTAGE TRANSFORMERLESS PURE SHUNT ACTIVE FILTER 258 5.4.3.
COMPARISONS THROUGH SIMULATION RESULTS 259 5.5. CONCLUSIONS 261
REFERENCES 262 CONTENTS XI 6 COMBINED SERIES AND SHUNT POWER
CONDITIONERS 265 6.1. THE UNIFIED POWER FLOW CONTROLLER (UPFC) 267
6.1.1. FACTS AND UPFC PRINCIPLES 268 6.1.1.A. VOLTAGE REGULATION
PRINCIPLE 269 6.1.1 .B. POWER FLOW CONTROL PRINCIPLE 270 6.1.2. A
CONTROLLER DESIGN FOR THE UPFC 274 6.1.3. UPFC APPROACH USING A SHUNT
MULTIPULSE CONVERTER 281 6.I.3.A. SIX-PULSE CONVERTER 282 6.I.3.B. QUASI
24-PULSE CONVERTER 286 6.1.3.C CONTROL OF ACTIVE AND REACTIVE POWER IN
288 MULTIPULSE CONVERTERS 6.1.3.D. SHUNT MULTIPULSE CONVERTER CONTROLLER
290 6.2. THE UNIFIED POWER QUALITY CONDITIONER (UPQC) 293 6.2.1. GENERAL
DESCRIPTION OF THE UPQC 294 6.2.2. A THREE-PHASE, FOUR-WIRE UPQC 297
6.2.2.A. POWER CIRCUIT OF THE UPQC 297 6.2.2.B. THE UPQC CONTROLLER 299
6.2.2.B.1 PWM VOLTAGE CONTROL WITH MINOR 300 FEEDBACK CONTROL LOOP
6.2.2.B.2 SERIES ACTIVE FILTER CONTROLLER 301 6.2.2.B.3 INTEGRATION OF
THE SERIES AND SHUNT 305 ACTIVE FILTER CONTROLLERS 6.2.2.B.4 GENERAL
ASPECTS 307 6.2.2.C. ANALYSISOFTHE UPQC DYNAMIC 308 6.2.2.C.1 OPTIMIZING
THE POWER SYSTEM PARAMETERS 309 6.2.2.C.2 OPTIMIZING THE PARAMETERS IN
THE CONTROL 311 SYSTEMS 6.2.2.C.3 SIMULATION RESULTS 312 6.2.2.C.4
EXPERIMENTAL RESULTS 320 6.2.3. THE UPQC COMBINED WITH PASSIVE FILTERS
(HYBRID UPQC) 326 6.2.3.A. CONTROLLER OFTHE HYBRID UPQC 331 6.2.3.B.
EXPERIMENTAL RESULTS 337 6.3. THE UNIVERSAL ACTIVE POWER LINE
CONDITIONER (UPLC) 343 6.3.1. GENERAL DESCRIPTION OF THE UPLC 3 44
6.3.2. THE CONTROLLER OFTHE UPLC 347 6.3.2.A. CONTROLLER FOR THE
CONFIGURATION #2 OF UPLC 355 6.3.3. PERFORMANCE OFTHE UPLC 355 6.3.3.A.
NORMALIZED SYSTEM PARAMETERS 355 6.3.3.B. SIMULATION RESULTS OF
CONFIGURATION #1 OF UPLC 360 6.3.3.C. SIMULATION RESULTS OF
CONFIGURATION #2 OF UPLC 368 6.3.4. GENERAL ASPECTS 370 6.4. SUMMARY 371
REFERENCES 371 INDEX 375 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Akagi, Hirofumi Watanabe, Edson Hirokazu Aredes, Maurício |
author_facet | Akagi, Hirofumi Watanabe, Edson Hirokazu Aredes, Maurício |
author_role | aut aut aut |
author_sort | Akagi, Hirofumi |
author_variant | h a ha e h w eh ehw m a ma |
building | Verbundindex |
bvnumber | BV023320595 |
callnumber-first | T - Technology |
callnumber-label | TK7872 |
callnumber-raw | TK7872.F5 |
callnumber-search | TK7872.F5 |
callnumber-sort | TK 47872 F5 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 5740 |
ctrlnum | (OCoLC)255534161 (DE-599)GBV522443818 |
dewey-full | 621.3815324 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815324 |
dewey-search | 621.3815324 |
dewey-sort | 3621.3815324 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01653nam a2200421 c 4500</leader><controlfield tag="001">BV023320595</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131031 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080529s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470107618</subfield><subfield code="c">(hbk.) : £58.95</subfield><subfield code="9">0-470-10761-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470107614</subfield><subfield code="c">(hbk.) : £58.95</subfield><subfield code="9">978-0-470-10761-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255534161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV522443818</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7872.F5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815324</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 5740</subfield><subfield code="0">(DE-625)157479:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akagi, Hirofumi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Instantaneous power theory and applications to power conditioning</subfield><subfield code="c">Hirofumi Akagi ; Edson Hirokazu Watanabe ; Mauricio Aredes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley-Interscience [u.a.]</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 379 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press series on power engineering</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric filters, Active</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power electronics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aktives Filter</subfield><subfield code="0">(DE-588)4141756-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aktives Filter</subfield><subfield code="0">(DE-588)4141756-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watanabe, Edson Hirokazu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aredes, Maurício</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016504697&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016504697</subfield></datafield></record></collection> |
id | DE-604.BV023320595 |
illustrated | Illustrated |
index_date | 2024-07-02T20:53:39Z |
indexdate | 2024-07-09T21:15:48Z |
institution | BVB |
isbn | 0470107618 9780470107614 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016504697 |
oclc_num | 255534161 |
open_access_boolean | |
owner | DE-92 DE-523 DE-83 |
owner_facet | DE-92 DE-523 DE-83 |
physical | XIV, 379 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley-Interscience [u.a.] |
record_format | marc |
series2 | IEEE Press series on power engineering |
spelling | Akagi, Hirofumi Verfasser aut Instantaneous power theory and applications to power conditioning Hirofumi Akagi ; Edson Hirokazu Watanabe ; Mauricio Aredes Hoboken, NJ Wiley-Interscience [u.a.] 2007 XIV, 379 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier IEEE Press series on power engineering Literaturangaben Electric filters, Active Power electronics Aktives Filter (DE-588)4141756-2 gnd rswk-swf Aktives Filter (DE-588)4141756-2 s DE-604 Watanabe, Edson Hirokazu Verfasser aut Aredes, Maurício Verfasser aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016504697&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Akagi, Hirofumi Watanabe, Edson Hirokazu Aredes, Maurício Instantaneous power theory and applications to power conditioning Electric filters, Active Power electronics Aktives Filter (DE-588)4141756-2 gnd |
subject_GND | (DE-588)4141756-2 |
title | Instantaneous power theory and applications to power conditioning |
title_auth | Instantaneous power theory and applications to power conditioning |
title_exact_search | Instantaneous power theory and applications to power conditioning |
title_exact_search_txtP | Instantaneous power theory and applications to power conditioning |
title_full | Instantaneous power theory and applications to power conditioning Hirofumi Akagi ; Edson Hirokazu Watanabe ; Mauricio Aredes |
title_fullStr | Instantaneous power theory and applications to power conditioning Hirofumi Akagi ; Edson Hirokazu Watanabe ; Mauricio Aredes |
title_full_unstemmed | Instantaneous power theory and applications to power conditioning Hirofumi Akagi ; Edson Hirokazu Watanabe ; Mauricio Aredes |
title_short | Instantaneous power theory and applications to power conditioning |
title_sort | instantaneous power theory and applications to power conditioning |
topic | Electric filters, Active Power electronics Aktives Filter (DE-588)4141756-2 gnd |
topic_facet | Electric filters, Active Power electronics Aktives Filter |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016504697&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT akagihirofumi instantaneouspowertheoryandapplicationstopowerconditioning AT watanabeedsonhirokazu instantaneouspowertheoryandapplicationstopowerconditioning AT aredesmauricio instantaneouspowertheoryandapplicationstopowerconditioning |