Introduction to nanoscience:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2010
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XII, 457 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 9780199544219 9780199544202 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023310323 | ||
003 | DE-604 | ||
005 | 20131014 | ||
007 | t | ||
008 | 080523s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780199544219 |c pbk |9 978-0-19-954421-9 | ||
020 | |a 9780199544202 |c hbk |9 978-0-19-954420-2 | ||
035 | |a (OCoLC)377824760 | ||
035 | |a (DE-599)BVBBV023310323 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-20 |a DE-703 |a DE-634 |a DE-29T |a DE-19 |a DE-11 |a DE-91G |a DE-384 | ||
050 | 0 | |a QC176.8.N35 | |
082 | 0 | |a 620.5 |2 22 | |
084 | |a UP 3150 |0 (DE-625)146377: |2 rvk | ||
084 | |a UP 7500 |0 (DE-625)146433: |2 rvk | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
084 | |a TEC 030f |2 stub | ||
100 | 1 | |a Lindsay, Stuart M. |e Verfasser |0 (DE-588)140017135 |4 aut | |
245 | 1 | 0 | |a Introduction to nanoscience |c S. M. Lindsay |
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2010 | |
300 | |a XII, 457 S. |b Ill., graph. Darst. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Nanoelectronics | |
650 | 4 | |a Nanoscience | |
650 | 4 | |a Nanoscience |v Problems, exercises, etc | |
650 | 4 | |a Nanostructured materials | |
650 | 4 | |a Nanostructures | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanowissenschaften |0 (DE-588)7734987-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nanowissenschaften |0 (DE-588)7734987-8 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016494607&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016494607 |
Datensatz im Suchindex
_version_ | 1804137643694358528 |
---|---|
adam_text | Contents
What is Nanoscience?
1
1.1
About size scales
1
1.2
History
2
1.3
Feynman scorecard
3
1.4
Schrödinger s
cat
—
quantum mechanics in small
systems
8
1.5
Fluctuations and Darwinian Nanoscience
9
1.6
Overview of quantum effects and fluctuations in
nanostractures
11
1.7
What to expect in the rest of this book
12
1.8
Bibliography
13
1.9
Exercises
13
References
14
Part I: The Basics
2
Quantum mechanics
19
2.1
Why physics is different for small systems
—
the story of the
Hitachi experiment
20
2.2
The uncertainty principle
25
2.3
The Hitachi microscope as a quantum system
26
2.4
Probability amplitudes and the rules of quantum
mechanics
27
2.5
A word about composite particles
30
2.6
Wavefunctions
31
2.7
Dirac notation
32
2.8
Many particle wavefunctions and identical
particles
33
2.9
The
Pauli
exclusion principle
35
2.10
The
Schrödinger
equation: a tool for calculating probability
amplitudes
36
2.11
Problems involving more than one electron
38
2.12
Solution of the one-electron time-independent
Schrödinger
equation for a constant potential
40
2.13
Electron tunneling through a potential barrier
41
2.14
The Hitachi experiment with wavefunctions
42
2.15
Some important results obtained with simple 1-D
models
43
2.16
The hydrogen atom
51
2.17
Multielectron atoms
57
2.18
The periodic table of the elements
59
viii Contents
2.19
Approximate methods for solving the
Schrödinger
equation
61
2.20
Chemical bonds
64
2.21
Eigenstates for interacting systems and
quasiparticles
68
2.22
Getting away from wavefunctions: density functional
theory
69
2.23
Bibliography
72
2.24
Exercises
72
References
74
Statistical mechanics and chemical kinetics
76
3.1
Macroscopic description of systems of many
particles
77
3.2
How systems get from here to there: entropy and
kinetics
79
3.3
The classical probability distribution for noninteracting
particles
82
3.4
Entropy and the Boltzmann distribution
84
3.5
An example of the Boltzmann distribution:
ions in a solution near an electrode
86
3.6
The equipartition theorem
88
3.7
The partition function
89
3.8
The partition function for an ideal gas
91
3.9
Free energy, pressure, and entropy of an ideal gas from the
partition function
93
3.10
Quantum gasses
96
3.11
Fluctuations
100
3.12
Brownian motion
102
3.13
Diffusion
105
3.14
Einstein-Smoluchowski relation
107
3.15
Fluctuations, chemical reactions, and the transition
state
108
3.16
The Kramers theory of reaction rates
109
3.17
Chemical kinetics 111
3.18
Acid-base reactions as an example of chemical
equilibrium
114
3.19
The Michaelis-Menten relation and on-off rates in
nano-bio interactions
117
3.20
Rate equations in small systems
120
3.21
Nanothermodynamics
120
3.22
Modeling nanosystems explicitly: molecular
dynamics
121
3.23
Systems far from equilibrium: Jarzynski s equality
124
3.24
Fluctuations and quantum mechanics
125
3.25
Bibliography
128
3.26
Exercises
128
References
131
Contents ix
Part II:
Tools
4
Microscopy and manipulation tools
135
4.1
The scanning tunneling microscope
135
4.2
The atomic force microscope
144
4.3
Electron microscopy
158
4.4
Nano-measurement techniques based on
fluorescence
163
4.5
Tweezers for grabbing molecules
168
4.6
Chemical kinetics and single molecule
experiments
172
4.7
Bibliography
173
4.8
Exercises
173
References
175
5
Making nanostructures: top down
178
5.1
Overview of nanofabrication: top down
178
5.2
Photolithography
179
5.3
Electron beam lithography
183
5.4
Micromechanical structures
185
5.5
Thin film technologies
187
5.6
Molecular beam epitaxy
190
5.7
Self-assembled masks
191
5.8
Focused ion beam milling
193
5.9
Stamp technology
195
5.10
Nanoscale junctions
197
5.11
Bibliography
197
5.12
Exercises
198
References
199
6
Making nanostructures: bottom up
201
6.1
Common aspects of all bottom-up assembly
methods
201
6.2
Organic synthesis
202
6.3
Weak interactions between molecules
210
6.4
Vesicles and micelles
214
6.5
Thermodynamic aspects of self-assembling
nanostructures
216
6.6
A self-assembled nanochemistry machine
—
the
mitochondrion
219
6.7
Self-assembled molecular monolayers
220
6.8
Kinetic control of growth: nanowires and
quantum dots
222
6.9 DNA nanotechnology 223
6.10
Bibliography
229
6.11
Exercises
229
References
230
χ
Contents
Part III: Applications
Electrons in nanostructures
235
7.1
The vast variation in the electronic properties of
materials
235
7.2
Electrons in nanostructures and quantum effects
236
7.3
Fermi liquids and the free electron model
237
7.4
Transport in free electron metals
240
7.5
Electrons in crystalline solids: Bloch s theorem
240
7.6
Electrons in crystalline solids: band structure
242
7.7
Electrons in
3D—
why copper conducts; Fermi surfaces
and Brillouin zones
245
7.8
Electrons passing through tiny structures: the
Landauer
resistance
246
7.9
Charging nanostructures: the Coulomb blockade
250
7.10
The single electron transistor
252
7.11
Resonant tunneling
254
7.12
Coulomb blockade or resonant tunneling?
256
7.13
Electron localization and system size
257
7.14
Bibliography
259
7.15
Exercises
259
References
260
8
Molecular electronics
262
8.1
Why molecular electronics?
263
8.2
Lewis structures as a simple guide to chemical
bonding
264
8.3
The variational approach to calculating molecular
orbitais
268
8.4
The hydrogen molecular ion revisited
270
8.5
Hybridization of atomic
orbitais
275
8.6
Making diatomic molecules from atoms with both s- and
p-states
276
8.7
Molecular levels in organic compounds: the Hiickel
model
279
8.8
Delocalization energy
280
8.9
Quantifying donor and acceptor properties with
electrochemistry
284
8.10
Electron transfer between molecules
—
the Marcus
theory
292
8.11
Charge transport in weakly interacting molecular
solids
—
hopping conductance
298
8.12
Concentration gradients drive current in molecular
solids
299
8.13
Dimensionality, 1-D conductors, and conducting
polymers
300
8.14
Single molecule electronics
302
8.15
Wiring a molecule: single molecule measurements
303
Contents xi
8.16
The transition from tunneling to hopping conductance in
single molecules
307
8.17
Gating molecular conductance
309
8.18
Where is molecular electronics going?
312
8.19
Bibliography
313
8.20
Exercises
313
References
315
9
Nanostructured
materials
318
9.1
What is gained by nanostracturing materials?
318
9.2
Nanostractures for electronics
319
9.3
Zero-dimensional electronic structures:
quantum dots
322
9.4
Nanowires
323
9.5
2-D nanoelectronics: superlattices and
heterostructures
326
9.6
Photonic applications of nanoparticles
329
9.7
2-D photonics for lasers
331
9.8 3-D
photonic
bandgap
materials
333
9.9
Physics of magnetic materials
335
9.10
Superparamagnetic nanoparticles
337
9.11
A 2-D nanomagnetic device: giant
magnetoresistance
338
9.12
Nanostructured thermal devices
340
9.13
Nanofluidic devices
341
9.14
Nanofluidic channels and pores for molecular
separations
342
9.15
Enhanced fluid transport in nanotubes
343
9.16
Superhydrophobic nanostructured surfaces
345
9.17
Biomimetic materials
346
9.18
Bibliography
348
9.19
Exercises
348
References
350
10
Nanobiology
353
10.1
Natural selection as the driving force for biology
353
10.2
Introduction to molecular biology
354
10.3
Some mechanical properties of proteins
360
10.4
What enzymes do
361
10.5
Gatekeepers
—
voltage-gated channels
363
10.6
Powering bio-nanomachines: where biological energy
comes from
364
10.7
Adenosine triphosphate
—
the gasoline of biology
365
10.8
The thermal ratchet mechanism
366
10.9
Types of molecular motor
367
10.10
The central role of fluctuations in biology
372
10.11
Do nanoscale fluctuations play a role in the evolution
of the mind?
377
xii Contents
10.12
Bibliography
378
10.13
Exercises
378
References
379
A Units, conversion factors, physical quantities,
and useful math
381
A.I Length
381
A.2 Mass and force
381
A.3 Time
381
A.4 Pressure
381
A.
5
Energy and temperature
381
A.6
Electromagnetism
382
A.7 Constants
382
A.8 Some useful material properties
382
A.9 Some useful math
382
В
There s plenty of room at the bottom
384
С
Schrödinger
equation for the hydrogen atom
396
C.
1
Angular momentum operators
396
C.2 Angular momentum eigenfunctions
397
C.3 Solution of the
Schrödinger
equation in a central
potential
398
D
The damped harmonic oscillator
400
E
Free energies and choice of ensemble
405
E.
1
Different free energies for different problems
405
E.2 Different statistical ensembles for different
problems
407
F
Probabilities and the definition of entropy
408
G
The Gibbs distribution
409
H
Quantum partition function for a single particle
411
I Partition function for
N
particles in an ideal gas
413
J
Atomic units
414
К
Hückel
theory for benzene
415
L
A glossary for nanobiology
417
M
Solutions and hints for the problems
424
Index
447
|
adam_txt |
Contents
What is Nanoscience?
1
1.1
About size scales
1
1.2
History
2
1.3
Feynman scorecard
3
1.4
Schrödinger's
cat
—
quantum mechanics in small
systems
8
1.5
Fluctuations and "Darwinian Nanoscience"
9
1.6
Overview of quantum effects and fluctuations in
nanostractures
11
1.7
What to expect in the rest of this book
12
1.8
Bibliography
13
1.9
Exercises
13
References
14
Part I: The Basics
2
Quantum mechanics
19
2.1
Why physics is different for small systems
—
the story of the
Hitachi experiment
20
2.2
The uncertainty principle
25
2.3
The Hitachi microscope as a quantum system
26
2.4
Probability amplitudes and the rules of quantum
mechanics
27
2.5
A word about "composite" particles
30
2.6
Wavefunctions
31
2.7
Dirac notation
32
2.8
Many particle wavefunctions and identical
particles
33
2.9
The
Pauli
exclusion principle
35
2.10
The
Schrödinger
equation: a tool for calculating probability
amplitudes
36
2.11
Problems involving more than one electron
38
2.12
Solution of the one-electron time-independent
Schrödinger
equation for a constant potential
40
2.13
Electron tunneling through a potential barrier
41
2.14
The Hitachi experiment with wavefunctions
42
2.15
Some important results obtained with simple 1-D
models
43
2.16
The hydrogen atom
51
2.17
Multielectron atoms
57
2.18
The periodic table of the elements
59
viii Contents
2.19
Approximate methods for solving the
Schrödinger
equation
61
2.20
Chemical bonds
64
2.21
Eigenstates for interacting systems and
quasiparticles
68
2.22
Getting away from wavefunctions: density functional
theory
69
2.23
Bibliography
72
2.24
Exercises
72
References
74
Statistical mechanics and chemical kinetics
76
3.1
Macroscopic description of systems of many
particles
77
3.2
How systems get from here to there: entropy and
kinetics
79
3.3
The classical probability distribution for noninteracting
particles
82
3.4
Entropy and the Boltzmann distribution
84
3.5
An example of the Boltzmann distribution:
ions in a solution near an electrode
86
3.6
The equipartition theorem
88
3.7
The partition function
89
3.8
The partition function for an ideal gas
91
3.9
Free energy, pressure, and entropy of an ideal gas from the
partition function
93
3.10
Quantum gasses
96
3.11
Fluctuations
100
3.12
Brownian motion
102
3.13
Diffusion
105
3.14
Einstein-Smoluchowski relation
107
3.15
Fluctuations, chemical reactions, and the transition
state
108
3.16
The Kramers theory of reaction rates
109
3.17
Chemical kinetics 111
3.18
Acid-base reactions as an example of chemical
equilibrium
114
3.19
The Michaelis-Menten relation and on-off rates in
nano-bio interactions
117
3.20
Rate equations in small systems
120
3.21
Nanothermodynamics
120
3.22
Modeling nanosystems explicitly: molecular
dynamics
121
3.23
Systems far from equilibrium: Jarzynski's equality
124
3.24
Fluctuations and quantum mechanics
125
3.25
Bibliography
128
3.26
Exercises
128
References
131
Contents ix
Part II:
Tools
4
Microscopy and manipulation tools
135
4.1
The scanning tunneling microscope
135
4.2
The atomic force microscope
144
4.3
Electron microscopy
158
4.4
Nano-measurement techniques based on
fluorescence
163
4.5
Tweezers for grabbing molecules
168
4.6
Chemical kinetics and single molecule
experiments
172
4.7
Bibliography
173
4.8
Exercises
173
References
175
5
Making nanostructures: top down
178
5.1
Overview of nanofabrication: top down
178
5.2
Photolithography
179
5.3
Electron beam lithography
183
5.4
Micromechanical structures
185
5.5
Thin film technologies
187
5.6
Molecular beam epitaxy
190
5.7
Self-assembled masks
191
5.8
Focused ion beam milling
193
5.9
Stamp technology
195
5.10
Nanoscale junctions
197
5.11
Bibliography
197
5.12
Exercises
198
References
199
6
Making nanostructures: bottom up
201
6.1
Common aspects of all bottom-up assembly
methods
201
6.2
Organic synthesis
202
6.3
Weak interactions between molecules
210
6.4
Vesicles and micelles
214
6.5
Thermodynamic aspects of self-assembling
nanostructures
216
6.6
A self-assembled nanochemistry machine
—
the
mitochondrion
219
6.7
Self-assembled molecular monolayers
220
6.8
Kinetic control of growth: nanowires and
quantum dots
222
6.9 DNA nanotechnology 223
6.10
Bibliography
229
6.11
Exercises
229
References
230
χ
Contents
Part III: Applications
Electrons in nanostructures
235
7.1
The vast variation in the electronic properties of
materials
235
7.2
Electrons in nanostructures and quantum effects
236
7.3
Fermi liquids and the free electron model
237
7.4
Transport in free electron metals
240
7.5
Electrons in crystalline solids: Bloch's theorem
240
7.6
Electrons in crystalline solids: band structure
242
7.7
Electrons in
3D—
why copper conducts; Fermi surfaces
and Brillouin zones
245
7.8
Electrons passing through tiny structures: the
Landauer
resistance
246
7.9
Charging nanostructures: the Coulomb blockade
250
7.10
The single electron transistor
252
7.11
Resonant tunneling
254
7.12
Coulomb blockade or resonant tunneling?
256
7.13
Electron localization and system size
257
7.14
Bibliography
259
7.15
Exercises
259
References
260
8
Molecular electronics
262
8.1
Why molecular electronics?
263
8.2
Lewis structures as a simple guide to chemical
bonding
264
8.3
The variational approach to calculating molecular
orbitais
268
8.4
The hydrogen molecular ion revisited
270
8.5
Hybridization of atomic
orbitais
275
8.6
Making diatomic molecules from atoms with both s- and
p-states
276
8.7
Molecular levels in organic compounds: the Hiickel
model
279
8.8
Delocalization energy
280
8.9
Quantifying donor and acceptor properties with
electrochemistry
284
8.10
Electron transfer between molecules
—
the Marcus
theory
292
8.11
Charge transport in weakly interacting molecular
solids
—
hopping conductance
298
8.12
Concentration gradients drive current in molecular
solids
299
8.13
Dimensionality, 1-D conductors, and conducting
polymers
300
8.14
Single molecule electronics
302
8.15
Wiring a molecule: single molecule measurements
303
Contents xi
8.16
The transition from tunneling to hopping conductance in
single molecules
307
8.17
Gating molecular conductance
309
8.18
Where is molecular electronics going?
312
8.19
Bibliography
313
8.20
Exercises
313
References
315
9
Nanostructured
materials
318
9.1
What is gained by nanostracturing materials?
318
9.2
Nanostractures for electronics
319
9.3
Zero-dimensional electronic structures:
quantum dots
322
9.4
Nanowires
323
9.5
2-D nanoelectronics: superlattices and
heterostructures
326
9.6
Photonic applications of nanoparticles
329
9.7
2-D photonics for lasers
331
9.8 3-D
photonic
bandgap
materials
333
9.9
Physics of magnetic materials
335
9.10
Superparamagnetic nanoparticles
337
9.11
A 2-D nanomagnetic device: giant
magnetoresistance
338
9.12
Nanostructured thermal devices
340
9.13
Nanofluidic devices
341
9.14
Nanofluidic channels and pores for molecular
separations
342
9.15
Enhanced fluid transport in nanotubes
343
9.16
Superhydrophobic nanostructured surfaces
345
9.17
Biomimetic materials
346
9.18
Bibliography
348
9.19
Exercises
348
References
350
10
Nanobiology
353
10.1
Natural selection as the driving force for biology
353
10.2
Introduction to molecular biology
354
10.3
Some mechanical properties of proteins
360
10.4
What enzymes do
361
10.5
Gatekeepers
—
voltage-gated channels
363
10.6
Powering bio-nanomachines: where biological energy
comes from
364
10.7
Adenosine triphosphate
—
the gasoline of biology
365
10.8
The thermal ratchet mechanism
366
10.9
Types of molecular motor
367
10.10
The central role of fluctuations in biology
372
10.11
Do nanoscale fluctuations play a role in the evolution
of the mind?
377
xii Contents
10.12
Bibliography
378
10.13
Exercises
378
References
379
A Units, conversion factors, physical quantities,
and useful math
381
A.I Length
381
A.2 Mass and force
381
A.3 Time
381
A.4 Pressure
381
A.
5
Energy and temperature
381
A.6
Electromagnetism
382
A.7 Constants
382
A.8 Some useful material properties
382
A.9 Some useful math
382
В
There's plenty of room at the bottom
384
С
Schrödinger
equation for the hydrogen atom
396
C.
1
Angular momentum operators
396
C.2 Angular momentum eigenfunctions
397
C.3 Solution of the
Schrödinger
equation in a central
potential
398
D
The damped harmonic oscillator
400
E
Free energies and choice of ensemble
405
E.
1
Different free energies for different problems
405
E.2 Different statistical ensembles for different
problems
407
F
Probabilities and the definition of entropy
408
G
The Gibbs distribution
409
H
Quantum partition function for a single particle
411
I Partition function for
N
particles in an ideal gas
413
J
Atomic units
414
К
Hückel
theory for benzene
415
L
A glossary for nanobiology
417
M
Solutions and hints for the problems
424
Index
447 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Lindsay, Stuart M. |
author_GND | (DE-588)140017135 |
author_facet | Lindsay, Stuart M. |
author_role | aut |
author_sort | Lindsay, Stuart M. |
author_variant | s m l sm sml |
building | Verbundindex |
bvnumber | BV023310323 |
callnumber-first | Q - Science |
callnumber-label | QC176 |
callnumber-raw | QC176.8.N35 |
callnumber-search | QC176.8.N35 |
callnumber-sort | QC 3176.8 N35 |
callnumber-subject | QC - Physics |
classification_rvk | UP 3150 UP 7500 VE 9850 ZN 3700 |
classification_tum | TEC 030f |
ctrlnum | (OCoLC)377824760 (DE-599)BVBBV023310323 |
dewey-full | 620.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.5 |
dewey-search | 620.5 |
dewey-sort | 3620.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Technik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Physik Technik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02051nam a2200541 c 4500</leader><controlfield tag="001">BV023310323</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131014 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080523s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199544219</subfield><subfield code="c">pbk</subfield><subfield code="9">978-0-19-954421-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199544202</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-19-954420-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)377824760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023310323</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC176.8.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3150</subfield><subfield code="0">(DE-625)146377:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 7500</subfield><subfield code="0">(DE-625)146433:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 030f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lindsay, Stuart M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140017135</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to nanoscience</subfield><subfield code="c">S. M. Lindsay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 457 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoelectronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoscience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoscience</subfield><subfield code="v">Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanowissenschaften</subfield><subfield code="0">(DE-588)7734987-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nanowissenschaften</subfield><subfield code="0">(DE-588)7734987-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016494607&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016494607</subfield></datafield></record></collection> |
id | DE-604.BV023310323 |
illustrated | Illustrated |
index_date | 2024-07-02T20:49:57Z |
indexdate | 2024-07-09T21:15:34Z |
institution | BVB |
isbn | 9780199544219 9780199544202 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016494607 |
oclc_num | 377824760 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-703 DE-634 DE-29T DE-19 DE-BY-UBM DE-11 DE-91G DE-BY-TUM DE-384 |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-703 DE-634 DE-29T DE-19 DE-BY-UBM DE-11 DE-91G DE-BY-TUM DE-384 |
physical | XII, 457 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Lindsay, Stuart M. Verfasser (DE-588)140017135 aut Introduction to nanoscience S. M. Lindsay Oxford [u.a.] Oxford Univ. Press 2010 XII, 457 S. Ill., graph. Darst. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Quantentheorie Nanoelectronics Nanoscience Nanoscience Problems, exercises, etc Nanostructured materials Nanostructures Nanotechnology Quantum theory Nanotechnologie (DE-588)4327470-5 gnd rswk-swf Nanowissenschaften (DE-588)7734987-8 gnd rswk-swf Nanotechnologie (DE-588)4327470-5 s DE-604 Nanowissenschaften (DE-588)7734987-8 s Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016494607&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lindsay, Stuart M. Introduction to nanoscience Quantentheorie Nanoelectronics Nanoscience Nanoscience Problems, exercises, etc Nanostructured materials Nanostructures Nanotechnology Quantum theory Nanotechnologie (DE-588)4327470-5 gnd Nanowissenschaften (DE-588)7734987-8 gnd |
subject_GND | (DE-588)4327470-5 (DE-588)7734987-8 |
title | Introduction to nanoscience |
title_auth | Introduction to nanoscience |
title_exact_search | Introduction to nanoscience |
title_exact_search_txtP | Introduction to nanoscience |
title_full | Introduction to nanoscience S. M. Lindsay |
title_fullStr | Introduction to nanoscience S. M. Lindsay |
title_full_unstemmed | Introduction to nanoscience S. M. Lindsay |
title_short | Introduction to nanoscience |
title_sort | introduction to nanoscience |
topic | Quantentheorie Nanoelectronics Nanoscience Nanoscience Problems, exercises, etc Nanostructured materials Nanostructures Nanotechnology Quantum theory Nanotechnologie (DE-588)4327470-5 gnd Nanowissenschaften (DE-588)7734987-8 gnd |
topic_facet | Quantentheorie Nanoelectronics Nanoscience Nanoscience Problems, exercises, etc Nanostructured materials Nanostructures Nanotechnology Quantum theory Nanotechnologie Nanowissenschaften |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016494607&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lindsaystuartm introductiontonanoscience |