Asymptotic analysis and boundary layers:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Schriftenreihe: | Scientific computation
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 432 S. graph. Darst. |
ISBN: | 9783540464884 3540464883 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023308175 | ||
003 | DE-604 | ||
005 | 20181206 | ||
007 | t | ||
008 | 080520s2007 d||| |||| 00||| eng d | ||
015 | |a 06,N44,0304 |2 dnb | ||
020 | |a 9783540464884 |c Gb. : ca. EUR 106.95 (freier Pr.), ca. sfr 169.00 (freier Pr.) |9 978-3-540-46488-4 | ||
020 | |a 3540464883 |c Gb. : ca. EUR 106.95 (freier Pr.), ca. sfr 169.00 (freier Pr.) |9 3-540-46488-3 | ||
024 | 3 | |a 9783540464884 | |
028 | 5 | 2 | |a 11576716 |
035 | |a (OCoLC)180959923 | ||
035 | |a (DE-599)HBZHT014899970 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-83 | ||
082 | 0 | |a 530.051 |2 22/ger | |
084 | |a UF 4200 |0 (DE-625)145583: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a MTA 450f |2 stub | ||
084 | |a MTA 309f |2 stub | ||
100 | 1 | |a Cousteix, Jean |d 1947- |e Verfasser |0 (DE-588)120793156 |4 aut | |
245 | 1 | 0 | |a Asymptotic analysis and boundary layers |c Jean Cousteix ; Jacques Mauss |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a XVI, 432 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Scientific computation | |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singuläre Störung |0 (DE-588)4055100-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grenzschichtströmung |0 (DE-588)4137696-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Approximation |0 (DE-588)4739184-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Grenzschichtströmung |0 (DE-588)4137696-1 |D s |
689 | 0 | 1 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 2 | |a Singuläre Störung |0 (DE-588)4055100-3 |D s |
689 | 0 | 3 | |a Asymptotische Approximation |0 (DE-588)4739184-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mauss, Jacques |e Verfasser |0 (DE-588)131387286 |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016492498&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016492498 |
Datensatz im Suchindex
_version_ | 1804137640665022464 |
---|---|
adam_text | JEAN COUSTEIX * JACQUES MAUSS ASYMPTOTIC ANALYSIS AND BOUNDARY LAYERS
WITH 85 FIGURES 4Y SPRINGER CONTENTS PREFACE V ACKNOWLEDGEMENTS VIII
ABBREVIATIONS XVII 1 INTRODUCTION 1 2 INTRODUCTION TO SINGULAR
PERTURBATION PROBLEMS 7 2.1 REGULAR AND SINGULAR PROBLEMS 8 2.1.1 LINEAR
OSCILLATOR 8 2.1.2 SECULAR PROBLEM 11 2.1.3 SINGULAR PROBLEM 14 2.2
APPROXIMATION METHODS FOR SINGULAR PERTURBATION PROBLEMS . 15 2.2.1
METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 16 2.2.2 SUCCESSIVE
COMPLEMENTARY EXPANSION METHOD 19 2.2.3 MULTIPLE SCALE METHOD 20 2.2.4
POINCARE-LIGHTHM S METHOD 22 2.2.5 RENORMALIZATION GROUP METHOD 24 2.3
CONCLUSION 25 PROBLEMS 25 3 BOUNDARY LAYER STRUCTURE 31 3.1 STUDY OF A
SECOND ORDER DIFFERENTIAL EQUATION 31 3.2 ANALYSIS OF EACH CASE 35 3.3
CONCLUSION 40 PROBLEMS = 41 4 ASYMPTOTIC EXPANSIONS 43 4.1 ORDER
FUNCTIONS. ORDER OF A FUNCTION 43 4.1.1 DEFINITION OF AN ORDER FUNCTION
43 4.1.2 COMPARISON OF ORDER FUNCTIONS 43 4.1.3 TOTAL ORDERING 44 4.1.4
ORDER OF A FUNCTION 45 4.2 ASYMPTOTIC SEQUENCE 46 XII CONTENTS 4.2.1
DEFINITION OF AN ASYMPTOTIC SEQUENCE 46 4.2.2 CLASS OF EQUIVALENCE 46
4.2.3 GAUGE FUNCTIONS 47 4.3 ASYMPTOTIC EXPANSION 47 4.3.1 ASYMPTOTIC
APPROXIMATION 47 4.3.2 REGULAR FUNCTIONS 49 4.3.3 REGULAR AND
GENERALIZED ASYMPTOTIC EXPANSIONS 50 4.3.4 CONVERGENCE AND ACCURACY 51
4.3.5 OPERATIONS ON ASYMPTOTIC EXPANSIONS 54 4.4 CONCLUSION 55 PROBLEMS
55 5 SUCCESSIVE COMPLEMENTARY EXPANSION METHOD 59 5.1 METHOD OF MATCHED
ASYMPTOTIC EXPANSIONS 59 5.1.1 EXPANSION OPERATOR 59 5.1.2 OUTER
EXPANSION - INNER EXPANSION 60 5.1.3 ASYMPTOTIC MATCHING 61 5.2 BOUNDARY
LAYER 65 5.2.1 EXPANSION OPERATOR TO A GIVEN ORDER 65 5.2.2 SIGNIFICANT
APPROXIMATIONS 66 5.3 INTERMEDIATE MATCHING 67 5.3.1 KAPLUN S EXTENSION
THEOREM 67 5.3.2 STUDY OF EXAMPLES 67 5.3.3 RULE OF INTERMEDIATE
MATCHING 69 5.4 ASYMPTOTIC MATCHING PRINCIPLE 71 5.4.1 VAN DYKE S
PRINCIPLE 71 5.4.2 MODIFIED VAN DYKE S PRINCIPLE 72 5.5 EXAMPLES AND
COUNTER-EXAMPLES 72 5.5.1 EXAMPLE 1 . 72 5.5.2 EXAMPLE 2 73 5.5.3
EXAMPLE 3 74 5.5.4 EXAMPLE 4 75 5.6 DISCUSSION OF THE MATCHING PRINCIPLE
76 5.6.1 CORRECTIVE BOUNDARY LAYER 77 5.6.2 THE MVDP FROM THE OVERLAP
HYPOTHESIS 79 5.7 SUCCESSIVE COMPLEMENTARY EXPANSION METHOD 81 5.7.1
PRINCIPLE . 81 5.7.2 EQUIVALENCE OF MVDP AND OF REGULAR SCEM 84 5.8
APPLICATIONS OF SCEM 86 5.8.1 EXAMPLE 1 86 5.8.2 EXAMPLE 2 88 5.8.3
EXAMPLE 3 89 5.9 CONCLUSION. 90 PROBLEMS . 91 CONTENTS XIII ORDINARY
DIFFERENTIAL EQUATIONS 99 6.1 EXAMPLE 1 99 6.1.1 APPLICATION OF MMAE 100
6.1.2 APPLICATION OF SCEM 102 6.2 EXAMPLE 2 107 6.2.1 APPLICATION OF
MMAE 107 6.2.2 APPLICATION OF SCEM 109 6.2.3 IDENTIFICATION WITH MMAE
RESULTS ILL 6.2.4 NUMERICAL RESULTS 112 6.3 EXAMPLE 3 112 6.3.1
APPLICATION OF MMAE 112 6.3.2 APPLICATION OF SCEM 116 6.3.3
IDENTIFICATION WITH MMAE RESULTS 118 6.4 STOKES-OSEEN S FLOW MODEL 118
6.4.1 APPLICATION OF SCEM 118 6.4.2 NUMERICAL RESULTS 120 6.5 TERRIBLE
PROBLEM 121 6.5.1 APPLICATION OF SCEM 122 6.5.2 NUMERICAL RESULTS 125
6.6 CONCLUSION 125 PROBLEMS 127 HIGH REYNOLDS NUMBER FLOWS 133 7.1
BOUNDARY LAYER THEORIES 135 7.1.1 PRANDTL S BOUNDARY LAYER 135 7.1.2
TRIPLE DECK .. .- 140 7.2 ANALYSIS OF AN INTEGRAL METHOD 148 7.2.1
INTEGRAL METHOD 148 7.2.2 DIRECT MODE .:*. 151 7.2.3 INVERSE MODE 152
7.2.4 SIMULTANEOUS MODE 153 7.3 VISCOUS-INVISCID INTERACTION 155 7.4
CONCLUSION 157 PROBLEMS 158 INTERACTIVE BOUNDARY LAYER 169 8.1
APPLICATION OF SCEM ** 170 8.1.1 OUTER APPROXIMATION 170 8.1.2
DETERMINATION OF A UNIFORMLY VALID APPROXIMATION . . . 171 8.1.3 GAUGE
FOR THE PRESSURE 173 8.2 FIRST ORDER INTERACTIVE BOUNDARY LAYER 173
8.2.1 GENERALIZED BOUNDARY LAYER EQUATIONS 173 8.2.2 BOUNDARY CONDITIONS
174 8.2.3 ESTIMATE OF THE REMAINDERS OF EQUATIONS 175 8.3 SECOND ORDER
INTERACTIVE BOUNDARY LAYER 175 XIV CONTENTS 8.3.1 GENERALIZED BOUNDARY
LAYER EQUATIONS 175 8.3.2 BOUNDARY CONDITIONS .176 8.3.3 ESTIMATE OF THE
REMAINDERS OF EQUATIONS 176 8.4 DISPLACEMENT EFFECT 177 8.5 REDUCED
MODEL FOR AN IRROTATIONAL EXTERNAL FLOW 178 8.6 CONCLUSION 180 PROBLEMS
, 181 9 APPLICATIONS OF INTERACTIVE BOUNDARY LAYER MODELS 185 9.1
CALCULATION OF A FLOW WITH SEPARATION 186 9.1.1 DEFINITION OF THE FLOW
186 9.1.2 NUMERICAL METHOD 186 9.1.3 RESULTS 188 9.2 APPLICATION TO
AERODYNAMIC FLOWS 190 9.2.1 FLAT PLATE OF FINITE LENGTH 190 9.2.2
AIRFOILS AT HIGH REYNOLDS NUMBERS 192 9.3 INFLUENCE OF A ROTATIONAL
EXTERNAL FLOW 195 9.3.1 INVISCID FLOW 195 9.3.2 METHOD OF RESOLUTION 197
9.3.3 FLOWS STUDIED 200 9.3.4 RESULTS 200 9.4 CONCLUSION 211 PROBLEMS
211 10 REGULAR FORMS OF INTERACTIVE BOUNDARY LAYER 215 10.1 SECOND ORDER
BOUNDARY LAYER MODEL 215 10.1.1 SECOND ORDER INTERACTIVE BOUNDARY LAYER
MODEL 217 10.1.2 VAN DYKE S SECOND ORDER MODEL 217. 10.2 TRIPLE DECK
MODEL 221 10.2.1 FLOW ON A FLAT PLATE WITH A SMALL HUMP 221 10.2.2
REGULAR EXPANSIONS 223 10.3 SUMMARY OF APPROXIMATIONS OF NAVIER-STOKES
EQUATIONS .... 226 10.4 CONCLUSION 226 PROBLEMS 227 11 TURBULENT
BOUNDARY LAYER 237 11.1 RESULTS OF THE STANDARD ASYMPTOTIC ANALYSIS 237
11.1.1 AVERAGED NAVIER-STOKES EQUATIONS 237 11.1.2 SCALES 238 11.1.3
STRUCTURE OF THE FLOW 239 11.2 APPLICATION OF SCEM 243 11.2.1 FIRST
APPROXIMATION 243 11.2.2 CONTRIBUTION OF THE OUTER REGION OF THE
BOUNDARY LAYER 243 CONTENTS XV 11.2.3 CONTRIBUTION OF THE INNER REGION
OF THE BOUNDARY LAYER 246 11.3 INTERACTIVE BOUNDARY LAYER 249 11.3.1
FIRST ORDER MODEL . 249 11.3.2 SECOND ORDER MODEL 250 11.3.3 GLOBAL
MODEL 250 11.3.4 REDUCED MODEL FOR AN IRROTATIONAL EXTERNAL FLOW 251
11.4 APPROXIMATION OF THE BOUNDARY LAYER: VELOCITY PROFILE 254 11.4.1
FORMULATION OF THE PROBLEM 254 11.4.2 TURBULENCE MODEL 256 11.4.3 OUTER
REGION 256 11.4.4 EQUATION TO SOLVE 257 11.4.5 EXAMPLES OF RESULTS 258
11.5 CONCLUSION 260 PROBLEMS 260 12 CHANNEL FLOW 267 12.1 FORMULATION OF
THE PROBLEM 267 12.2 UNIFORMLY VALID APPROXIMATION 270 12.3 IBL MODEL
FOR THE LOWER WALL 272 12.4 GLOBAL IBL MODEL 274 12.5 NUMERICAL SOLUTION
275 12.5.1 GENERAL METHOD 275 12.5.2 SIMPLIFIED METHOD FOR THE PRESSURE
277 12.6 APPLICATION OF THE GLOBAL IBL MODEL 279 12.6.1 DISCUSSION OF
THE NUMERICAL PROCEDURE 279 12.6.2 COMPARISONS WITH SMITH S THEORY 283
12.6.3 COMPARISON WITH NAVIER-STOKES SOLUTIONS 290 12.7 CONCLUSION 295
PROBLEMS 295 13 CONCLUSION 301 APPENDICES I NAVIER-STOKES EQUATIONS 303
II ELEMENTS OF TWO-DIMENSIONAL LINEARIZED AERODYNAMICS . . 305 II. 1
THICKNESS PROBLEM (NON LIFTING CASE) 306 II.2 ZERO-THICKNESS PROBLEM
(LIFTING CASE) 307 III SOLUTIONS OF THE UPPER DECK OF THE TRIPLE DECK
THEORY ... 309 111.1 TWO-DIMENSIONAL FLOW 309 111.2 THREE-DIMENSIONAL
FLOW 312 III.2.1 ZERO PERTURBATIONS AT INFINITY 313 XVI CONTENTS III.2.2
NON ZERO CROSS-FLOW PERTURBATIONS AT DOWNSTREAM INFINITY 314 IV SECOND
ORDER TRIPLE DECK THEORY 319 IV.L MAIN RESULTS 319 IV.2 GLOBAL MODEL FOR
THE MAIN DECK AND THE LOWER DECK 325 V BEHAVIOUR OF AN ASYMPTOTIC
EXPANSION 327 V.I FORMULATION OF THE PROBLEM 327 V.2 STUDY OF THE GAUGE
FUNCTIONS 328 V.3 STUDY OF THE OUTER EXPANSION 330 SOLUTIONS OF PROBLEMS
332 REFERENCES 419 AUTHOR INDEX 427 SUBJECT INDEX 428
|
adam_txt |
JEAN COUSTEIX * JACQUES MAUSS ASYMPTOTIC ANALYSIS AND BOUNDARY LAYERS
WITH 85 FIGURES 4Y SPRINGER CONTENTS PREFACE V ACKNOWLEDGEMENTS VIII
ABBREVIATIONS XVII 1 INTRODUCTION 1 2 INTRODUCTION TO SINGULAR
PERTURBATION PROBLEMS 7 2.1 REGULAR AND SINGULAR PROBLEMS 8 2.1.1 LINEAR
OSCILLATOR 8 2.1.2 SECULAR PROBLEM 11 2.1.3 SINGULAR PROBLEM 14 2.2
APPROXIMATION METHODS FOR SINGULAR PERTURBATION PROBLEMS . 15 2.2.1
METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 16 2.2.2 SUCCESSIVE
COMPLEMENTARY EXPANSION METHOD 19 2.2.3 MULTIPLE SCALE METHOD 20 2.2.4
POINCARE-LIGHTHM'S METHOD 22 2.2.5 RENORMALIZATION GROUP METHOD 24 2.3
CONCLUSION 25 PROBLEMS 25 3 BOUNDARY LAYER STRUCTURE 31 3.1 STUDY OF A
SECOND ORDER DIFFERENTIAL EQUATION 31 3.2 ANALYSIS OF EACH CASE 35 3.3
CONCLUSION 40 PROBLEMS = 41 4 ASYMPTOTIC EXPANSIONS 43 4.1 ORDER
FUNCTIONS. ORDER OF A FUNCTION 43 4.1.1 DEFINITION OF AN ORDER FUNCTION
43 4.1.2 COMPARISON OF ORDER FUNCTIONS 43 4.1.3 TOTAL ORDERING 44 4.1.4
ORDER OF A FUNCTION 45 4.2 ASYMPTOTIC SEQUENCE 46 XII CONTENTS 4.2.1
DEFINITION OF AN ASYMPTOTIC SEQUENCE 46 4.2.2 CLASS OF EQUIVALENCE 46
4.2.3 GAUGE FUNCTIONS 47 4.3 ASYMPTOTIC EXPANSION 47 4.3.1 ASYMPTOTIC
APPROXIMATION 47 4.3.2 REGULAR FUNCTIONS 49 4.3.3 REGULAR AND
GENERALIZED ASYMPTOTIC EXPANSIONS 50 4.3.4 CONVERGENCE AND ACCURACY 51
4.3.5 OPERATIONS ON ASYMPTOTIC EXPANSIONS 54 4.4 CONCLUSION 55 PROBLEMS
55 5 SUCCESSIVE COMPLEMENTARY EXPANSION METHOD 59 5.1 METHOD OF MATCHED
ASYMPTOTIC EXPANSIONS 59 5.1.1 EXPANSION OPERATOR 59 5.1.2 OUTER
EXPANSION - INNER EXPANSION 60 5.1.3 ASYMPTOTIC MATCHING 61 5.2 BOUNDARY
LAYER 65 5.2.1 EXPANSION OPERATOR TO A GIVEN ORDER 65 5.2.2 SIGNIFICANT
APPROXIMATIONS 66 5.3 INTERMEDIATE MATCHING 67 5.3.1 KAPLUN'S EXTENSION
THEOREM 67 5.3.2 STUDY OF EXAMPLES 67 5.3.3 RULE OF INTERMEDIATE
MATCHING 69 5.4 ASYMPTOTIC MATCHING PRINCIPLE 71 5.4.1 VAN DYKE'S
PRINCIPLE 71 5.4.2 MODIFIED VAN DYKE'S PRINCIPLE 72 5.5 EXAMPLES AND
COUNTER-EXAMPLES 72 5.5.1 EXAMPLE 1 .' 72 5.5.2 EXAMPLE 2 73 5.5.3
EXAMPLE 3 74 5.5.4 EXAMPLE 4 75 5.6 DISCUSSION OF THE MATCHING PRINCIPLE
76 5.6.1 CORRECTIVE BOUNDARY LAYER 77 5.6.2 THE MVDP FROM THE OVERLAP
HYPOTHESIS 79 5.7 SUCCESSIVE COMPLEMENTARY EXPANSION METHOD 81 5.7.1
PRINCIPLE ". 81 5.7.2 EQUIVALENCE OF MVDP AND OF REGULAR SCEM 84 5.8
APPLICATIONS OF SCEM 86 5.8.1 EXAMPLE 1 86 5.8.2 EXAMPLE 2 88 5.8.3
EXAMPLE 3 89 5.9 CONCLUSION. 90 PROBLEMS .' 91 CONTENTS XIII ORDINARY
DIFFERENTIAL EQUATIONS 99 6.1 EXAMPLE 1 99 6.1.1 APPLICATION OF MMAE 100
6.1.2 APPLICATION OF SCEM 102 6.2 EXAMPLE 2 107 6.2.1 APPLICATION OF
MMAE 107 6.2.2 APPLICATION OF SCEM 109 6.2.3 IDENTIFICATION WITH MMAE
RESULTS ILL 6.2.4 NUMERICAL RESULTS 112 6.3 EXAMPLE 3 112 6.3.1
APPLICATION OF MMAE 112 6.3.2 APPLICATION OF SCEM 116 6.3.3
IDENTIFICATION WITH MMAE RESULTS 118 6.4 STOKES-OSEEN'S FLOW MODEL 118
6.4.1 APPLICATION OF SCEM 118 6.4.2 NUMERICAL RESULTS 120 6.5 TERRIBLE
PROBLEM 121 6.5.1 APPLICATION OF SCEM 122 6.5.2 NUMERICAL RESULTS 125
6.6 CONCLUSION 125 PROBLEMS 127 HIGH REYNOLDS NUMBER FLOWS 133 7.1
BOUNDARY LAYER THEORIES 135 7.1.1 PRANDTL'S BOUNDARY LAYER 135 7.1.2
TRIPLE DECK . .- 140 7.2 ANALYSIS OF AN INTEGRAL METHOD 148 7.2.1
INTEGRAL METHOD 148 7.2.2 DIRECT MODE .:*. 151 7.2.3 INVERSE MODE 152
7.2.4 SIMULTANEOUS MODE 153 7.3 VISCOUS-INVISCID INTERACTION 155 7.4
CONCLUSION 157 PROBLEMS 158 INTERACTIVE BOUNDARY LAYER 169 8.1
APPLICATION OF SCEM ** 170 8.1.1 OUTER APPROXIMATION 170 8.1.2
DETERMINATION OF A UNIFORMLY VALID APPROXIMATION . . . 171 8.1.3 GAUGE
FOR THE PRESSURE 173 8.2 FIRST ORDER INTERACTIVE BOUNDARY LAYER 173
8.2.1 GENERALIZED BOUNDARY LAYER EQUATIONS 173 8.2.2 BOUNDARY CONDITIONS
174 8.2.3 ESTIMATE OF THE REMAINDERS OF EQUATIONS 175 8.3 SECOND ORDER
INTERACTIVE BOUNDARY LAYER 175 XIV CONTENTS 8.3.1 GENERALIZED BOUNDARY
LAYER EQUATIONS 175 8.3.2 BOUNDARY CONDITIONS .176 8.3.3 ESTIMATE OF THE
REMAINDERS OF EQUATIONS 176 8.4 DISPLACEMENT EFFECT 177 8.5 REDUCED
MODEL FOR AN IRROTATIONAL EXTERNAL FLOW 178 8.6 CONCLUSION 180 PROBLEMS
, 181 9 APPLICATIONS OF INTERACTIVE BOUNDARY LAYER MODELS 185 9.1
CALCULATION OF A FLOW WITH SEPARATION 186 9.1.1 DEFINITION OF THE FLOW
186 9.1.2 NUMERICAL METHOD 186 9.1.3 RESULTS 188 9.2 APPLICATION TO
AERODYNAMIC FLOWS 190 9.2.1 FLAT PLATE OF FINITE LENGTH 190 9.2.2
AIRFOILS AT HIGH REYNOLDS NUMBERS 192 9.3 INFLUENCE OF A ROTATIONAL
EXTERNAL FLOW 195 9.3.1 INVISCID FLOW 195 9.3.2 METHOD OF RESOLUTION 197
9.3.3 FLOWS STUDIED 200 9.3.4 RESULTS 200 9.4 CONCLUSION 211 PROBLEMS
211 10 REGULAR FORMS OF INTERACTIVE BOUNDARY LAYER 215 10.1 SECOND ORDER
BOUNDARY LAYER MODEL 215 10.1.1 SECOND ORDER INTERACTIVE BOUNDARY LAYER
MODEL 217 10.1.2 VAN DYKE'S SECOND ORDER MODEL 217. 10.2 TRIPLE DECK
MODEL ' 221 10.2.1 FLOW ON A FLAT PLATE WITH A SMALL HUMP 221 10.2.2
REGULAR EXPANSIONS 223 10.3 SUMMARY OF APPROXIMATIONS OF NAVIER-STOKES
EQUATIONS . 226 10.4 CONCLUSION 226 PROBLEMS 227 11 TURBULENT
BOUNDARY LAYER 237 11.1 RESULTS OF THE STANDARD ASYMPTOTIC ANALYSIS 237
11.1.1 AVERAGED NAVIER-STOKES EQUATIONS 237 11.1.2 SCALES 238 11.1.3
STRUCTURE OF THE FLOW 239 11.2 APPLICATION OF SCEM 243 11.2.1 FIRST
APPROXIMATION 243 11.2.2 CONTRIBUTION OF THE OUTER REGION OF THE
BOUNDARY LAYER 243 CONTENTS XV 11.2.3 CONTRIBUTION OF THE INNER REGION
OF THE BOUNDARY LAYER 246 11.3 INTERACTIVE BOUNDARY LAYER 249 11.3.1
FIRST ORDER MODEL . 249 11.3.2 SECOND ORDER MODEL 250 11.3.3 GLOBAL
MODEL 250 11.3.4 REDUCED MODEL FOR AN IRROTATIONAL EXTERNAL FLOW 251
11.4 APPROXIMATION OF THE BOUNDARY LAYER: VELOCITY PROFILE 254 11.4.1
FORMULATION OF THE PROBLEM 254 11.4.2 TURBULENCE MODEL 256 11.4.3 OUTER
REGION 256 11.4.4 EQUATION TO SOLVE 257 11.4.5 EXAMPLES OF RESULTS 258
11.5 CONCLUSION 260 PROBLEMS 260 12 CHANNEL FLOW 267 12.1 FORMULATION OF
THE PROBLEM 267 12.2 UNIFORMLY VALID APPROXIMATION 270 12.3 IBL MODEL
FOR THE LOWER WALL 272 12.4 GLOBAL IBL MODEL 274 12.5 NUMERICAL SOLUTION
275 12.5.1 GENERAL METHOD 275 12.5.2 SIMPLIFIED METHOD FOR THE PRESSURE
277 12.6 APPLICATION OF THE GLOBAL IBL MODEL 279 12.6.1 DISCUSSION OF
THE NUMERICAL PROCEDURE 279 12.6.2 COMPARISONS WITH SMITH'S THEORY 283
12.6.3 COMPARISON WITH NAVIER-STOKES SOLUTIONS 290 12.7 CONCLUSION 295
PROBLEMS 295 13 CONCLUSION 301 APPENDICES I NAVIER-STOKES EQUATIONS 303
II ELEMENTS OF TWO-DIMENSIONAL LINEARIZED AERODYNAMICS . . 305 II. 1
THICKNESS PROBLEM (NON LIFTING CASE) 306 II.2 ZERO-THICKNESS PROBLEM
(LIFTING CASE) 307 III SOLUTIONS OF THE UPPER DECK OF THE TRIPLE DECK
THEORY . 309 111.1 TWO-DIMENSIONAL FLOW 309 111.2 THREE-DIMENSIONAL
FLOW 312 III.2.1 ZERO PERTURBATIONS AT INFINITY 313 XVI CONTENTS III.2.2
NON ZERO CROSS-FLOW PERTURBATIONS AT DOWNSTREAM INFINITY 314 IV SECOND
ORDER TRIPLE DECK THEORY 319 IV.L MAIN RESULTS 319 IV.2 GLOBAL MODEL FOR
THE MAIN DECK AND THE LOWER DECK 325 V BEHAVIOUR OF AN ASYMPTOTIC
EXPANSION 327 V.I FORMULATION OF THE PROBLEM 327 V.2 STUDY OF THE GAUGE
FUNCTIONS 328 V.3 STUDY OF THE OUTER EXPANSION 330 SOLUTIONS OF PROBLEMS
332 REFERENCES 419 AUTHOR INDEX 427 SUBJECT INDEX 428 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cousteix, Jean 1947- Mauss, Jacques |
author_GND | (DE-588)120793156 (DE-588)131387286 |
author_facet | Cousteix, Jean 1947- Mauss, Jacques |
author_role | aut aut |
author_sort | Cousteix, Jean 1947- |
author_variant | j c jc j m jm |
building | Verbundindex |
bvnumber | BV023308175 |
classification_rvk | UF 4200 SK 920 |
classification_tum | MTA 450f MTA 309f |
ctrlnum | (OCoLC)180959923 (DE-599)HBZHT014899970 |
dewey-full | 530.051 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.051 |
dewey-search | 530.051 |
dewey-sort | 3530.051 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02129nam a2200505 c 4500</leader><controlfield tag="001">BV023308175</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080520s2007 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N44,0304</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540464884</subfield><subfield code="c">Gb. : ca. EUR 106.95 (freier Pr.), ca. sfr 169.00 (freier Pr.)</subfield><subfield code="9">978-3-540-46488-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540464883</subfield><subfield code="c">Gb. : ca. EUR 106.95 (freier Pr.), ca. sfr 169.00 (freier Pr.)</subfield><subfield code="9">3-540-46488-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540464884</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11576716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180959923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT014899970</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.051</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4200</subfield><subfield code="0">(DE-625)145583:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 450f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 309f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cousteix, Jean</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120793156</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic analysis and boundary layers</subfield><subfield code="c">Jean Cousteix ; Jacques Mauss</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 432 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Scientific computation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singuläre Störung</subfield><subfield code="0">(DE-588)4055100-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzschichtströmung</subfield><subfield code="0">(DE-588)4137696-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Approximation</subfield><subfield code="0">(DE-588)4739184-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grenzschichtströmung</subfield><subfield code="0">(DE-588)4137696-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Singuläre Störung</subfield><subfield code="0">(DE-588)4055100-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Asymptotische Approximation</subfield><subfield code="0">(DE-588)4739184-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mauss, Jacques</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131387286</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016492498&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016492498</subfield></datafield></record></collection> |
id | DE-604.BV023308175 |
illustrated | Illustrated |
index_date | 2024-07-02T20:49:18Z |
indexdate | 2024-07-09T21:15:31Z |
institution | BVB |
isbn | 9783540464884 3540464883 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016492498 |
oclc_num | 180959923 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-83 |
physical | XVI, 432 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Scientific computation |
spelling | Cousteix, Jean 1947- Verfasser (DE-588)120793156 aut Asymptotic analysis and boundary layers Jean Cousteix ; Jacques Mauss Berlin [u.a.] Springer 2007 XVI, 432 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Scientific computation Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Singuläre Störung (DE-588)4055100-3 gnd rswk-swf Grenzschichtströmung (DE-588)4137696-1 gnd rswk-swf Asymptotische Approximation (DE-588)4739184-4 gnd rswk-swf Grenzschichtströmung (DE-588)4137696-1 s Differentialgleichung (DE-588)4012249-9 s Singuläre Störung (DE-588)4055100-3 s Asymptotische Approximation (DE-588)4739184-4 s DE-604 Mauss, Jacques Verfasser (DE-588)131387286 aut HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016492498&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cousteix, Jean 1947- Mauss, Jacques Asymptotic analysis and boundary layers Differentialgleichung (DE-588)4012249-9 gnd Singuläre Störung (DE-588)4055100-3 gnd Grenzschichtströmung (DE-588)4137696-1 gnd Asymptotische Approximation (DE-588)4739184-4 gnd |
subject_GND | (DE-588)4012249-9 (DE-588)4055100-3 (DE-588)4137696-1 (DE-588)4739184-4 |
title | Asymptotic analysis and boundary layers |
title_auth | Asymptotic analysis and boundary layers |
title_exact_search | Asymptotic analysis and boundary layers |
title_exact_search_txtP | Asymptotic analysis and boundary layers |
title_full | Asymptotic analysis and boundary layers Jean Cousteix ; Jacques Mauss |
title_fullStr | Asymptotic analysis and boundary layers Jean Cousteix ; Jacques Mauss |
title_full_unstemmed | Asymptotic analysis and boundary layers Jean Cousteix ; Jacques Mauss |
title_short | Asymptotic analysis and boundary layers |
title_sort | asymptotic analysis and boundary layers |
topic | Differentialgleichung (DE-588)4012249-9 gnd Singuläre Störung (DE-588)4055100-3 gnd Grenzschichtströmung (DE-588)4137696-1 gnd Asymptotische Approximation (DE-588)4739184-4 gnd |
topic_facet | Differentialgleichung Singuläre Störung Grenzschichtströmung Asymptotische Approximation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016492498&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cousteixjean asymptoticanalysisandboundarylayers AT maussjacques asymptoticanalysisandboundarylayers |