Laser spectroscopy: 2 Experimental techniques
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
2008
|
Ausgabe: | 4. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 697 S. Ill., graph. Darst. |
ISBN: | 9783540749523 9783540749547 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV023307251 | ||
003 | DE-604 | ||
005 | 20100224 | ||
007 | t | ||
008 | 080520s2008 ad|| |||| 00||| eng d | ||
020 | |a 9783540749523 |9 978-3-540-74952-3 | ||
020 | |a 9783540749547 |9 978-3-540-74954-7 | ||
035 | |a (OCoLC)316034190 | ||
035 | |a (DE-599)BVBBV023307251 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-20 |a DE-91G |a DE-19 |a DE-29T |a DE-703 |a DE-83 |a DE-634 |a DE-1043 |a DE-11 |a DE-92 | ||
100 | 1 | |a Demtröder, Wolfgang |d 1931- |e Verfasser |0 (DE-588)120579774 |4 aut | |
245 | 1 | 0 | |a Laser spectroscopy |n 2 |p Experimental techniques |c Wolfgang Demtröder |
250 | |a 4. ed. | ||
264 | 1 | |a Berlin |b Springer |c 2008 | |
300 | |a XXI, 697 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Laserspektroskopie |0 (DE-588)4034620-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laserspektroskopie |0 (DE-588)4034620-1 |D s |
689 | 0 | |5 DE-604 | |
773 | 0 | 8 | |w (DE-604)BV023307227 |g 2 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016491594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016491594 |
Datensatz im Suchindex
_version_ | 1804137639231619072 |
---|---|
adam_text | Contents
1.
Doppler-Limited
Absorption
and Fluorescence Spectroscopy
with Lasers
.............................................................. 1
1.1
Advantages of Lasers in Spectroscopy
......................... 1
1.2
High-Sensitivity Methods of Absorption Spectroscopy
...... 5
1.2.1
Frequency Modulation
................................. 7
1.2.2
Intracavity Laser Absorption Spectroscopy ICLAS
13
1.2.3
Cavity Ring-Down Spectroscopy (CRDS)
........... 22
1.3
Direct Determination of Absorbed Photons
................... 26
1.3.1
Fluorescence Excitation Spectroscopy
............... 27
1.3.2
Photoacoustic Spectroscopy
........................... 32
1.3.3
Optothermal Spectroscopy
............................. 37
1.4
Ionization Spectroscopy
......................................... 42
1.4.1
Basic Techniques
....................................... 42
1.4.2
Sensitivity of Ionization Spectroscopy
............... 44
1.4.3
Pulsed Versus CW Lasers for Photoionization
...... 45
1.4.4
Resonant Two-Photon Ionization (RTPI) Combined
with Mass Spectrometry
............................... 47
1.4.5
Thermionic Diode
...................................... 49
1.5
Optogalvanic Spectroscopy
...................................... 50
1.6
Velocity-Modulation Spectroscopy
............................. 53
1.7
Laser Magnetic Resonance and Stark Spectroscopy
.......... 54
1.7.1
Laser Magnetic Resonance
............................ 55
1.7.2
Stark Spectroscopy
..................................... 57
1.8
Laser-Induced Fluorescence
..................................... 58
1.8.1
Molecular Spectroscopy
by Laser-Induced Fluorescence
....................... 59
1.8.2
Experimental Aspects of LIF
......................... 61
1.8.3
LIF of Polyatomic Molecules
......................... 65
1.8.4
Determination of Population Distributions by LIF
. 66
1.9
Comparison Between the Different Methods
.................. 69
Problems
................................................................. 73
2.
Nonlinear Spectroscopy
............................................... 77
2.1
Linear and Nonlinear Absorption
............................... 77
2.2
Saturation of Inhomogeneous Line Profiles
................... 86
2.2.1
Hole Burning
........................................... 86
2.2.2
Lamb Dip
............................................... 90
2.3
Saturation Spectroscopy
......................................... 93
2.3.1
Experimental Schemes
................................. 93
XVI Contents
2.3.2
Cross-Over Signals
..................................... 98
2.3.3
Intracavity Saturation Spectroscopy
.................. 99
2.3.4
Lamb-Dip Frequency Stabilization of Lasers
....... 102
2.4
Polarization Spectroscopy
....................................... 103
2.4.1
Basic Principle
.......................................... 104
2.4.2
Line Profiles of Polarization Signals
................. 106
2.4.3
Magnitude of Polarization Signals
...................
Ill
2.4.4
Sensitivity of Polarization Spectroscopy
............. 114
2.4.5
Advantages of Polarization Spectroscopy
............ 117
2.5
Multiphoton Spectroscopy
....................................... 118
2.5.1
Two-Photon Absorption
............................... 118
2.5.2
Doppler-Free Multiphoton Spectroscopy
............. 121
2.5.3
Influence of Focusing on the Magnitude
of Two-Photon Signals
................................. 125
2.5.4
Examples of Doppler-Free Two-Photon
Spectroscopy
............................................ 126
2.5.5
Multiphoton Spectroscopy
............................. 129
2.6
Special Techniques of Nonlinear Spectroscopy
............... 131
2.6.1
Saturated Interference Spectroscopy
.................. 131
2.6.2
Doppler-Free Laser-Induced Dichroism
and Birefringence
....................................... 134
2.6.3
Heterodyne Polarization Spectroscopy
............... 136
2.6.4
Combination of Different Nonlinear Techniques
... 137
2.7
Conclusion
........................................................ 139
Problems
................................................................. 139
3.
Laser Raman Spectroscopy
.......................................... 141
3.1
Basic Considerations
............................................. 141
3.2
Experimental Techniques
of Linear Laser Raman Spectroscopy
.......................... 146
3.3
Nonlinear Raman Spectroscopy
................................. 153
3.3.1
Stimulated Raman Scattering
......................... 153
3.3.2
Coherent Anti-Stokes Raman Spectroscopy
......... 159
3.3.3
Resonant CARS and BOX CARS
.................... 163
3.3.4
Hyper-Raman Effect
................................... 165
3.3.5
Summary of Nonlinear Raman Spectroscopy
....... 166
3.4
Special Techniques
............................................... 167
3.4.1
Resonance Raman Effect
.............................. 167
3.4.2
Surface-Enhanced Raman Scattering
................. 168
3.4.3
Raman Microscopy
..................................... 168
3.4.4
Time-Resolved Raman Spectroscopy
................. 169
3.5
Applications of Laser Raman Spectroscopy
................... 170
Problems
................................................................. 172
4.
Laser Spectroscopy in Molecular Beams
.......................... 175
4.1
Reduction of
Doppler
Width
.................................... 175
4.2
Adiabatic Cooling in Supersonic Beams
...................... 184
Contents XVII
4.3 Formation
and Spectroscopy of Clusters
and Van
der Waals
Molecules in Cold Molecular Beams
.... 192
4.4
Nonlinear Spectroscopy in Molecular Beams
................. 197
4.5
Laser Spectroscopy in Fast Ion Beams
........................ 200
4.6
Applications of FIBLAS
......................................... 203
4.6.1
Spectroscopy of Radioactive Elements
............... 203
4.6.2
Photofragmentation
Spectroscopy of Molecular Ions
203
4.6.3
Laser Photodetachment Spectroscopy
................ 205
4.6.4
Saturation Spectroscopy in Fast Beams
.............. 206
4.7
Spectroscopy in Cold Ion Beams
............................... 207
4.8
Combination of Molecular Beam Laser Spectroscopy
and Mass Spectrometry
.......................................... 209
Problems
................................................................. 211
5.
Optical Pumping and Double-Resonance Techniques
........... 213
5.1
Optical Pumping
.................................................. 214
5.2
Optical-RF Double-Resonance Technique
..................... 220
5.2.1
Basic Considerations
................................... 220
5.2.2
Laser-RF Double-Resonance Spectroscopy
in Molecular Beams
.................................... 223
5.3
Optical-Microwave Double Resonance
........................ 226
5.4
Optical-Optical Double Resonance
............................ 230
5.4.1
Simplification of Complex Absorption Spectra
..... 231
5.4.2
Stepwise Excitation and Spectroscopy
of
Rydberg
States
....................................... 235
5.4.3
Stimulated Emission Pumping
........................ 244
5.5
Special Detection Schemes
of Double-Resonance Spectroscopy
............................ 247
5.5.1
OODR-Polarization Spectroscopy
.................... 247
5.5.2
Polarization Labeling
.................................. 250
5.5.3
Microwave-Optical Double-Resonance Polarization
Spectroscopy
............................................ 251
5.5.4
Hole-Burning and Ion-Dip Double-Resonance
Spectroscopy
............................................ 252
5.5.5
Triple-Resonance Spectroscopy
....................... 254
5.5.6
Photoassociation
Spectroscopy
........................ 255
Problems
................................................................. 256
6.
Time-Resolved Laser Spectroscopy
................................. 259
6.1
Generation of Short Laser Pulses
............................... 260
6.1.1
Time Profiles of Pulsed Lasers
....................... 260
6.1.2
Q-Switched Lasers
..................................... 262
6.L3 Cavity Dumping
........................................ 264
6.1.4
Mode Locking of Lasers
.............................. 266
6.1.5
Generation of Femtosecond Pulses
................... 275
6.1.6
Optical Pulse Compression
............................ 282
6.1.7
Sub 10-fs Pulses with Chirped Laser Mirrors
....... 286
XVIII
Contents
6.1.8 Fiber Lasers
and Optical
Solitons .................... 290
6.1.9
Wavelength-Tunable
Ultrashort
Pulses
............... 293
6.1.10
Shaping of
Ultrashort
Light Pulses
................... 298
6.1.11
Generation of High-Power Ultrashort Pulses
........ 298
6.1.12
Reaching the Attosecond Range
...................... 306
6.1.13
Summary of Short Pulse Generation
................. 310
6.2
Measurement of Ultrashort Pulses
.............................. 310
6.2.1
StreakCamera
.......................................... 311
6.2.2
Optical Correlator for Measuring Ultrashort Pulses
312
6.2.3
FROG Technique
....................................... 323
6.2.4
SPIDER Technique
..................................... 325
6.3
Lifetime Measurement with Lasers
............................. 326
6.3.1
Phase-Shift Method
.................................... 330
6.3.2
Single-Pulse Excitation
................................ 332
6.3.3
Delayed-Coincidence Technique
...................... 333
6.3.4
Lifetime Measurements in Fast Beams
.............. 335
6.4
Spectroscopy in the Pico-to-Attosecond Range
............... 338
6.4.1
Pump-and-Probe Spectroscopy
of Collisional Relaxation in Liquids
.................. 340
6.4.2
Electronic Relaxation in Semiconductors
............ 341
6.4.3
Femtosecond Transition State Dynamics
............ 342
6.4.4
Real-Time Observations of Molecular Vibrations
.. 344
6.4.5
Attosecond Spectroscopy
of Atomic Inner Shell Processes
...................... 346
6.4.6
Transient Grating Techniques
......................... 348
Problems
................................................................. 349
7.
Coherent Spectroscopy
................................................ 351
7.1
Level-Crossing Spectroscopy
.................................... 352
7.1.1
Classical Model of the Hanle Effect
................. 353
7.1.2
Quantum-Mechanical Models
......................... 357
7.1.3
Experimental Arrangements
........................... 359
7.1.4
Examples
................................................ 360
7.1.5
Stimulated Level-Crossing Spectroscopy
............ 362
7.2
Quantum-Beat Spectroscopy
.................................... 365
7.2.1
Basic Principles
......................................... 365
7.2.2
Experimental Techniques
.............................. 367
7.2.3
Molecular Quantum-Beat Spectroscopy
.............. 371
7.3
STIRAP Technique
............................................... 372
7.4
Excitation and Detection of Wave Packets
in Atoms and Molecules
......................................... 374
7.5
Optical Pulse-Train Interference Spectroscopy
................ 376
7.6
Photon Echoes
.................................................... 379
7.7
Optical Nutation and Free-Induction Decay
................... 385
7.8
Heterodyne Spectroscopy
........................................ 387
7.9
Correlation Spectroscopy
........................................ 389
7.9.1
Basic Considerations
................................... 389
Contents XIX
7.9.2
Homodyne Spectroscopy
.............................. 394
7.9.3
Heterodyne Correlation
Spectroscopy
................ 397
7.9.4
Fluorescence Correlation
Spectroscopy
and Single Molecule
Detection
....................... 398
Problems .................................................................
400
8.
Laser Spectroscopy
of Collision Processes
......................... 403
8.1
High-Resolution
Laser Spectroscopy
of Collisional Line Broadening and Line Shifts
.............. 404
8.1.1
Sub-Doppler Spectroscopy
of Collision Processes
. 405
8.1.2
Combination
of Different
Techniques
................ 407
8.2
Measurements of Inelastic Collision Cross Sections
of Excited Atoms and Molecules
............................... 409
8.2.1
Measurements of Absolute Quenching
Cross Sections
.......................................... 410
8.2.2
Collision-Induced Rovibronic Transitions
in Excited States
........................................ 411
8.2.3
Collisional Transfer of Electronic Energy
........... 416
8.2.4
Energy Pooling in Collisions
Between Excited Atoms
............................... 417
8.2.5
Spectroscopy of Spin-Flip Transitions
............... 419
8.3
Spectroscopie
Techniques
for Measuring Collision-Induced Transitions
in the Electronic Ground State of Molecules
.................. 421
8.3.1
Time-Resolved Infrared Fluorescence Detection
.... 422
8.3.2
Time-Resolved Absorption
and Double-Resonance Methods
...................... 423
8.3.3
Collision Spectroscopy
with Continuous-Wave Lasers
......................... 426
8.3.4
Collisions Involving Molecules
in High Vibrational States
............................. 427
8.4
Spectroscopy of Reactive Collisions
........................... 429
8.5
Spectroscopie
Determination
of Differential Collision Cross Sections
in Crossed Molecular Beams
.................................... 434
8.6
Photon-Assisted Collisional Energy Transfer
................. 439
Problems
................................................................. 444
9.
New Developments in Laser Spectroscopy
........................ 447
9.1
Optical Cooling and Trapping of Atoms
...................... 447
9.1.1
Photon Recoil
........................................... 448
9.1.2
Measurement of Recoil Shift
......................... 450
9.1.3
Optical Cooling by Photon Recoil
................... 452
9.1.4
Experimental Arrangements
........................... 455
9.1.5
Threedimensional Cooling of Atoms;
Optical
Mollasses
....................................... 461
9.1.6
Cooling of Molecules
.................................. 464
XX
Contents
9.1.7
Optical Trapping of
Atoms ............................ 466
9.1.8
Optical Cooling Limits
................................ 473
9.1.9
Bose-Einstein Condensation
.......................... 476
9.1.10
Evaporative Cooling
.................................... 477
9.1.11
ВЕС
of Molecules
..................................... 480
9.1.12
Applications of Cooled Atoms and Molecules
...... 481
9.2
Spectroscopy of Single Ions
.................................... 483
9.2.1
Trapping of Ions
........................................ 483
9.2.2
Optical Sideband Cooling
............................. 487
9.2.3
Direct Observations of Quantum Jumps
............. 490
9.2.4
Formation of Wigner Crystals in Ion Traps
......... 491
9.2.5
Laser Spectroscopy of Ions in Storage Rings
....... 493
9.3
Optical Ramsey Fringes
......................................... 495
9.3.1
Basic Considerations
................................... 495
9.3.2
Two-Photon Ramsey Resonance
...................... 499
9.3.3
Nonlinear Ramsey Fringes
Using Three Separated Fields
......................... 502
9.3.4
Observation of Recoil Doublets and Suppression
of One Recoil Component
............................. 505
9.4
Atom
Interferometry
............................................. 505
9.4.1
Mach-Zehnder Atom Interferometer
................. 507
9.4.2
Atom Laser
............................................. 509
9.5
The One-Atom
Maser............................................ 510
9.6
Spectral Resolution Within the Natural Linewidth
........... 514
9.6.1
Time-Gated Coherent Spectroscopy
.................. 514
9.6.2
Coherence and Transit Narrowing
.................... 518
9.6.3
Raman Spectroscopy with
Subnaturai
Linewidth
... 520
9.7
Absolute Optical Frequency Measurement
and Optical Frequency Standards
............................... 522
9.7.1
Microwave-Optical Frequency Chains
............... 523
9.7.2
Optical Frequency Combs
............................. 526
9.8
Squeezing
......................................................... 529
9.8.1
Amplitude and Phase Fluctuations of a Light Wave
530
9.8.2
Experimental Realization of Squeezing
.............. 534
9.8.3
Application of Squeezing
to Gravitational Wave Detectors
...................... 537
Problems
................................................................. 539
10.
Applications of Laser Spectroscopy
................................. 541
10.1
Applications in Chemistry
....................................... 541
10.1.1
Laser Spectroscopy in Analytical Chemistry
........ 541
10.1.2
Single-Molecule Detection
............................ 545
10.1.3
Laser-Induced Chemical Reactions
................... 546
10.1.4
Coherent Control of Chemical Reactions
............ 550
10.1.5
Laser Femtosecond Chemistry
........................ 553
10.1.6
Isotope Separation with Lasers
....................... 555
10.1.7
Summary of Laser Chemistry
......................... 558
Contents XXI
10.2
Environmental
Research
with
Lasers........................... 558
10.2.1
Absorption Measurements
............................. 559
10.2.2
Atmospheric Measurements with
LIDAR
........... 561
10.2.3
Spectroscopie
Detection of Water Pollution
......... 568
10.3
Applications to Technical Problems
............................ 569
10.3.1
Spectroscopy of Combustion Processes
.............. 569
10.3.2
Applications of Laser Spectroscopy
to Materials Science
.................................... 571
10.3.3
Laser-Induced Breakdown Spectroscopy (LIBS)
.... 573
10.3.4
Measurements of Flow Velocities
in Gases and Liquids
................................... 573
10.4
Applications in Biology
......................................... 575
10.4.1
Energy Transfer in
DNA
Complexes
................. 575
10.4.2
Time-Resolved Measurements
of Biological Processes
................................ 576
10.4.3
Correlation Spectroscopy of Microbe Movements
.. 578
10.4.4
Laser Microscope
...................................... 580
10.5
Medical Applications of Laser Spectroscopy
................. 583
10.5.1
Applications of Raman Spectroscopy in Medicine
. 584
10.5.2
Heterodyne Measurements of Ear Drums
........... 586
10.5.3
Cancer Diagnostics and Therapy
with the HPD Technique
............................... 588
10.5.4
Laser Lithotripsy
....................................... 589
10.5.5
Laser-Induced Thermotherapy of Brain Cancer
..... 590
10.5.6
Fetal Oxygen Monitoring
.............................. 591
10.6
Concluding Remarks
............................................. 592
Solutions
....................................................................... 593
References
..................................................................... 623
Subject Index
................................................................. 693
|
adam_txt |
Contents
1.
Doppler-Limited
Absorption
and Fluorescence Spectroscopy
with Lasers
. 1
1.1
Advantages of Lasers in Spectroscopy
. 1
1.2
High-Sensitivity Methods of Absorption Spectroscopy
. 5
1.2.1
Frequency Modulation
. 7
1.2.2
Intracavity Laser Absorption Spectroscopy ICLAS
13
1.2.3
Cavity Ring-Down Spectroscopy (CRDS)
. 22
1.3
Direct Determination of Absorbed Photons
. 26
1.3.1
Fluorescence Excitation Spectroscopy
. 27
1.3.2
Photoacoustic Spectroscopy
. 32
1.3.3
Optothermal Spectroscopy
. 37
1.4
Ionization Spectroscopy
. 42
1.4.1
Basic Techniques
. 42
1.4.2
Sensitivity of Ionization Spectroscopy
. 44
1.4.3
Pulsed Versus CW Lasers for Photoionization
. 45
1.4.4
Resonant Two-Photon Ionization (RTPI) Combined
with Mass Spectrometry
. 47
1.4.5
Thermionic Diode
. 49
1.5
Optogalvanic Spectroscopy
. 50
1.6
Velocity-Modulation Spectroscopy
. 53
1.7
Laser Magnetic Resonance and Stark Spectroscopy
. 54
1.7.1
Laser Magnetic Resonance
. 55
1.7.2
Stark Spectroscopy
. 57
1.8
Laser-Induced Fluorescence
. 58
1.8.1
Molecular Spectroscopy
by Laser-Induced Fluorescence
. 59
1.8.2
Experimental Aspects of LIF
. 61
1.8.3
LIF of Polyatomic Molecules
. 65
1.8.4
Determination of Population Distributions by LIF
. 66
1.9
Comparison Between the Different Methods
. 69
Problems
. 73
2.
Nonlinear Spectroscopy
. 77
2.1
Linear and Nonlinear Absorption
. 77
2.2
Saturation of Inhomogeneous Line Profiles
. 86
2.2.1
Hole Burning
. 86
2.2.2
Lamb Dip
. 90
2.3
Saturation Spectroscopy
. 93
2.3.1
Experimental Schemes
. 93
XVI Contents
2.3.2
Cross-Over Signals
. 98
2.3.3
Intracavity Saturation Spectroscopy
. 99
2.3.4
Lamb-Dip Frequency Stabilization of Lasers
. 102
2.4
Polarization Spectroscopy
. 103
2.4.1
Basic Principle
. 104
2.4.2
Line Profiles of Polarization Signals
. 106
2.4.3
Magnitude of Polarization Signals
.
Ill
2.4.4
Sensitivity of Polarization Spectroscopy
. 114
2.4.5
Advantages of Polarization Spectroscopy
. 117
2.5
Multiphoton Spectroscopy
. 118
2.5.1
Two-Photon Absorption
. 118
2.5.2
Doppler-Free Multiphoton Spectroscopy
. 121
2.5.3
Influence of Focusing on the Magnitude
of Two-Photon Signals
. 125
2.5.4
Examples of Doppler-Free Two-Photon
Spectroscopy
. 126
2.5.5
Multiphoton Spectroscopy
. 129
2.6
Special Techniques of Nonlinear Spectroscopy
. 131
2.6.1
Saturated Interference Spectroscopy
. 131
2.6.2
Doppler-Free Laser-Induced Dichroism
and Birefringence
. 134
2.6.3
Heterodyne Polarization Spectroscopy
. 136
2.6.4
Combination of Different Nonlinear Techniques
. 137
2.7
Conclusion
. 139
Problems
. 139
3.
Laser Raman Spectroscopy
. 141
3.1
Basic Considerations
. 141
3.2
Experimental Techniques
of Linear Laser Raman Spectroscopy
. 146
3.3
Nonlinear Raman Spectroscopy
. 153
3.3.1
Stimulated Raman Scattering
. 153
3.3.2
Coherent Anti-Stokes Raman Spectroscopy
. 159
3.3.3
Resonant CARS and BOX CARS
. 163
3.3.4
Hyper-Raman Effect
. 165
3.3.5
Summary of Nonlinear Raman Spectroscopy
. 166
3.4
Special Techniques
. 167
3.4.1
Resonance Raman Effect
. 167
3.4.2
Surface-Enhanced Raman Scattering
. 168
3.4.3
Raman Microscopy
. 168
3.4.4
Time-Resolved Raman Spectroscopy
. 169
3.5
Applications of Laser Raman Spectroscopy
. 170
Problems
. 172
4.
Laser Spectroscopy in Molecular Beams
. 175
4.1
Reduction of
Doppler
Width
. 175
4.2
Adiabatic Cooling in Supersonic Beams
. 184
Contents XVII
4.3 Formation
and Spectroscopy of Clusters
and Van
der Waals
Molecules in Cold Molecular Beams
. 192
4.4
Nonlinear Spectroscopy in Molecular Beams
. 197
4.5
Laser Spectroscopy in Fast Ion Beams
. 200
4.6
Applications of FIBLAS
. 203
4.6.1
Spectroscopy of Radioactive Elements
. 203
4.6.2
Photofragmentation
Spectroscopy of Molecular Ions
203
4.6.3
Laser Photodetachment Spectroscopy
. 205
4.6.4
Saturation Spectroscopy in Fast Beams
. 206
4.7
Spectroscopy in Cold Ion Beams
. 207
4.8
Combination of Molecular Beam Laser Spectroscopy
and Mass Spectrometry
. 209
Problems
. 211
5.
Optical Pumping and Double-Resonance Techniques
. 213
5.1
Optical Pumping
. 214
5.2
Optical-RF Double-Resonance Technique
. 220
5.2.1
Basic Considerations
. 220
5.2.2
Laser-RF Double-Resonance Spectroscopy
in Molecular Beams
. 223
5.3
Optical-Microwave Double Resonance
. 226
5.4
Optical-Optical Double Resonance
. 230
5.4.1
Simplification of Complex Absorption Spectra
. 231
5.4.2
Stepwise Excitation and Spectroscopy
of
Rydberg
States
. 235
5.4.3
Stimulated Emission Pumping
. 244
5.5
Special Detection Schemes
of Double-Resonance Spectroscopy
. 247
5.5.1
OODR-Polarization Spectroscopy
. 247
5.5.2
Polarization Labeling
. 250
5.5.3
Microwave-Optical Double-Resonance Polarization
Spectroscopy
. 251
5.5.4
Hole-Burning and Ion-Dip Double-Resonance
Spectroscopy
. 252
5.5.5
Triple-Resonance Spectroscopy
. 254
5.5.6
Photoassociation
Spectroscopy
. 255
Problems
. 256
6.
Time-Resolved Laser Spectroscopy
. 259
6.1
Generation of Short Laser Pulses
. 260
6.1.1
Time Profiles of Pulsed Lasers
. 260
6.1.2
Q-Switched Lasers
. 262
6.L3 Cavity Dumping
. 264
6.1.4
Mode Locking of Lasers
. 266
6.1.5
Generation of Femtosecond Pulses
. 275
6.1.6
Optical Pulse Compression
. 282
6.1.7
Sub 10-fs Pulses with Chirped Laser Mirrors
. 286
XVIII
Contents
6.1.8 Fiber Lasers
and Optical
Solitons . 290
6.1.9
Wavelength-Tunable
Ultrashort
Pulses
. 293
6.1.10
Shaping of
Ultrashort
Light Pulses
. 298
6.1.11
Generation of High-Power Ultrashort Pulses
. 298
6.1.12
Reaching the Attosecond Range
. 306
6.1.13
Summary of Short Pulse Generation
. 310
6.2
Measurement of Ultrashort Pulses
. 310
6.2.1
StreakCamera
. 311
6.2.2
Optical Correlator for Measuring Ultrashort Pulses
312
6.2.3
FROG Technique
. 323
6.2.4
SPIDER Technique
. 325
6.3
Lifetime Measurement with Lasers
. 326
6.3.1
Phase-Shift Method
. 330
6.3.2
Single-Pulse Excitation
. 332
6.3.3
Delayed-Coincidence Technique
. 333
6.3.4
Lifetime Measurements in Fast Beams
. 335
6.4
Spectroscopy in the Pico-to-Attosecond Range
. 338
6.4.1
Pump-and-Probe Spectroscopy
of Collisional Relaxation in Liquids
. 340
6.4.2
Electronic Relaxation in Semiconductors
. 341
6.4.3
Femtosecond Transition State Dynamics
. 342
6.4.4
Real-Time Observations of Molecular Vibrations
. 344
6.4.5
Attosecond Spectroscopy
of Atomic Inner Shell Processes
. 346
6.4.6
Transient Grating Techniques
. 348
Problems
. 349
7.
Coherent Spectroscopy
. 351
7.1
Level-Crossing Spectroscopy
. 352
7.1.1
Classical Model of the Hanle Effect
. 353
7.1.2
Quantum-Mechanical Models
. 357
7.1.3
Experimental Arrangements
. 359
7.1.4
Examples
. 360
7.1.5
Stimulated Level-Crossing Spectroscopy
. 362
7.2
Quantum-Beat Spectroscopy
. 365
7.2.1
Basic Principles
. 365
7.2.2
Experimental Techniques
. 367
7.2.3
Molecular Quantum-Beat Spectroscopy
. 371
7.3
STIRAP Technique
. 372
7.4
Excitation and Detection of Wave Packets
in Atoms and Molecules
. 374
7.5
Optical Pulse-Train Interference Spectroscopy
. 376
7.6
Photon Echoes
. 379
7.7
Optical Nutation and Free-Induction Decay
. 385
7.8
Heterodyne Spectroscopy
. 387
7.9
Correlation Spectroscopy
. 389
7.9.1
Basic Considerations
. 389
Contents XIX
7.9.2
Homodyne Spectroscopy
. 394
7.9.3
Heterodyne Correlation
Spectroscopy
. 397
7.9.4
Fluorescence Correlation
Spectroscopy
and Single Molecule
Detection
. 398
Problems .
400
8.
Laser Spectroscopy
of Collision Processes
. 403
8.1
High-Resolution
Laser Spectroscopy
of Collisional Line Broadening and Line Shifts
. 404
8.1.1
Sub-Doppler Spectroscopy
of Collision Processes
. 405
8.1.2
Combination
of Different
Techniques
. 407
8.2
Measurements of Inelastic Collision Cross Sections
of Excited Atoms and Molecules
. 409
8.2.1
Measurements of Absolute Quenching
Cross Sections
. 410
8.2.2
Collision-Induced Rovibronic Transitions
in Excited States
. 411
8.2.3
Collisional Transfer of Electronic Energy
. 416
8.2.4
Energy Pooling in Collisions
Between Excited Atoms
. 417
8.2.5
Spectroscopy of Spin-Flip Transitions
. 419
8.3
Spectroscopie
Techniques
for Measuring Collision-Induced Transitions
in the Electronic Ground State of Molecules
. 421
8.3.1
Time-Resolved Infrared Fluorescence Detection
. 422
8.3.2
Time-Resolved Absorption
and Double-Resonance Methods
. 423
8.3.3
Collision Spectroscopy
with Continuous-Wave Lasers
. 426
8.3.4
Collisions Involving Molecules
in High Vibrational States
. 427
8.4
Spectroscopy of Reactive Collisions
. 429
8.5
Spectroscopie
Determination
of Differential Collision Cross Sections
in Crossed Molecular Beams
. 434
8.6
Photon-Assisted Collisional Energy Transfer
. 439
Problems
. 444
9.
New Developments in Laser Spectroscopy
. 447
9.1
Optical Cooling and Trapping of Atoms
. 447
9.1.1
Photon Recoil
. 448
9.1.2
Measurement of Recoil Shift
. 450
9.1.3
Optical Cooling by Photon Recoil
. 452
9.1.4
Experimental Arrangements
. 455
9.1.5
Threedimensional Cooling of Atoms;
Optical
Mollasses
. 461
9.1.6
Cooling of Molecules
. 464
XX
Contents
9.1.7
Optical Trapping of
Atoms . 466
9.1.8
Optical Cooling Limits
. 473
9.1.9
Bose-Einstein Condensation
. 476
9.1.10
Evaporative Cooling
. 477
9.1.11
ВЕС
of Molecules
. 480
9.1.12
Applications of Cooled Atoms and Molecules
. 481
9.2
Spectroscopy of Single Ions
. 483
9.2.1
Trapping of Ions
. 483
9.2.2
Optical Sideband Cooling
. 487
9.2.3
Direct Observations of Quantum Jumps
. 490
9.2.4
Formation of Wigner Crystals in Ion Traps
. 491
9.2.5
Laser Spectroscopy of Ions in Storage Rings
. 493
9.3
Optical Ramsey Fringes
. 495
9.3.1
Basic Considerations
. 495
9.3.2
Two-Photon Ramsey Resonance
. 499
9.3.3
Nonlinear Ramsey Fringes
Using Three Separated Fields
. 502
9.3.4
Observation of Recoil Doublets and Suppression
of One Recoil Component
. 505
9.4
Atom
Interferometry
. 505
9.4.1
Mach-Zehnder Atom Interferometer
. 507
9.4.2
Atom Laser
. 509
9.5
The One-Atom
Maser. 510
9.6
Spectral Resolution Within the Natural Linewidth
. 514
9.6.1
Time-Gated Coherent Spectroscopy
. 514
9.6.2
Coherence and Transit Narrowing
. 518
9.6.3
Raman Spectroscopy with
Subnaturai
Linewidth
. 520
9.7
Absolute Optical Frequency Measurement
and Optical Frequency Standards
. 522
9.7.1
Microwave-Optical Frequency Chains
. 523
9.7.2
Optical Frequency Combs
. 526
9.8
Squeezing
. 529
9.8.1
Amplitude and Phase Fluctuations of a Light Wave
530
9.8.2
Experimental Realization of Squeezing
. 534
9.8.3
Application of Squeezing
to Gravitational Wave Detectors
. 537
Problems
. 539
10.
Applications of Laser Spectroscopy
. 541
10.1
Applications in Chemistry
. 541
10.1.1
Laser Spectroscopy in Analytical Chemistry
. 541
10.1.2
Single-Molecule Detection
. 545
10.1.3
Laser-Induced Chemical Reactions
. 546
10.1.4
Coherent Control of Chemical Reactions
. 550
10.1.5
Laser Femtosecond Chemistry
. 553
10.1.6
Isotope Separation with Lasers
. 555
10.1.7
Summary of Laser Chemistry
. 558
Contents XXI
10.2
Environmental
Research
with
Lasers. 558
10.2.1
Absorption Measurements
. 559
10.2.2
Atmospheric Measurements with
LIDAR
. 561
10.2.3
Spectroscopie
Detection of Water Pollution
. 568
10.3
Applications to Technical Problems
. 569
10.3.1
Spectroscopy of Combustion Processes
. 569
10.3.2
Applications of Laser Spectroscopy
to Materials Science
. 571
10.3.3
Laser-Induced Breakdown Spectroscopy (LIBS)
. 573
10.3.4
Measurements of Flow Velocities
in Gases and Liquids
. 573
10.4
Applications in Biology
. 575
10.4.1
Energy Transfer in
DNA
Complexes
. 575
10.4.2
Time-Resolved Measurements
of Biological Processes
. 576
10.4.3
Correlation Spectroscopy of Microbe Movements
. 578
10.4.4
Laser Microscope
. 580
10.5
Medical Applications of Laser Spectroscopy
. 583
10.5.1
Applications of Raman Spectroscopy in Medicine
. 584
10.5.2
Heterodyne Measurements of Ear Drums
. 586
10.5.3
Cancer Diagnostics and Therapy
with the HPD Technique
. 588
10.5.4
Laser Lithotripsy
. 589
10.5.5
Laser-Induced Thermotherapy of Brain Cancer
. 590
10.5.6
Fetal Oxygen Monitoring
. 591
10.6
Concluding Remarks
. 592
Solutions
. 593
References
. 623
Subject Index
. 693 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Demtröder, Wolfgang 1931- |
author_GND | (DE-588)120579774 |
author_facet | Demtröder, Wolfgang 1931- |
author_role | aut |
author_sort | Demtröder, Wolfgang 1931- |
author_variant | w d wd |
building | Verbundindex |
bvnumber | BV023307251 |
ctrlnum | (OCoLC)316034190 (DE-599)BVBBV023307251 |
edition | 4. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01351nam a2200337 cc4500</leader><controlfield tag="001">BV023307251</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100224 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080520s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540749523</subfield><subfield code="9">978-3-540-74952-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540749547</subfield><subfield code="9">978-3-540-74954-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316034190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023307251</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Demtröder, Wolfgang</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120579774</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laser spectroscopy</subfield><subfield code="n">2</subfield><subfield code="p">Experimental techniques</subfield><subfield code="c">Wolfgang Demtröder</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 697 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laserspektroskopie</subfield><subfield code="0">(DE-588)4034620-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laserspektroskopie</subfield><subfield code="0">(DE-588)4034620-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV023307227</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016491594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016491594</subfield></datafield></record></collection> |
id | DE-604.BV023307251 |
illustrated | Illustrated |
index_date | 2024-07-02T20:48:59Z |
indexdate | 2024-07-09T21:15:29Z |
institution | BVB |
isbn | 9783540749523 9783540749547 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016491594 |
oclc_num | 316034190 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-703 DE-83 DE-634 DE-1043 DE-11 DE-92 |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-703 DE-83 DE-634 DE-1043 DE-11 DE-92 |
physical | XXI, 697 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Demtröder, Wolfgang 1931- Verfasser (DE-588)120579774 aut Laser spectroscopy 2 Experimental techniques Wolfgang Demtröder 4. ed. Berlin Springer 2008 XXI, 697 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Laserspektroskopie (DE-588)4034620-1 gnd rswk-swf Laserspektroskopie (DE-588)4034620-1 s DE-604 (DE-604)BV023307227 2 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016491594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Demtröder, Wolfgang 1931- Laser spectroscopy Laserspektroskopie (DE-588)4034620-1 gnd |
subject_GND | (DE-588)4034620-1 |
title | Laser spectroscopy |
title_auth | Laser spectroscopy |
title_exact_search | Laser spectroscopy |
title_exact_search_txtP | Laser spectroscopy |
title_full | Laser spectroscopy 2 Experimental techniques Wolfgang Demtröder |
title_fullStr | Laser spectroscopy 2 Experimental techniques Wolfgang Demtröder |
title_full_unstemmed | Laser spectroscopy 2 Experimental techniques Wolfgang Demtröder |
title_short | Laser spectroscopy |
title_sort | laser spectroscopy experimental techniques |
topic | Laserspektroskopie (DE-588)4034620-1 gnd |
topic_facet | Laserspektroskopie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016491594&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023307227 |
work_keys_str_mv | AT demtroderwolfgang laserspectroscopy2 |