The art of modeling in science and engineering with Mathematica:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton u.a.
Chapman & Hall/CRC
c2007
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Table of contents only Publisher description Inhaltsverzeichnis |
Beschreibung: | Rev. ed. of: The art of modeling in science and engineering. c1999. Includes bibliographical references (p. 499-502) and index |
Beschreibung: | 509 p. ill. 25 cm |
ISBN: | 1584884606 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023307080 | ||
003 | DE-604 | ||
005 | 20080701 | ||
007 | t | ||
008 | 080520s2007 xxua||| |||| 00||| eng d | ||
010 | |a 2006040605 | ||
015 | |a GBA648190 |2 dnb | ||
020 | |a 1584884606 |c acidfree paper |9 1-584-88460-6 | ||
035 | |a (OCoLC)68133220 | ||
035 | |a (DE-599)BVBBV023307080 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-859 |a DE-B768 | ||
050 | 0 | |a QA401 | |
082 | 0 | |a 501/.5118 | |
100 | 1 | |a Basmadjian, Diran |e Verfasser |4 aut | |
245 | 1 | 0 | |a The art of modeling in science and engineering with Mathematica |c Diran Basmadjian and Ramin Farnood |
250 | |a 2. ed. | ||
264 | 1 | |a Boca Raton u.a. |b Chapman & Hall/CRC |c c2007 | |
300 | |a 509 p. |b ill. |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Rev. ed. of: The art of modeling in science and engineering. c1999. | ||
500 | |a Includes bibliographical references (p. 499-502) and index | ||
630 | 0 | 4 | |a Mathematica (Computer file) |
650 | 4 | |a Ingénierie - Modèles mathématiques - Informatique | |
650 | 4 | |a Mathematica (Langage de programmation) | |
650 | 4 | |a Mathématiques de l'ingénieur - Informatique | |
650 | 4 | |a Modèles mathématiques | |
650 | 4 | |a Sciences - Modèles mathématiques - Informatique | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Science |x Mathematical models | |
650 | 4 | |a Engineering |x Mathematical models | |
700 | 1 | |a Farnood, Ramin |e Verfasser |4 aut | |
856 | 4 | |u http://www.loc.gov/catdir/toc/fy0702/2006040605.html |3 Table of contents only | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0646/2006040605-d.html |3 Publisher description | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016491424&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016491424 |
Datensatz im Suchindex
_version_ | 1804137638986252288 |
---|---|
adam_text | THE ART OF MODELING IN SCIENCE AND ENGINEERING WITH MATHEMATICS SECOND
EDITION DIRAN BASMADJIAN AND RAMIN FARNOOD CHAPMAN &. HALL/CRC |,TAYLOR
& FRANCIS CROUP BOCA RATON LONDON NEW YORK CHAPMAN & HALL/CRC IS AN
IMPRINT OF THE TAYLOR & FRANCIS CROUP, AN INFORMA BUSINESS TABLE OF
CONTENTS CHAPTER 1 A FIRST LOOK AT MODELING 1 1.1 THE PHYSICAL LAWS 2
1.1.1 CONSERVATION LAWS 2 1.1.2 AUXILIARY RELATIONS 3 1.1.3 THE BALANCE
SPACE AND ITS GEOMETRY 5 1.2 THE RATE OF THE VARIABLES: DEPENDENT AND
INDEPENDENT VARIABLES 9 1.3 THE ROLE OF BALANCE SPACE: DIFFERENTIAL AND
INTEGRAL BALANCES 11 1.4 THE ROLE OF TIME: UNSTEADY STATE AND STEADY
STATE BALANCES 12 1.5 INFORMATION DERIVED FROM MODEL SOLUTIONS 18 1.6
CHOOSING A MODEL 23 1.7 KICK-STARTING THE MODELING PROCESS 25 1.8
SOLUTION ANALYSIS 27 PRACTICE PROBLEMS 30 CHAPTER 2 ANALYTICAL TOOLS:
THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 37 2.1 DEFINITIONS AND
CLASSIFICATIONS 37 2.1.1 ORDER OF AN ODE . . 37 2.1.2 LINEAR AND
NONLINEAR ODES 40 2.1.3 ODES WITH VARIABLE COEFFICIENTS 42 2.1.4
HOMOGENEOUS AND NONHOMOGENEOUS ODES 42 2.1.5 AUTONOMOUS ODES 43 2.2
BOUNDARY AND INITIAL CONDITIONS 45 2.2.1 SOME USEFUL HINTS ON BOUNDARY
CONDITIONS 47 2.3 ANALYTICAL SOLUTIONS OF ODES 49 2.3.1 SEPARATION OF
VARIABLES T. 50 2.3.2 THE D-OPERATOR METHOD. SOLUTION OF LINEAR
N-TH-ORDER ODES WITH CONSTANT COEFFICIENTS 56 2.3.3 NONHOMOGENEOUS
LINEAR SECOND-ORDER ODES WITH CONSTANT COEFFICIENTS 65 2.3.4 SERIES
SOLUTIONS OF LINEAR ODES WITH VARIABLE COEFFICIENTS 68 2.3.5 OTHER
METHODS 78 2.4 NONLINEAR ANALYSIS 84 2.4.1 PHASE PLANE ANALYSIS:
CRITICAL POINTS 85 2.5 LAPLACE TRANSFORMATION . 91 2.5.1 GENERAL
PROPERTIES OF THE LAPLACE TRANSFORM 92 2.5.2 APPLICATION TO DIFFERENTIAL
EQUATIONS 96 PRACTICE PROBLEMS ILL CHAPTER 3 THE USE OF MATHEMATICA IN
MODELING PHYSICAL SYSTEMS 123 3.1 HANDLING ALGEBRAIC EXPRESSIONS 123 3.2
ALGEBRAIC EQUATIONS 125 3.2.1 ANALYTICAL SOLUTION TO ALGEBRAIC EQUATIONS
125 3.2.2 NUMERICAL SOLUTION TO ALGEBRAIC EQUATIONS 126 3.3 INTEGRATION
127 3.4 ORDINARY DIFFERENTIAL EQUATIONS 128 3.4.1 ANALYTICAL SOLUTION TO
ODES 129 3.4.2 NUMERICAL SOLUTION TO ORDINARY DIFFERENTIAL EQUATION 134
3.5 PARTIAL DIFFERENTIAL EQUATIONS 136 PRACTICE PROBLEMS 136 CHAPTER 4
ELEMENTARY APPLICATIONS OF THE CONSERVATION LAWS 139 4.1 APPLICATION OF
FORCE BALANCES 139 4.2 APPLICATIONS OF MASS BALANCES ; 162 4.2.1
COMPARTMENTAL MODELS 162 4.2.2 DISTRIBUTED SYSTEMS 179 4.3 APPLICATIONS
OF ENERGY BALANCES 187 4.3.1 COMPARTMENTAL MODELS 188 4.3.2 DISTRIBUTED
MODELS 196 4.4 SIMULTANEOUS APPLICATIONS OF THE CONSERVATION LAWS 205
PRACTICE PROBLEMS 222 CHAPTER 5 PARTIAL DIFFERENTIAL EQUATIONS:
CLASSIFICATION, TYPES, AND PROPERTIES * SOME SIMPLE TRANSFORMATIONS 237
5.1 PROPERTIES AND CLASSES OF PDES 239 5.1.1 ORDER OF A PDE * 239
5.1.1.1 FIRST-ORDER PDES 239 5.1.1.2 SECOND-ORDER PDES 239 5.1.1.3
HIGHER-ORDER PDES 240 5.1.2 HOMOGENEOUS PDES AND BCS 240 5.1.3 PDES WITH
VARIABLE COEFFICIENTS 240 5.1.4 LINEAR AND NONLINEAR PDES: A NEW
CATEGORY * QUASILINEAR PDES 241 5.1.5 ANOTHER NEW CATEGORY: ELLIPTIC,
PARABOLIC, AND HYPERBOLIC PDES 242 5.1.6 BOUNDARY AND INITIAL CONDITIONS
243 5.2 PDES OF MAJOR IMPORTANCE 248 5.2.1 FIRST-ORDER PARTIAL
DIFFERENTIAL EQUATIONS 249 5.2.2 SECOND-ORDER PDES 252 5.3 USEFUL
SIMPLIFICATIONS AND TRANSFORMATIONS 264 5.3.1 ELIMINATION OF INDEPENDENT
VARIABLES: REDUCTION TO ODES 264 5.3.2 ELIMINATION OF DEPENDENT
VARIABLES: REDUCTION OF NUMBER OF EQUATIONS 274 5.3.3 ELIMINATION OF
NONHOMOGENEOUS TERMS 275 5.3.4 CHANGE IN INDEPENDENT VARIABLES:
REDUCTION TO CANONICAL FORM 278 5.3.5 SIMPLIFICATION OF GEOMETRY 285
5.3.5.1 REDUCTION OF A RADIAL SPHERICAL CONFIGURATION INTO A PLANAR ONE
288 5.3.5.2 REDUCTION OF A RADIAL CIRCULAR OR CYLINDRICAL CONFIGURATION
INTO A PLANAR ONE 288 5.3.5.3 REDUCTION OF A RADIAL CIRCULAR OR
CYLINDRICAL CONFIGURATION TO A SEMI-INFINITE ONE 289 5.3.5.4 REDUCTION
OF A PLANAR CONFIGURATION TO A SEMI-INFINITE ONE 289 5.3.6
NONDIMENSIONALIZATION 289 5.4 PDES PDQ: LOCATING SOLUTIONS IN THE
LITERATURE 291 PRACTICE PROBLEMS 294 CHAPTER 6 SOLUTION OF LINEAR
SYSTEMS BY SUPERPOSITION METHODS 299 6.1 SUPERPOSITION BY ADDITION OF
SIMPLE FLOWS: SOLUTIONS IN SEARCH OF A PROBLEM 300 6.2 SUPERPOSITION BY
MULTIPLICATION: THE NEUMANN PRODUCT SOLUTIONS 308 6.3 SOLUTION OF SOURCE
PROBLEMS: SUPERPOSITION BY INTEGRATION 312 6.4 MORE SUPERPOSITION BY
INTEGRATION: DUHAMEL S INTEGRAL AND THE SUPERPOSITION OF DANCKWERTS 327
PRACTICE PROBLEMS 335 CHAPTER 7 VECTOR CALCULUS: GENERALIZED TRANSPORT
EQUATIONS 341 7.1 VECTOR NOTATION AND VECTOR CALCULUS 341 7.1.1
DIFFERENTIAL OPERATORS AND VECTOR CALCUMS 349 7.1.2 INTEGRAL THEOREMS OF
VECTOR CALCULUS 357 7.2 SUPERPOSITION REVISITED: GREEN S FUNCTIONS AND
THE SOLUTION OF PDES BY GREEN S FUNCTIONS 360 7.3 TRANSPORT OF MASS 369
7.4 TRANSPORT OF ENERGY 385 7.4.1 STEADY STATE TEMPERATURES AND HEAT
FLUX IN MULTIDIMENSIONAL GEOMETRIES: THE SHAPE FACTOR 397 7.5 TRANSPORT
OF MOMENTUM 398 PRACTICE PROBLEMS 410 CHAPTER 8 ANALYTICAL SOLUTIONS OF
PARTIAL DIFFERENTIAL EQUATIONS 419 8.1 SEPARATION OF VARIABLES 419 8.1.1
ORTHOGONAL FUNCTIONS AND FOURIER SERIES 419 8.1.1.1 ORTHOGONAL AND
ORTHONORMAL FUNCTIONS. THE STURM-LIOUVIILE THEOREM 424 8.1.2 HISTORICAL
NOTE -. 445 8.2 LAPLACE TRANSFORMATION AND OTHER INTEGRAL TRANSFORMS 452
8.2.1 GENERAL PROPERTIES 452 8.2.2 THE ROLE OF THE KERNEL 454 8.2.3 PROS
AND CONS OF INTEGRAL TRANSFORMS 456 8.2.3.1 ADVANTAGES 456 8.2.3.2
DISADVANTAGES 458 8.2.4 THE LAPLACE TRANSFORMATION OF PDES 458
HISTORICAL NOTE 469 8.3 THE METHOD OF CHARACTERISTICS 473 8.3.1 GENERAL
PROPERTIES 473 8.3.2 THE CHARACTERISTICS 476 PRACTICE PROBLEMS 488
SELECTED REFERENCES 499 INDEX 503
|
adam_txt |
THE ART OF MODELING IN SCIENCE AND ENGINEERING WITH MATHEMATICS SECOND
EDITION DIRAN BASMADJIAN AND RAMIN FARNOOD CHAPMAN &. HALL/CRC |,TAYLOR
& FRANCIS CROUP BOCA RATON LONDON NEW YORK CHAPMAN & HALL/CRC IS AN
IMPRINT OF THE TAYLOR & FRANCIS CROUP, AN INFORMA BUSINESS TABLE OF
CONTENTS CHAPTER 1 A FIRST LOOK AT MODELING 1 1.1 THE PHYSICAL LAWS 2
1.1.1 CONSERVATION LAWS 2 1.1.2 AUXILIARY RELATIONS 3 1.1.3 THE BALANCE
SPACE AND ITS GEOMETRY 5 1.2 THE RATE OF THE VARIABLES: DEPENDENT AND
INDEPENDENT VARIABLES 9 1.3 THE ROLE OF BALANCE SPACE: DIFFERENTIAL AND
INTEGRAL BALANCES 11 1.4 THE ROLE OF TIME: UNSTEADY STATE AND STEADY
STATE BALANCES 12 1.5 INFORMATION DERIVED FROM MODEL SOLUTIONS 18 1.6
CHOOSING A MODEL 23 1.7 KICK-STARTING THE MODELING PROCESS 25 1.8
SOLUTION ANALYSIS 27 PRACTICE PROBLEMS 30 CHAPTER 2 ANALYTICAL TOOLS:
THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 37 2.1 DEFINITIONS AND
CLASSIFICATIONS 37 2.1.1 ORDER OF AN ODE .' '. 37 2.1.2 LINEAR AND
NONLINEAR ODES 40 2.1.3 ODES WITH VARIABLE COEFFICIENTS 42 2.1.4
HOMOGENEOUS AND NONHOMOGENEOUS ODES 42 2.1.5 AUTONOMOUS ODES 43 2.2
BOUNDARY AND INITIAL CONDITIONS 45 2.2.1 SOME USEFUL HINTS ON BOUNDARY
CONDITIONS 47 2.3 ANALYTICAL SOLUTIONS OF ODES 49 2.3.1 SEPARATION OF
VARIABLES T. 50 2.3.2 THE D-OPERATOR METHOD. SOLUTION OF LINEAR
N-TH-ORDER ODES WITH CONSTANT COEFFICIENTS 56 2.3.3 NONHOMOGENEOUS
LINEAR SECOND-ORDER ODES WITH CONSTANT COEFFICIENTS 65 2.3.4 SERIES
SOLUTIONS OF LINEAR ODES WITH VARIABLE COEFFICIENTS 68 2.3.5 OTHER
METHODS 78 2.4 NONLINEAR ANALYSIS 84 2.4.1 PHASE PLANE ANALYSIS:
CRITICAL POINTS 85 2.5 LAPLACE TRANSFORMATION '. 91 2.5.1 GENERAL
PROPERTIES OF THE LAPLACE TRANSFORM 92 2.5.2 APPLICATION TO DIFFERENTIAL
EQUATIONS 96 PRACTICE PROBLEMS ILL CHAPTER 3 THE USE OF MATHEMATICA IN
MODELING PHYSICAL SYSTEMS 123 3.1 HANDLING ALGEBRAIC EXPRESSIONS 123 3.2
ALGEBRAIC EQUATIONS 125 3.2.1 ANALYTICAL SOLUTION TO ALGEBRAIC EQUATIONS
125 3.2.2 NUMERICAL SOLUTION TO ALGEBRAIC EQUATIONS 126 3.3 INTEGRATION
127 3.4 ORDINARY DIFFERENTIAL EQUATIONS 128 3.4.1 ANALYTICAL SOLUTION TO
ODES 129 3.4.2 NUMERICAL SOLUTION TO ORDINARY DIFFERENTIAL EQUATION 134
3.5 PARTIAL DIFFERENTIAL EQUATIONS 136 PRACTICE PROBLEMS 136 CHAPTER 4
ELEMENTARY APPLICATIONS OF THE CONSERVATION LAWS 139 4.1 APPLICATION OF
FORCE BALANCES 139 4.2 APPLICATIONS OF MASS BALANCES ; 162 4.2.1
COMPARTMENTAL MODELS 162 4.2.2 DISTRIBUTED SYSTEMS 179 4.3 APPLICATIONS
OF ENERGY BALANCES 187 4.3.1 COMPARTMENTAL MODELS 188 4.3.2 DISTRIBUTED
MODELS 196 4.4 SIMULTANEOUS APPLICATIONS OF THE CONSERVATION LAWS 205
PRACTICE PROBLEMS 222 CHAPTER 5 PARTIAL DIFFERENTIAL EQUATIONS:
CLASSIFICATION, TYPES, AND PROPERTIES * SOME SIMPLE TRANSFORMATIONS 237
5.1 PROPERTIES AND CLASSES OF PDES 239 5.1.1 ORDER OF A PDE * 239
5.1.1.1 FIRST-ORDER PDES 239 5.1.1.2 SECOND-ORDER PDES 239 5.1.1.3
HIGHER-ORDER PDES 240 5.1.2 HOMOGENEOUS PDES AND BCS 240 5.1.3 PDES WITH
VARIABLE COEFFICIENTS 240 5.1.4 LINEAR AND NONLINEAR PDES: A NEW
CATEGORY * QUASILINEAR PDES 241 5.1.5 ANOTHER NEW CATEGORY: ELLIPTIC,
PARABOLIC, AND HYPERBOLIC PDES 242 5.1.6 BOUNDARY AND INITIAL CONDITIONS
243 5.2 PDES OF MAJOR IMPORTANCE 248 5.2.1 FIRST-ORDER PARTIAL
DIFFERENTIAL EQUATIONS 249 5.2.2 SECOND-ORDER PDES 252 5.3 USEFUL
SIMPLIFICATIONS AND TRANSFORMATIONS 264 5.3.1 ELIMINATION OF INDEPENDENT
VARIABLES: REDUCTION TO ODES 264 5.3.2 ELIMINATION OF DEPENDENT
VARIABLES: REDUCTION OF NUMBER OF EQUATIONS 274 5.3.3 ELIMINATION OF
NONHOMOGENEOUS TERMS 275 5.3.4 CHANGE IN INDEPENDENT VARIABLES:
REDUCTION TO CANONICAL FORM 278 5.3.5 SIMPLIFICATION OF GEOMETRY 285
5.3.5.1 REDUCTION OF A RADIAL SPHERICAL CONFIGURATION INTO A PLANAR ONE
288 5.3.5.2 REDUCTION OF A RADIAL CIRCULAR OR CYLINDRICAL CONFIGURATION
INTO A PLANAR ONE 288 5.3.5.3 REDUCTION OF A RADIAL CIRCULAR OR
CYLINDRICAL CONFIGURATION TO A SEMI-INFINITE ONE 289 5.3.5.4 REDUCTION
OF A PLANAR CONFIGURATION TO A SEMI-INFINITE ONE 289 5.3.6
NONDIMENSIONALIZATION 289 5.4 PDES PDQ: LOCATING SOLUTIONS IN THE
LITERATURE 291 PRACTICE PROBLEMS 294 CHAPTER 6 SOLUTION OF LINEAR
SYSTEMS BY SUPERPOSITION METHODS 299 6.1 SUPERPOSITION BY ADDITION OF
SIMPLE FLOWS: SOLUTIONS IN SEARCH OF A PROBLEM 300 6.2 SUPERPOSITION BY
MULTIPLICATION: THE NEUMANN PRODUCT SOLUTIONS 308 6.3 SOLUTION OF SOURCE
PROBLEMS: SUPERPOSITION BY INTEGRATION 312 6.4 MORE SUPERPOSITION BY
INTEGRATION: DUHAMEL'S INTEGRAL AND THE SUPERPOSITION OF DANCKWERTS 327
PRACTICE PROBLEMS 335 CHAPTER 7 VECTOR CALCULUS: GENERALIZED TRANSPORT
EQUATIONS 341 7.1 VECTOR NOTATION AND VECTOR CALCULUS 341 7.1.1
DIFFERENTIAL OPERATORS AND VECTOR CALCUMS 349 7.1.2 INTEGRAL THEOREMS OF
VECTOR CALCULUS 357 7.2 SUPERPOSITION REVISITED: GREEN'S FUNCTIONS AND
THE SOLUTION OF PDES BY GREEN'S FUNCTIONS 360 7.3 TRANSPORT OF MASS 369
7.4 TRANSPORT OF ENERGY 385 7.4.1 STEADY STATE TEMPERATURES AND HEAT
FLUX IN MULTIDIMENSIONAL GEOMETRIES: THE SHAPE FACTOR 397 7.5 TRANSPORT
OF MOMENTUM 398 PRACTICE PROBLEMS 410 CHAPTER 8 ANALYTICAL SOLUTIONS OF
PARTIAL DIFFERENTIAL EQUATIONS 419 8.1 SEPARATION OF VARIABLES 419 8.1.1
ORTHOGONAL FUNCTIONS AND FOURIER SERIES 419 8.1.1.1 ORTHOGONAL AND
ORTHONORMAL FUNCTIONS. THE STURM-LIOUVIILE THEOREM 424 8.1.2 HISTORICAL
NOTE -. 445 8.2 LAPLACE TRANSFORMATION AND OTHER INTEGRAL TRANSFORMS 452
8.2.1 GENERAL PROPERTIES 452 8.2.2 THE ROLE OF THE KERNEL 454 8.2.3 PROS
AND CONS OF INTEGRAL TRANSFORMS 456 8.2.3.1 ADVANTAGES 456 8.2.3.2
DISADVANTAGES 458 8.2.4 THE LAPLACE TRANSFORMATION OF PDES 458
HISTORICAL NOTE 469 8.3 THE METHOD OF CHARACTERISTICS 473 8.3.1 GENERAL
PROPERTIES 473 8.3.2 THE CHARACTERISTICS 476 PRACTICE PROBLEMS 488
SELECTED REFERENCES 499 INDEX 503 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Basmadjian, Diran Farnood, Ramin |
author_facet | Basmadjian, Diran Farnood, Ramin |
author_role | aut aut |
author_sort | Basmadjian, Diran |
author_variant | d b db r f rf |
building | Verbundindex |
bvnumber | BV023307080 |
callnumber-first | Q - Science |
callnumber-label | QA401 |
callnumber-raw | QA401 |
callnumber-search | QA401 |
callnumber-sort | QA 3401 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)68133220 (DE-599)BVBBV023307080 |
dewey-full | 501/.5118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 501 - Philosophy and theory |
dewey-raw | 501/.5118 |
dewey-search | 501/.5118 |
dewey-sort | 3501 45118 |
dewey-tens | 500 - Natural sciences and mathematics |
discipline | Allgemeine Naturwissenschaft |
discipline_str_mv | Allgemeine Naturwissenschaft |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02179nam a2200541zc 4500</leader><controlfield tag="001">BV023307080</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080701 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080520s2007 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006040605</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA648190</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584884606</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">1-584-88460-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)68133220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023307080</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-B768</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA401</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">501/.5118</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Basmadjian, Diran</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The art of modeling in science and engineering with Mathematica</subfield><subfield code="c">Diran Basmadjian and Ramin Farnood</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton u.a.</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">c2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">509 p.</subfield><subfield code="b">ill.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Rev. ed. of: The art of modeling in science and engineering. c1999.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 499-502) and index</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Mathematica (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingénierie - Modèles mathématiques - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematica (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathématiques de l'ingénieur - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sciences - Modèles mathématiques - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farnood, Ramin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/fy0702/2006040605.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0646/2006040605-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016491424&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016491424</subfield></datafield></record></collection> |
id | DE-604.BV023307080 |
illustrated | Illustrated |
index_date | 2024-07-02T20:48:54Z |
indexdate | 2024-07-09T21:15:29Z |
institution | BVB |
isbn | 1584884606 |
language | English |
lccn | 2006040605 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016491424 |
oclc_num | 68133220 |
open_access_boolean | |
owner | DE-859 DE-B768 |
owner_facet | DE-859 DE-B768 |
physical | 509 p. ill. 25 cm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Chapman & Hall/CRC |
record_format | marc |
spelling | Basmadjian, Diran Verfasser aut The art of modeling in science and engineering with Mathematica Diran Basmadjian and Ramin Farnood 2. ed. Boca Raton u.a. Chapman & Hall/CRC c2007 509 p. ill. 25 cm txt rdacontent n rdamedia nc rdacarrier Rev. ed. of: The art of modeling in science and engineering. c1999. Includes bibliographical references (p. 499-502) and index Mathematica (Computer file) Ingénierie - Modèles mathématiques - Informatique Mathematica (Langage de programmation) Mathématiques de l'ingénieur - Informatique Modèles mathématiques Sciences - Modèles mathématiques - Informatique Ingenieurwissenschaften Mathematisches Modell Naturwissenschaft Mathematical models Science Mathematical models Engineering Mathematical models Farnood, Ramin Verfasser aut http://www.loc.gov/catdir/toc/fy0702/2006040605.html Table of contents only http://www.loc.gov/catdir/enhancements/fy0646/2006040605-d.html Publisher description HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016491424&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Basmadjian, Diran Farnood, Ramin The art of modeling in science and engineering with Mathematica Mathematica (Computer file) Ingénierie - Modèles mathématiques - Informatique Mathematica (Langage de programmation) Mathématiques de l'ingénieur - Informatique Modèles mathématiques Sciences - Modèles mathématiques - Informatique Ingenieurwissenschaften Mathematisches Modell Naturwissenschaft Mathematical models Science Mathematical models Engineering Mathematical models |
title | The art of modeling in science and engineering with Mathematica |
title_auth | The art of modeling in science and engineering with Mathematica |
title_exact_search | The art of modeling in science and engineering with Mathematica |
title_exact_search_txtP | The art of modeling in science and engineering with Mathematica |
title_full | The art of modeling in science and engineering with Mathematica Diran Basmadjian and Ramin Farnood |
title_fullStr | The art of modeling in science and engineering with Mathematica Diran Basmadjian and Ramin Farnood |
title_full_unstemmed | The art of modeling in science and engineering with Mathematica Diran Basmadjian and Ramin Farnood |
title_short | The art of modeling in science and engineering with Mathematica |
title_sort | the art of modeling in science and engineering with mathematica |
topic | Mathematica (Computer file) Ingénierie - Modèles mathématiques - Informatique Mathematica (Langage de programmation) Mathématiques de l'ingénieur - Informatique Modèles mathématiques Sciences - Modèles mathématiques - Informatique Ingenieurwissenschaften Mathematisches Modell Naturwissenschaft Mathematical models Science Mathematical models Engineering Mathematical models |
topic_facet | Mathematica (Computer file) Ingénierie - Modèles mathématiques - Informatique Mathematica (Langage de programmation) Mathématiques de l'ingénieur - Informatique Modèles mathématiques Sciences - Modèles mathématiques - Informatique Ingenieurwissenschaften Mathematisches Modell Naturwissenschaft Mathematical models Science Mathematical models Engineering Mathematical models |
url | http://www.loc.gov/catdir/toc/fy0702/2006040605.html http://www.loc.gov/catdir/enhancements/fy0646/2006040605-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016491424&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT basmadjiandiran theartofmodelinginscienceandengineeringwithmathematica AT farnoodramin theartofmodelinginscienceandengineeringwithmathematica |