Thermal microwave radiation: applications for remote sensing
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
London
Institution of Engineering and Technology
2006
|
Schriftenreihe: | IET electromagnetic waves series
52 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXV, 555 S. Ill., graph. Darst. |
ISBN: | 0863415733 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV023303758 | ||
003 | DE-604 | ||
005 | 20140113 | ||
007 | t | ||
008 | 080516s2006 xxkad|| |||| 00||| eng d | ||
010 | |a 2006283433 | ||
015 | |a GBA619542 |2 dnb | ||
020 | |a 0863415733 |9 0-86341-573-3 | ||
035 | |a (OCoLC)63400149 | ||
035 | |a (DE-599)BVBBV023303758 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-19 | ||
050 | 0 | |a G70.6 | |
082 | 0 | |a 621.3678 | |
245 | 1 | 0 | |a Thermal microwave radiation |b applications for remote sensing |c ed. by C. Mätzler |
264 | 1 | |a London |b Institution of Engineering and Technology |c 2006 | |
300 | |a XXV, 555 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a IET electromagnetic waves series |v 52 | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Microwave remote sensing | |
700 | 1 | |a Mätzler, Christian |e Sonstige |4 oth | |
830 | 0 | |a IET electromagnetic waves series |v 52 |w (DE-604)BV004177425 |9 52 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016488165&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016488165 |
Datensatz im Suchindex
_version_ | 1804137633769586688 |
---|---|
adam_text | Titel: Thermal microwave radiation
Autor: Mätzler, Christian
Jahr: 2006
Contents
Foreword xiii
Acknowledgements xvii
Curricula xix
List of contributors xxi
1 Radiative transfer and microwave radiometry 1
1.1 Historical overview 1
1.2 Kirchhoff s law of thermal radiation 5
1.3 The radiative-transfer equation 7
1.3.1 No scattering and no absorption 8
1.3.2 Including absorption and emission 8
1.3.3 Including absorption, emission and scattering 9
1.3.4 A formal solution 10
1.3.5 Special situations 11
1.4 Polarisation and Stokes parameters 12
1.4.1 Polarisation directions 12
1.4.2 Stokes parameters 14
1.4.3 Antenna polarisation 18
1.4.4 The scattering amplitude matrix 19
1.4.5 Vector radiative-transfer equation 20
References 21
2 Emission and spectroscopy of the clear atmosphere 25
2.1 Introduction 25
2.2 HITRAN (high resolution transmission) 28
2.2.1 Line-by-line parameters archive 28
2.2.2 Infrared cross-sections archive 32
2.2.3 Ultraviolet datasets 37
2.2.4 Aerosol refractive indices 37
vi Contents
2.3 GEISA (Gestion et étude des informations spectroscopiques
atmosphériques: Management and study of atmospheric
spectroscopic information)
2.3.1 Subdatabase on line transition parameters 38
2.3.2 Subdatabase on absorption cross-sections 47
2.3.3 Subdatabase on microphysical and optical properties of
atmospheric aerosols 47
2.4 BEAMCAT 5I
2.5 Atmospheric radiative-transfer simulator 54
2.6 Atmospheric transmission at microwaves 57
2.7 RTTOV-8 58
2.8 MPM and MonoRTM 60
2.9 Laboratory and theoretical work 60
2.9.1 Line parameters 60
2.9.2 Continuum absorption 63
2.10 Modelling and validation issues 65
2.11 Comparisons of model predictions with atmospheric
measurements 67
2.11.1 Ground-based radiometers 67
2.11.2 Ground-based FTS 72
2.11.3 Airborne radiometers 73
2.11.4 Satellite-based radiometers 74
2.12 Conclusions and recommendations for future development of
models and databases 77
References 80
3 Emission and scattering by clouds and precipitation 101
3.1 Introduction, purpose and scope 101
3.2 Basic quantities in RT 102
3.2.1 Reference frames and particle orientation 102
3.2.2 Amplitude matrix 103
3.2.3 Scattering amplitude matrix 104
3.2.4 Stokes and scattering matrix 105
3.2.5 Phase matrix 106
3.2.6 Cross sections 107
3.2.7 Extinction matrix 107
3.2.8 Emission vector 108
33 Simplified forms of extinction and phase matrix and of
absorption vector ,„„
3.3.1 Macroscopically isotropie and symmetric media 109
3.3.2 Axially symmetric media U3
3.4 Single scattering parameter computations ! j 4
3.4.1 Lorenz-Mie theory
3.4.2 T-matrix method
Contents vii
3.4.3 DDA method 123
3.4.4 Summary 125
3.5 Simplified forms of the radiative-transfer equation 126
3.5.1 Cartesian geometry 126
3.6 Numerical methods for the solution of the VRTE 133
3.6.1 The discrete ordinate method 133
3.6.2 Iterative and successive order of scattering method 134
3.6.3 The polarised discrete ordinate iterative 3D model
ARTS-DOIT 135
3.6.4 The doubling-adding method 140
3.6.5 The Monte Carlo method 141
3.6.6 Test studies and benchmark results 144
3.6.7 Future developments 146
3.7 Approximate solution methods 146
3.7.1 Eddington approximation for plane-parallel clouds 147
3.7.2 Antenna brightness temperature in the Eddington
approximation 155
3.8 Microwave signatures of clouds and precipitation 162
3.8.1 Cloud resolving models 165
3.8.2 Hydrometeor scattering computation and
simulated 7bs 167
3.8.3 Consistency between predicted and observed 7 bs 169
3.8.4 Sensitivity studies 170
3.8.5 Cloud genera 171
3.8.6 3D radiative-transfer effects 189
3.8.7 Microwave signatures of clouds in limb geometry 194
3.9 Polarisation effects of particle orientation 197
3.9.1 Theoretical studies on polarisation signatures 198
3.9.2 Experimental observations of polarisation signatures 204
3.10 Recommendations and outlook to future developments 210
References 212
Surface emission 225
4.1 Introduction, purpose and scope 225
4.2 Comparison of emission models for covered surfaces 227
4.2.1 Introduction 227
4.2.2 Zero-order scattering model 228
4.2.3 Single-isotropic-scattering model 229
4.2.4 Multiple-scattering model in two-stream approach 231
4.2.5 Comparison 232
4.2.6 Effects of lateral inhomogeneity 236
4.2.7 Conclusions 240
4.3 Relief effects for microwave radiometry 240
4.3.1 Introduction 240
4.3.2 Flat horizon 241
vii i Contents
4.3.3 Terrain with tilted surfaces
4.3.4 An example
4.3.5 Conclusions
4.4 Ocean emissivity models
4.4.1 Existing observations used in near surface wind
analysis 25°
4.4.2 The effects of changes in surface windspeed on ocean
surface emissivity 251
4.4.3 The Stokes vector formulation applied to polarimetrie
radiometry 252
4.4.4 A theoretical basis for polarimetrie wind direction
signals 253
4.4.5 Models available for polarimetrie radiometry 255
4.5 Modelling the emission at 1.4 GHz for global sea-surface salinity
measurements 257
4.5.1 Introduction 257
4.5.2 Sea-surface brightness temperature 258
4.5.3 Effects of the atmosphere 273
4.5.4 Extra-terrestrial sources 274
4.5.5 Perspectives 275
4.6 Modelling the soil microwave emission 276
4.6.1 Introduction 276
4.6.2 Physical modelling approaches 278
4.6.3 A semi-empirical parametrisation of the soil emission at
L-band 282
4.6.4 Conclusion 285
4.7 Air-to-soil transition model 287
4.7.1 Introduction 287
4.7.2 Scope of roughness models for L-band observations 288
4.7.3 Model description 288
4.7.4 Comparison between radiometer and
ground truth data 293
4.7.5 Fast model 299
4.7.6 Summary 3qq
4.8 Microwave emissivity in arid regions: What can we learn from
satellite observations? 30l
4.8.1 Introduction 30 ¦
4.8.2 Direct estimates of emissivities from satellite
observations and comparison with model calculations
in arid regions ^tn
4.8.3 Lessons learnt from direct calculations of emissivities
from satellite observations 306
48.4 Conclusion
Contents ix
4.9 Parametrisations of the effective temperature for L-band
radiometry. Inter-comparison and long term validation with
SMOSREX field experiment 312
4.9.1 Introduction 312
4.9.2 SMOSREX experimental dataset 313
4.9.3 Theoretical formulation of the effective temperature 314
4.9.4 Simple parametrisations of the effective temperature 317
4.9.5 Choudhuryefa/., 1982 317
4.9.6 Wigneron et al., 2001 317
4.9.7 Holmes et al., 2005 318
4.9.8 Inter-comparisons 318
4.9.9 Conclusion 323
4.10 Modelling the effect of the vegetation structure - evaluating the
sensitivity of the vegetation model parameters to the canopy
geometry and to the configuration parameters (frequency,
polarisation and incidence angle) 324
4.10.1 Introduction 324
4.10.2 Coherent effects 325
4.10.3 Characterising attenuation by a wheat crop (Pardé et al.,
2003) 326
4.10.4 Characterising scattering and attenuation by crops at
L-band (Wigneron et al., 2004) 328
4.10.5 Anisotropy in relation to the row structure of a corn
field at L-band (Hornbuckle et al., 2003) 330
4.10.6 Anisotropy at large spatial scale (Owe et al., 2001) 332
4.10.7 Conclusions 332
4.11 Passive microwave emissivity in vegetated regions as directly
calculated from satellite observations 334
4.11.1 Introduction 334
4.11.2 Sensitivity of vegetation density and phenology:
Comparison with the NDVI 335
4.11.3 Puzzling observations in densely vegetated areas 337
4.11.4 Conclusion 340
4.12 The fc-factor relating vegetation optical depth to vegetation
water content 341
4.12.1 Introduction 341
4.12.2 The ¿-factor and its theoretical dependence of
wavelength 342
4.12.3 Comparison of b-factors from different sources 343
4.12.4 Functional behaviour of the fe-factor 344
4.12.5 Summary and conclusions 348
4.13 Modelling forest emission 349
4.13.1 Summary 349
4.13.2 Introduction 350
4.13.3 Basic modelling steps 351
Contents
4.13.4 Results
4.13.5 Concluding remarks
4.14 L-MEB: a simple model at L-band for the continental areas -
application to the simulation of a half-degree resolution and
global scale dataset 362
4.14.1 Introduction 362
4.14.2 Composite pixel emission 362
4.14.3 Soil emission 363
4.14.4 Vegetation emission 365
4.14.5 The emission of water bodies 367
4.14.6 Snow-covered surfaces 368
4.14.7 Influence of the atmosphere at L-band 369
4.14.8 Global half-degree maps of synthetic L-band
brightness temperatures 370
4.15 Microwave emission of snow 371
4.15.1 Passive microwave remote sensing of snow 371
4.15.2 Modelling efforts for seasonal snow and
ice sheets 373
4.15.3 Recommended emission models 382
4.16 Sea ice emission modelling 382
4.16.1 Introduction 382
4.16.2 Extension of MEMLS to sea ice emission 386
4.16.3 Sea ice emission modelling experiments using
MEMLS 388
4.16.4 Parametrisation of sea ice emissivity for
atmospheric retrieval 391
4.16.5 Sensitivity of sea ice concentration estimates to
surface emissivity 392
4.16.6 New sensors: L-band sea ice radiometry with SMOS 397
4.16.7 Conclusions 399
4.16.8 Open challenges 400
References 40 ]
5 Dielectric properties of natural media 427
5.1 Introduction to dielectric properties 428
5.1.1 Outline 428
5.1.2 Dielectric constant and refractive index in
a homogeneous medium 428
5.1.3 Kxamers-Kronig relations 430
5.2 Freshwater and seawater 43 j
5.2.1 Introduction 43 j
5.2.2 Theoretical considerations 432
5.2.3 Freshwater 431
5.2.4 Seawater 436
5.2.5 A new water interpolation function 445
Contents xi
5.2.6 Extrapolations 452
5.2.7 Conclusion 454
5.3 Microwave dielectric properties of ice 455
5.3.1 Introduction 455
5.3.2 Dielectric properties of ice: real part 456
5.3.3 Dielectric properties of ice: imaginary part 456
5.3.4 Discussion and conclusion 461
5.4 Minerals and rocks 463
5.4.1 Dielectric properties of minerals 463
5.4.2 Dielectric properties of homogeneous rocks 463
5.5 Mixing models for heterogeneous and granular media 464
5.5.1 Basic principles: The concept of effective medium 464
5.5.2 Polarisability of particles 466
5.5.3 Clausius-Mossotti and Maxwell Garnett formula 467
5.5.4 Multi-phase mixtures and non-spherical inclusions 469
5.5.5 Bruggeman mixing rule and other generalised
models 474
5.6 Electrodynamic phenomena resulting from the heterogeneity
structure 477
5.6.1 Frequency dependence and dispersion 477
5.6.2 Transfer of range of mixing loss 478
5.6.3 Percolation phenomena 479
5.6.4 Maxwell Wagner losses and enhanced polarisation 479
5.7 Dielectric properties of heterogeneous media 480
5.7.1 Introductory remarks and framework 480
5.7.2 Liquid-water clouds 482
5.7.3 Dielectric properties of snow 483
5.7.4 Dielectric properties of vegetation 487
5.7.5 Dielectric properties of soil 489
References 496
Appendix A: Surface emissivity data from microwave experiments at
the University of Bern 507
Appendix B: Surface emissivity data from
PORTOS-Avignon experiment 519
Appendix C: Experimental data used to construct the interpolation
function for the dielectric constant of water 523
Appendix D: Useful mixing formulae 541
Index 545
|
adam_txt |
Titel: Thermal microwave radiation
Autor: Mätzler, Christian
Jahr: 2006
Contents
Foreword xiii
Acknowledgements xvii
Curricula xix
List of contributors xxi
1 Radiative transfer and microwave radiometry 1
1.1 Historical overview 1
1.2 Kirchhoff's law of thermal radiation 5
1.3 The radiative-transfer equation 7
1.3.1 No scattering and no absorption 8
1.3.2 Including absorption and emission 8
1.3.3 Including absorption, emission and scattering 9
1.3.4 A formal solution 10
1.3.5 Special situations 11
1.4 Polarisation and Stokes parameters 12
1.4.1 Polarisation directions 12
1.4.2 Stokes parameters 14
1.4.3 Antenna polarisation 18
1.4.4 The scattering amplitude matrix 19
1.4.5 Vector radiative-transfer equation 20
References 21
2 Emission and spectroscopy of the clear atmosphere 25
2.1 Introduction 25
2.2 HITRAN (high resolution transmission) 28
2.2.1 Line-by-line parameters archive 28
2.2.2 Infrared cross-sections archive 32
2.2.3 Ultraviolet datasets 37
2.2.4 Aerosol refractive indices 37
vi Contents
2.3 GEISA (Gestion et étude des informations spectroscopiques
atmosphériques: Management and study of atmospheric
spectroscopic information)
2.3.1 Subdatabase on line transition parameters 38
2.3.2 Subdatabase on absorption cross-sections 47
2.3.3 Subdatabase on microphysical and optical properties of
atmospheric aerosols 47
2.4 BEAMCAT 5I
2.5 Atmospheric radiative-transfer simulator 54
2.6 Atmospheric transmission at microwaves 57
2.7 RTTOV-8 58
2.8 MPM and MonoRTM 60
2.9 Laboratory and theoretical work 60
2.9.1 Line parameters 60
2.9.2 Continuum absorption 63
2.10 Modelling and validation issues 65
2.11 Comparisons of model predictions with atmospheric
measurements 67
2.11.1 Ground-based radiometers 67
2.11.2 Ground-based FTS 72
2.11.3 Airborne radiometers 73
2.11.4 Satellite-based radiometers 74
2.12 Conclusions and recommendations for future development of
models and databases 77
References 80
3 Emission and scattering by clouds and precipitation 101
3.1 Introduction, purpose and scope 101
3.2 Basic quantities in RT 102
3.2.1 Reference frames and particle orientation 102
3.2.2 Amplitude matrix 103
3.2.3 Scattering amplitude matrix 104
3.2.4 Stokes and scattering matrix 105
3.2.5 Phase matrix 106
3.2.6 Cross sections 107
3.2.7 Extinction matrix 107
3.2.8 Emission vector 108
33 Simplified forms of extinction and phase matrix and of
absorption vector ,„„
3.3.1 Macroscopically isotropie and symmetric media 109
3.3.2 Axially symmetric media U3
3.4 Single scattering parameter computations ! j 4
3.4.1 Lorenz-Mie theory
3.4.2 T-matrix method
Contents vii
3.4.3 DDA method 123
3.4.4 Summary 125
3.5 Simplified forms of the radiative-transfer equation 126
3.5.1 Cartesian geometry 126
3.6 Numerical methods for the solution of the VRTE 133
3.6.1 The discrete ordinate method 133
3.6.2 Iterative and successive order of scattering method 134
3.6.3 The polarised discrete ordinate iterative 3D model
ARTS-DOIT 135
3.6.4 The doubling-adding method 140
3.6.5 The Monte Carlo method 141
3.6.6 Test studies and benchmark results 144
3.6.7 Future developments 146
3.7 Approximate solution methods 146
3.7.1 Eddington approximation for plane-parallel clouds 147
3.7.2 Antenna brightness temperature in the Eddington
approximation 155
3.8 Microwave signatures of clouds and precipitation 162
3.8.1 Cloud resolving models 165
3.8.2 Hydrometeor scattering computation and
simulated 7bs 167
3.8.3 Consistency between predicted and observed 7"bs 169
3.8.4 Sensitivity studies 170
3.8.5 Cloud genera 171
3.8.6 3D radiative-transfer effects 189
3.8.7 Microwave signatures of clouds in limb geometry 194
3.9 Polarisation effects of particle orientation 197
3.9.1 Theoretical studies on polarisation signatures 198
3.9.2 Experimental observations of polarisation signatures 204
3.10 Recommendations and outlook to future developments 210
References 212
Surface emission 225
4.1 Introduction, purpose and scope 225
4.2 Comparison of emission models for covered surfaces 227
4.2.1 Introduction 227
4.2.2 Zero-order scattering model 228
4.2.3 Single-isotropic-scattering model 229
4.2.4 Multiple-scattering model in two-stream approach 231
4.2.5 Comparison 232
4.2.6 Effects of lateral inhomogeneity 236
4.2.7 Conclusions 240
4.3 Relief effects for microwave radiometry 240
4.3.1 Introduction 240
4.3.2 Flat horizon 241
vii i Contents
4.3.3 Terrain with tilted surfaces
4.3.4 An example
4.3.5 Conclusions
4.4 Ocean emissivity models
4.4.1 Existing observations used in near surface wind
analysis 25°
4.4.2 The effects of changes in surface windspeed on ocean
surface emissivity 251
4.4.3 The Stokes vector formulation applied to polarimetrie
radiometry 252
4.4.4 A theoretical basis for polarimetrie wind direction
signals 253
4.4.5 Models available for polarimetrie radiometry 255
4.5 Modelling the emission at 1.4 GHz for global sea-surface salinity
measurements 257
4.5.1 Introduction 257
4.5.2 Sea-surface brightness temperature 258
4.5.3 Effects of the atmosphere 273
4.5.4 Extra-terrestrial sources 274
4.5.5 Perspectives 275
4.6 Modelling the soil microwave emission 276
4.6.1 Introduction 276
4.6.2 Physical modelling approaches 278
4.6.3 A semi-empirical parametrisation of the soil emission at
L-band 282
4.6.4 Conclusion 285
4.7 Air-to-soil transition model 287
4.7.1 Introduction 287
4.7.2 Scope of roughness models for L-band observations 288
4.7.3 Model description 288
4.7.4 Comparison between radiometer and
ground truth data 293
4.7.5 Fast model 299
4.7.6 Summary 3qq
4.8 Microwave emissivity in arid regions: What can we learn from
satellite observations? 30l
4.8.1 Introduction 30 ¦
4.8.2 Direct estimates of emissivities from satellite
observations and comparison with model calculations
in arid regions ^tn
4.8.3 Lessons learnt from direct calculations of emissivities
from satellite observations 306
48.4 Conclusion
Contents ix
4.9 Parametrisations of the effective temperature for L-band
radiometry. Inter-comparison and long term validation with
SMOSREX field experiment 312
4.9.1 Introduction 312
4.9.2 SMOSREX experimental dataset 313
4.9.3 Theoretical formulation of the effective temperature 314
4.9.4 Simple parametrisations of the effective temperature 317
4.9.5 Choudhuryefa/., 1982 317
4.9.6 Wigneron et al., 2001 317
4.9.7 Holmes et al., 2005 318
4.9.8 Inter-comparisons 318
4.9.9 Conclusion 323
4.10 Modelling the effect of the vegetation structure - evaluating the
sensitivity of the vegetation model parameters to the canopy
geometry and to the configuration parameters (frequency,
polarisation and incidence angle) 324
4.10.1 Introduction 324
4.10.2 Coherent effects 325
4.10.3 Characterising attenuation by a wheat crop (Pardé et al.,
2003) 326
4.10.4 Characterising scattering and attenuation by crops at
L-band (Wigneron et al., 2004) 328
4.10.5 Anisotropy in relation to the row structure of a corn
field at L-band (Hornbuckle et al., 2003) 330
4.10.6 Anisotropy at large spatial scale (Owe et al., 2001) 332
4.10.7 Conclusions 332
4.11 Passive microwave emissivity in vegetated regions as directly
calculated from satellite observations 334
4.11.1 Introduction 334
4.11.2 Sensitivity of vegetation density and phenology:
Comparison with the NDVI 335
4.11.3 Puzzling observations in densely vegetated areas 337
4.11.4 Conclusion 340
4.12 The fc-factor relating vegetation optical depth to vegetation
water content 341
4.12.1 Introduction 341
4.12.2 The ¿-factor and its theoretical dependence of
wavelength 342
4.12.3 Comparison of b-factors from different sources 343
4.12.4 Functional behaviour of the fe-factor 344
4.12.5 Summary and conclusions 348
4.13 Modelling forest emission 349
4.13.1 Summary 349
4.13.2 Introduction 350
4.13.3 Basic modelling steps 351
Contents
4.13.4 Results
4.13.5 Concluding remarks
4.14 L-MEB: a simple model at L-band for the continental areas -
application to the simulation of a half-degree resolution and
global scale dataset 362
4.14.1 Introduction 362
4.14.2 Composite pixel emission 362
4.14.3 Soil emission 363
4.14.4 Vegetation emission 365
4.14.5 The emission of water bodies 367
4.14.6 Snow-covered surfaces 368
4.14.7 Influence of the atmosphere at L-band 369
4.14.8 Global half-degree maps of synthetic L-band
brightness temperatures 370
4.15 Microwave emission of snow 371
4.15.1 Passive microwave remote sensing of snow 371
4.15.2 Modelling efforts for seasonal snow and
ice sheets 373
4.15.3 Recommended emission models 382
4.16 Sea ice emission modelling 382
4.16.1 Introduction 382
4.16.2 Extension of MEMLS to sea ice emission 386
4.16.3 Sea ice emission modelling experiments using
MEMLS 388
4.16.4 Parametrisation of sea ice emissivity for
atmospheric retrieval 391
4.16.5 Sensitivity of sea ice concentration estimates to
surface emissivity 392
4.16.6 New sensors: L-band sea ice radiometry with SMOS 397
4.16.7 Conclusions 399
4.16.8 Open challenges 400
References 40 ]
5 Dielectric properties of natural media 427
5.1 Introduction to dielectric properties 428
5.1.1 Outline 428
5.1.2 Dielectric constant and refractive index in
a homogeneous medium 428
5.1.3 Kxamers-Kronig relations 430
5.2 Freshwater and seawater 43 j
5.2.1 Introduction 43 j
5.2.2 Theoretical considerations 432
5.2.3 Freshwater 431
5.2.4 Seawater 436
5.2.5 A new water interpolation function 445
Contents xi
5.2.6 Extrapolations 452
5.2.7 Conclusion 454
5.3 Microwave dielectric properties of ice 455
5.3.1 Introduction 455
5.3.2 Dielectric properties of ice: real part 456
5.3.3 Dielectric properties of ice: imaginary part 456
5.3.4 Discussion and conclusion 461
5.4 Minerals and rocks 463
5.4.1 Dielectric properties of minerals 463
5.4.2 Dielectric properties of homogeneous rocks 463
5.5 Mixing models for heterogeneous and granular media 464
5.5.1 Basic principles: The concept of effective medium 464
5.5.2 Polarisability of particles 466
5.5.3 Clausius-Mossotti and Maxwell Garnett formula 467
5.5.4 Multi-phase mixtures and non-spherical inclusions 469
5.5.5 Bruggeman mixing rule and other generalised
models 474
5.6 Electrodynamic phenomena resulting from the heterogeneity
structure 477
5.6.1 Frequency dependence and dispersion 477
5.6.2 Transfer of range of mixing loss 478
5.6.3 Percolation phenomena 479
5.6.4 Maxwell Wagner losses and enhanced polarisation 479
5.7 Dielectric properties of heterogeneous media 480
5.7.1 Introductory remarks and framework 480
5.7.2 Liquid-water clouds 482
5.7.3 Dielectric properties of snow 483
5.7.4 Dielectric properties of vegetation 487
5.7.5 Dielectric properties of soil 489
References 496
Appendix A: Surface emissivity data from microwave experiments at
the University of Bern 507
Appendix B: Surface emissivity data from
PORTOS-Avignon experiment 519
Appendix C: Experimental data used to construct the interpolation
function for the dielectric constant of water 523
Appendix D: Useful mixing formulae 541
Index 545 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023303758 |
callnumber-first | G - Geography, Anthropology, Recreation |
callnumber-label | G70 |
callnumber-raw | G70.6 |
callnumber-search | G70.6 |
callnumber-sort | G 270.6 |
callnumber-subject | G - General Geography |
ctrlnum | (OCoLC)63400149 (DE-599)BVBBV023303758 |
dewey-full | 621.3678 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3678 |
dewey-search | 621.3678 |
dewey-sort | 3621.3678 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01375nam a2200373zcb4500</leader><controlfield tag="001">BV023303758</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080516s2006 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006283433</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA619542</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0863415733</subfield><subfield code="9">0-86341-573-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)63400149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023303758</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">G70.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3678</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal microwave radiation</subfield><subfield code="b">applications for remote sensing</subfield><subfield code="c">ed. by C. Mätzler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Institution of Engineering and Technology</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 555 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IET electromagnetic waves series</subfield><subfield code="v">52</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave remote sensing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mätzler, Christian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">IET electromagnetic waves series</subfield><subfield code="v">52</subfield><subfield code="w">(DE-604)BV004177425</subfield><subfield code="9">52</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016488165&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016488165</subfield></datafield></record></collection> |
id | DE-604.BV023303758 |
illustrated | Illustrated |
index_date | 2024-07-02T20:47:39Z |
indexdate | 2024-07-09T21:15:24Z |
institution | BVB |
isbn | 0863415733 |
language | English |
lccn | 2006283433 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016488165 |
oclc_num | 63400149 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | XXV, 555 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Institution of Engineering and Technology |
record_format | marc |
series | IET electromagnetic waves series |
series2 | IET electromagnetic waves series |
spelling | Thermal microwave radiation applications for remote sensing ed. by C. Mätzler London Institution of Engineering and Technology 2006 XXV, 555 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier IET electromagnetic waves series 52 Includes bibliographical references and index Microwave remote sensing Mätzler, Christian Sonstige oth IET electromagnetic waves series 52 (DE-604)BV004177425 52 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016488165&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Thermal microwave radiation applications for remote sensing IET electromagnetic waves series Microwave remote sensing |
title | Thermal microwave radiation applications for remote sensing |
title_auth | Thermal microwave radiation applications for remote sensing |
title_exact_search | Thermal microwave radiation applications for remote sensing |
title_exact_search_txtP | Thermal microwave radiation applications for remote sensing |
title_full | Thermal microwave radiation applications for remote sensing ed. by C. Mätzler |
title_fullStr | Thermal microwave radiation applications for remote sensing ed. by C. Mätzler |
title_full_unstemmed | Thermal microwave radiation applications for remote sensing ed. by C. Mätzler |
title_short | Thermal microwave radiation |
title_sort | thermal microwave radiation applications for remote sensing |
title_sub | applications for remote sensing |
topic | Microwave remote sensing |
topic_facet | Microwave remote sensing |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016488165&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004177425 |
work_keys_str_mv | AT matzlerchristian thermalmicrowaveradiationapplicationsforremotesensing |