Nanophotonic materials: photonic crystals, plasmonics, and metamaterials
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXVII, 418 S. Ill., graph. Darst. |
ISBN: | 9783527408580 3527408584 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023287112 | ||
003 | DE-604 | ||
005 | 20080826 | ||
007 | t | ||
008 | 080505s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N01,1191 |2 dnb | ||
015 | |a 08,A13,0918 |2 dnb | ||
016 | 7 | |a 986652563 |2 DE-101 | |
020 | |a 9783527408580 |c Pp. : EUR 159.00 (freier Pr.), sfr 251.00 (freier Pr.) |9 978-3-527-40858-0 | ||
020 | |a 3527408584 |c Pp. : EUR 159.00 (freier Pr.), sfr 251.00 (freier Pr.) |9 3-527-40858-4 | ||
024 | 3 | |a 9783527408580 | |
028 | 5 | 2 | |a 1140858 000 |
035 | |a (OCoLC)213380182 | ||
035 | |a (DE-599)DNB986652563 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-29T |a DE-11 | ||
050 | 0 | |a TA1530 | |
082 | 0 | |a 621.36 |2 22 | |
084 | |a UQ 4500 |0 (DE-625)146515: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
245 | 1 | 0 | |a Nanophotonic materials |b photonic crystals, plasmonics, and metamaterials |c ed. by R. B. Wehrspohn ... |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2008 | |
300 | |a XXVII, 418 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 7 | |a Cristaux photoniques |2 ram | |
650 | 7 | |a Matériaux nanostructurés |2 ram | |
650 | 4 | |a Nanomatériaux - Propriétés optiques | |
650 | 4 | |a Nanophotonique | |
650 | 4 | |a Photonic crystals | |
650 | 4 | |a Photonique - Matériaux | |
650 | 7 | |a Plasmons |2 ram | |
650 | 4 | |a Nanophotonics | |
650 | 4 | |a Nanostructured materials |x Optical properties | |
650 | 4 | |a Photonic crystals | |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Photonischer Kristall |0 (DE-588)4587112-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Photonischer Kristall |0 (DE-588)4587112-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wehrspohn, Ralf B. |d 1970- |0 (DE-588)115845763 |4 edt | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3036841&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |u http://d-nb.info/986652563/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016471793&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016471793 |
Datensatz im Suchindex
_version_ | 1805090394243858432 |
---|---|
adam_text |
NANOPHOTONIC MATERIALS PHOTONIC CRYSTALS, PLASMONICS, AND METAMATERIALS
EDITED BY R. B. WEHRSPOHN, H.-S. KITZEROW, AND K. BUSCH WILEY- VCH
WILEY-VCH VERLAG GMBH & CO. KGAA CONTENTS PREFECE XV LISTOFCONTRIBUTORS
XVII I LINEAR AND NON-IINEAR PROPERTIES OF PHOTONIC CRYSTALS 1 1
SOLITARY WAVE FORMATION IN ONE-DIMENSIONAL PHOTONIC CRYSTALS 3 SABINE
ESSIG, JENS NIEGEMANN, LASHA TKESHELASHVILI, AND KURT BUSCH 1.1
INTRODUCTION 3 1.2 VARIATIONAL APPROACH TO THE NLCME 5 1.3 RADIATION
LOSSES 9 1.4 RESULTS 11 1.5 CONCLUSIONS AND OUTLOOK 12 REFERENCES 13 2
MICROSCOPIC ANALYSIS OF THE OPTICA! AND ELECTRONIC PROPERTIES OF
SEMICONDUCTOR PHOTONIC-CRYSTAL STRUCTURES 15 BERNHARD PASENOW, MATTHIAS
REICHELT, TMEKE STROUCKEN, TORSTEN MEIER, AND STEPHAN W. KOCH 2.1
INTRODUCTION 15 2.2 THEORETICAL APPROACH 16 2.2.1
SPATIALLY-INHOMOGENEOUS MAXWELL EQUATIONS IN SEMICONDUCTOR
PHOTONIC-CRYSTAL STRUCTURES 17 * 2.2.1.1 TRANSVERSE PART:
SELF-CONSISTENT SOLUTION OF THE MAXWELL SEMICONDUCTOR BLOCH EQUATIONS 18
2.2.1.2 LONGITUDINAL PART: THE GENERALIZED COULOMB INTERACTION 18 2.2.2
HAMILTONIAN DESCRIBING THE MATERIAL DYNAMICS 19 2.2.3 SEMICONDUCTOR
BLOCH EQUATIONS IN REAL SPACE 21 2.2.3.1 LOW-INTENSITY LIMIT 22 2.3
NUMERICAL RESULTS 24 NANOPHOTONIC MATERIALS: PHOTONIC CRYSTALS,
PLASMONICS, AND METAMATERIALS. EDITED BY R.B. WEHRSPOHN, H.-S. KITZEROW,
AND K. BUSCH COPYRIGHT 2008 WILEY-VCH VERLAG GMBH & CO. KGAA, WEINHEIM
ISBN: 978-3-527-40858-0 VI I CONTENTS 2.3.1 SEMICONDUCTOR
PHOTONIC-CRYSTAL STRUCTURE 24 2.3.2 LINEAR EXCITONIC ABSORPTION 26 2.3.3
COHERENT WAVE PACKET DYNAMICS 29 2.3.4 WAVE PACKET DYNAMICS WITH
DEPHASING AND RELAXATION 31 2.3.5 QUASI-EQUILIBRIUM ABSORPTION AND GAIN
SPECTRA 33 2.4 SUMMARY 35 REFERENCES 36 3 FUNCTIONAL 3D PHOTONIC FILMS
FROM POLYMER BEADS 39 BIRGER LANGE, FRIEDERIKE FLEISCHHAKER, AND RUDOLF
ZENTEL 3.1 INTRODUCTION 39 3.2 OPALS AS COLORING AGENTS 43 3.2.1 OPAL
FLAKES AS EFFECT PIGMENTS IN CLEAR COATINGS 44 3.2.2 OPALINE EFFECT
PIGMENTS BY SPRAY INDUCED SELF-ASSEMBLY 44 3.3 LOADINGOF OPALS WITH
HIGHLY FLUORESCENT DYES 46 3.4 NEW PROPERTIES THROUGH REPLICATION 47
3.4.1 INCREASE OF REFRACTIVE INDEX 47 3.4.2 ROBUST REPLICA 48 3.4.3
INERT REPLICA FOR CHEMISTRY AND CATALYSIS AT HIGH TEMPERATURES 49 3.5
DEFECT INCORPORATION INTO OPALS 50 3.5.1 PATTERNING OF THE OPAL ITSELF
51 3.5.2 PATTERNING OF AN INFILTRATED MATERIAL 53 3.5.3 CHEMISTRY IN
DEFECT LAYERS 55 REFERENCES 58 4 BLOCH MODES AND CROUP VELOCITY DELAY IN
COUPLED RESONATOR CHAINS 63 BJOERN M. MOELLER, MIKHAIL V. ARTEMYEV, AND
ULRIKE WOGGON 4.1 INTRODUCTION 63 4.2 EXPERIMENT 64 4.3 COHERENT CAVITY
FIELD COUPLING IN ONE-DIMENSIONAL CROWS 65 4.4 MODE STRUCTURE IN FINITE
CROWS 67 4.5 SLOWING DOWN LIGHT IN CROWS 70 4.6 DISORDER AND DETUNING IN
CROWS 72 4.7 SUMMARY 74 REFERENCES 74 5 COUPLED NANOPILLAR WAVEGUIDES:
OPTICAL PROPERTIES AND APPLICATIONS 77 DMITRY N. CHIGRIN, SERGEI V.
ZHUKOVSKY, ANDREI V. LAVR'MENKO, AND JOHANN KROHA 5.1 INTRODUCTION 77
5.2 DISPERSION ENGINEERING 79 5.2.1 DISPERSION TUNING 79 5.2.2 COUPLED
MODE MODEL 82 5.3 TRANSMISSION EFFICIENCY 85 5.4 APERIODIC NANOPILLAR
WAVEGUIDES 88 5.5 APPLICATIONS 89 5.5.1 DIRECTIONAL COUPLER 89 5.5.2
LASER RESONATORS 90 5.6 CONCLUSION 94 REFERENCES 95 6 INVESTIGATIONS ON
THE GENERATION OF PHOTONIC CRYSTALS USING TWO-PHOTON POLYMERIZATION
(2PP) OF INORGANIC-ORGANIC HYBRID POLYMERS WITH ULTRA-SHORT LASER PULSES
97 R. HOUBERTZ, P. DECLERCK, S. PASSINGER, A. OVSIANIKOV, J. SERBIN, AND
B.N. CHICHKOV 6.1 INTRODUCTION 97 6.2 HIGH-REFRACTIVE INDEX
INORGANIC-ORGANIC HYBRID POLYMERS 98 6.3 MULTI-PHOTON FABRICATION 104
6.3.1 EXPERIMENTAL SETUP 104 6.3.2 FABRICATION OF PHC IN STANDARD
ORMOCER 105 6.3.3 2PP OF HIGH REFRACTIVE INDEX MATERIALS 107 6.3.4
PATTERNING AND PHC FABRICATION IN POSITIVE RESIST MATERIAL S1813 111 6.4
SUMMARY AND OUTLOOK 112 REFERENCES 113 7 ULTRA-LOW REFRACTIVE INDEX
MESOPOROUS SUBSTRATES FOR WAVEGUIDE STRUCTURES 115 D. KONJHODZIC, S.
SCHROETER, AND F. MARLOW 7.1 INTRODUCTION 115 7.2 MESOPOROUS FILMS 116
7.2.1 FABRICATION OF MESOPOROUS SILICA FILMS 116 7.2.1.1 GENERAL REMARKS
116 7.2.1.2 PREPARATION DETAILS 117 7.2.2 CHARACTERIZATION AND STRUCTURE
DETERMINATION OF MSFS 118 7.2.3 OPTICALPROPERTIESOFMSFS 121 7.2.4
SYNTHESIS MECHANISM 123 7.3 MSFS AS SUBSTRATES FOR WAVEGUIDE STRUCTURES
124 7.3.1 POLYMER WAVEGUIDES 124 7.3.2 TA 2 0 5 WAVEGUIDES AND 2D PHC
STRUCTURES 126 7.3.3 PZT FILMS 127 7.4 CONCLUSIONS 129 REFERENCES 130
CONTENTS VII VIII CONTENTS 8 LINEAR AND NONLINEAR EFFECTS OF LIGHT
PROPAGATION IN LOW-INDEX PHOTONIC CRYSTAL SLABS 131 R. LLIEW, C. ETRICH,
M. AUGUSTIN, E.-B. KLEY, S. NOLTE, A. TUENNERMANN, AND F. LEDERER 8.1
INTRODUCTION 131 8.2 FABRICATIONOF PHOTONIC CRYSTAL SLABS 132 8.3 LINEAR
PROPERTIES OF PHOTONIC CRYSTAL SLABS 133 8.3.1 TRANSMISSION AND HIGH
DISPERSION OF LINE-DEFECT WAVEGUIDES 134 8.3.2 HIGH-QUALITY FACTOR
MICROCAVITIES IN A LOW-INDEX PHOTONIC CRYSTAL MEMBRANE 138 8.3.3 UNUSUAL
DIFFRACTION AND REFRACTION PHENOMENA IN PHOTONIC CRYSTAL SLABS 141
8.3.3.1 SELF-COLLIMATED LIGHT AT INFRARED AND VISIBLE WAVELENGTHS 142
8.3.3.2 NEGATIVE REFRACTION OF LIGHT 143 8.4 LIGHT PROPAGATION IN
NONLINEAR PHOTONIC CRYSTALS 145 8.4.1 AN OPTICAL PARAMETRIC OSCILLATOR
IN A PHOTONIC CRYSTAL MICROCAVITY 145 8.4.2 DISCRETE SOLITONS IN COUPLED
DEFECTS IN PHOTONIC CRYSTALS 147 8.5 CONCLUSION 152 REFERENCES 152 9
LINEAR AND NON-IINEAR OPTICAL EXPERIMENTS BASED ON MACROPOROUS SILICON
PHOTONIC CRYSTALS 157 RALFB. WEHRSPOHN, STEFAN L SCHWEIZER, AND VAHID
SANDOGHDAR 9.1 INTRODUCTION 157 9.2 FABRICATIONOF 2D PHOTONIC CRYSTALS
158 9.2.1 MACROPOROUS SILICON GROWTH MODEL 158 9.2.2 EXTENSION OFTHE
PORE FORMATION MODEL TO TRENCH FORMATION 162 9.2.3 FABRICATION OF
TRENCHES AND MORE COMPLEX GEOMETRIES 162 9.2.4 CURRENT LIMITS OF SILICON
MACROPORE ETCHING 164 9.3 DEFECTS IN 2D MACROPOROUS SILICON PHOTONIC
CRYSTALS 164 9.3.1 WAVEGUIDES 165 9.3.2 BEAMING 166 9.3.3 MICROCAVITIES
168 9.4 INTERNAL EMITTER 170 9.4.1 INTERNAL EMITTER IN BULK 2D SILICON
PHOTONIC CRYSTALS 170 9.4.2 INTERNAL EMITTER IN MICROCAVITIES OF 2D
SILICON PHOTONIC CRYSTALS 172 9.4.3 MODIFIED THERMAL EMISSION 174 9.5
TUNABILITY OF SILICON PHOTONIC CRYSTALS 175 9.5.1 LIQUID CRYSTALS TUNING
175 9.5.2 FREE-CARRIER TUNING 176 9.5.3 NONLINEAR OPTICAL TUNING 177 9.6
SUMMARY 179 REFERENCES 180 CONTENTS IX 10 DISPERSIVE PROPERTIES OF
PHOTONIC CRYSTAL WAVEGUIDE RESONATORS 183 T. SUENNER, M. CELLNER, M.
SCHOLZ, A LOEFFER, M. KAMP, AND A FORCHE! 10.1 INTRODUCTION 183 10.2
DESIGN AND FABRICATION 184 10.2.1 RESONATOR DESIGN 184 10.2.2
FABRICATION 286 10.3 TRANSMISSION MEASUREMENTS 187 10.4 DISPERSION
MEASUREMENTS 189 10.5 ANALYSIS 192 10.5.1 HUBERT TRANSFORMATION 192
10.5.2 FABRY-PEROT MODEL 194 10.6 POSTFABRICATION TUNING 195 10.7
CONCLUSION 196 REFERENCES 197 II TUNEABLE PHOTONIC CRYSTALS 199 11
POLYMER BASED TUNEABLE PHOTONIC CRYSTALS 201 J.H. WUELBERN, M. SCHMIDT,
U. HUEBNER, R. BOUCHER, W. VOLKSEN, Y. LU, R. ZENTEL, AND M. EICH 11.1
INTRODUCTION 201 11.2 PREPARATION OF PHOTONIC CRYSTAL STRUCTURES IN
POLYMER WAVEGUIDE MATERIAL 202 11.2.1 MATERIALS 202 11.2.2 FABRICATION
203 11.3 REALIZATION AND CHARACTERIZATION OF ELECTRO-OPTICALLY TUNEABLE
PHOTONIC CRYSTALS 208 11.3.1 CHARACTERIZATION 208 11.3.2 EXPERIMENTAL
RESULTS 210 11.4 SYNTHESIS OF ELECTRO-OPTICALLY ACTIVE POLYMERS 213 11.5
CONCLUSIONS AND OUTLOOK 217 REFERENCES 218 12 TUNEABLE PHOTONIC CRYSTALS
OBTAINED BY LIQUID CRYSTAL INFILTRATION 221 H.-S. KITZEROW, A. LORENZ,
AND H. MATTHIAS 12.1 INTRODUCTION 221 12.2 EXPERIMENTAL RESULTS 223
12.2.1 COLLOIDAL CRYSTALS 223 12.2.2 PHOTONIC CRYSTALS MADE OF
MACROPOROUS SILICON 226 12.2.3 PHOTONIC CRYSTAL FIBRES 231 12.3
DISCUSSION 232 VIA CONCLUSIONS 233 REFERENCES 234 X I CONTENTS 13 LASING
IN DYE-DOPED CHIRAL LIQUID CRYSTALS: INFLUENCE OF DEFECT MODES 239
WOLFGANG HAASE, FEDOR PODGORNOV, YUKO MATSUHISA, AND MASANORI OZAKI 13.1
INTRODUCTION 239 13.2 EXPERIMENT 240 13.2.1 LASING IN CHOLESTERICS WITH
STRUCTURAL DEFECTS 241 13.2.1.1 PREPARATION OF CHOLESTERICS 241 13.2.1.2
CELL FABRICATION 241 13.2.1.3 PREPARATION OFCLC/TI0 2 DISPERSION 242
13.2.1.4 THE EXPERIMENTAL SETUP 242 13.2.1.5 EXPERIMENTAL RESULTS 243
13.2.2 LASING IN FERROELECTRIC LIQUID CRYSTALS 243 13.2.2.1 SAMPLE
PREPARATION 244 13.2.2.2 THE EXPERIMENTAL SETUP 245 13.2.2.3
EXPERIMENTAL RESULTS 245 13.2.3 CONCLUSION 248 REFERENCES 248 14
PHOTONIC CRYSTALS BASED ON CHIRAL LIQUID CRYSTAL 251 M. OZAKI, Y.
MATSUHISA, H. YOSHIDA, R. OZAKI, AND A. FUJII 14.1 INTRODUCTION 251 14.2
PHOTONIC BAND GAP AND BAND EDGE LASING IN CHIRAL LIQUID CRYSTAL 252
14.2.1 LASER ACTION IN CHOLESTERIC LIQUID CRYSTAL 252 14.2.2
LOW-THRESHOLD LASING BASED ON BAND-EDGE EXCITATION IN CLC 254 14.2.3
LASER ACTION IN POLYMERIZED CHOLESTERIC LIQUID CRYSTAL FILM 255 14.2.4
ELECTRICALLY TUNABLE LASER ACTION IN CHIRAL SMECTIC LIQUID CRYSTAL 256
14.3 TWIST DEFECT MODE IN CHOLESTERIC LIQUID CRYSTAL 258 14.4 CHIRAL
DEFECT MODE INDUCED BY PARTIAL DEFORMATION OF HELIX 259 14.5 TUNABLE
DEFECT MODE LASING IN A PERIODIC STRUCTURE CONTAINING CLC LAYER AS A
DEFECT 262 14.6 SUMMARY 265 REFERENCES 266 15 TUNABLE SUPERPRISM EFFECT
IN PHOTONIC CRYSTALS 269 F. GLOECKLER, S. PETERS, U. LEMMER, AND M.
GERKEN 15.1 INTRODUCTION 269 15.2 THE SUPERPRISM EFFECT 270 15.2.1
ORIGIN OF THE SUPERPRISM EFFECT 270 15.2.2 PERFORMANCE CONSIDERATIONS
FOR SUPERPRSIM DEVICES 271 15.2.3 BRAGG-STACKS AND OTHER 1D SUPERPRISMS
272 15.2.4 CURRENT STATE IN SUPERPRISM STRUCTURES 272 15.3 TUNABLE
PHOTONIC CRYSTALS 273 15.3.1 LIQUID CRYSTALS 274 15.3.2 TUNING BY
POCKELS EFFECT 275 15.3.3 ALL-OPTICAL TUNING 276 CONTENTS I XI 15.3.4
OTHER TUNING MECHANISMS 278 15.4 TUNABLE SUPERPRISM STRUCTURES 278 15.5
1D HYBRID ORGANIC-ANORGANIC STRUCTURES 279 15.5.1 SURVEY OF OPTICALLY
NONLINEAR ORGANIC MATERIALS 279 15.5.1.1 THERMO-OPTIC ORGANIC MATERIALS
280 15.5.1.2 ELECTRO-OPTIC ORGANIC MATERIALS 280 15.5.1.3 ALL-OPTICAL
ORGANIC MATERIALS 281 15.5.2 NUMERICAL SIMULATION OF A DOUBLY RESONANT
STRUCTURES FOR ALL-OPTICAL SPATIAL BEAM SWITCHING 282 15.5.2.1 BEAM
SHIFTING FOR TWO ACTIVE CAVITIES 284 15.5.2.2 BEAM SHIFTING FOR ONE
ACTIVE CAVITY 284 15.5.2.3 BEAM SHIFTING FOR ACTIVE COUPLING LAYERS 284
15.6 CONCLUSIONS AND OUTLOOK 286 REFERENCES 286 III PHOTONIC CRYSTAL
FIBRES 289 16 PREPARATION AND APPLICATION OF FUNCTIONALIZED PHOTONIC
CRYSTAL FIBRES 291 H. BARTELT, J. KIRCHHOF, J. KOBELKE, K. SCHUSTER, A.
SCHWUCHOW, K. MARL, U. ROEPKE,J. LEPPERT, H. LEHMANN, S. SMOLKA, M.
BARTH, O. BENSON, S. TACCHEO, AND C. D' ANDREA 16.1 INTRODUCTION 291
16.2 GENERAL PREPARATION TECHNIQUES FOR PCFS 292 16.3 SILICA-BASED PCFS
WITH INDEX GUIDING 292 16.3.1 SPECIFIC PROPERTIES OF PURE SILICA PCFS
293 16.3.2 PCF WITH VERY LARGE MODE FIELD PARAMETER (VLMA-PCF) 295
16.3.3 DOPED SILICA PCF WITH GERMANIUM-DOPED HOLEY CORE 297 16.3.4
HIGHLY GERMANIUM-DOPED INDEX GUIDING PCF 299 16.4 PHOTONIC BAND GAP
FIBRES 302 16.5 NON-SILICA PCF 305 16.6 SELECTED LINEAR AND NONLINEAR
APPLICATIONS 307 16.6.1 SPECTRAL SENSING 307 16.6.2 SUPERCONTINUUM
GENERATION 308 16.7 CONCLUSIONS 310 REFERENCES 310 17 FINITE ELEMENT
SIMULATION OF RADIATION LOSSES IN PHOTONIC CRYSTAL FIBERS 313 JAN
POMPLUN, LIN ZSCHIEDRICH, ROLAND KLOSE, FRANK SCHMIDT, AND SVEN BURGER
17.1 INTRODUCTION 313 17.2 FORMULATION OF PROPAGATION MODE PROBLEM 314
17.3 DISCRETIZATION OF MAXWELL'S EQUATIONS WITH THE FINITE ELEMENT
METHOD 315 XII CONTENTS _^ 17.4 COMPUTATION OF LEAKY MODES IN HOLLOW
CORE PHOTONIC CRYSTAL FIBERS 318 17.5 GOAL ORIENTED ERROR ESTIMATOR 319
17.6 CONVERGENCE OF EIGENVALUES USING DIFFERENT ERROR ESTIMATORS 321
17.7 OPTIMIZATION OF HCPCF DESIGN 324 17.8 KAGOME-STRUCTURED FIBERS 325
17.9 CONCLUSION 329 REFERENCES 330 IV PLASMONIC AND METAMATERIALS 333 18
OPTICAL PROPERTIES OF PHOTONIC/PLASMONIC STRUCTURES IN NANOCOMPOSITE
CLASS 335 H. CRAENER, A. ABDOLVAND, S. WACKEROW, O. KIRIYENKO, AND W.
HERGERT 18.1 INTRODUCTION 335 18.2 EXPERIMENTAL INVESTIGATIONS 335 18.3
CALCULATION OF EFFECTIVE PERMITTIVITY 339 18.3.1 EXTENSIONS OF THE
METHOD 344 18.4 SUMMARY 345 REFERENCES 346 19 OPTICAL PROPERTIES OF
DISORDERED METALLIC PHOTONIC CRYSTAL SLABS 349 D. NAU, A. SCHOENHARDT, A.
CHRIST, T. ZENTGRAF, CH. BAUER, J. KUEHL, AND H. DESSEN 19.1 INTRODUCTION
349 19.2 SAMPLE DESCRIPTION AND DISORDER MODELS 350 19.3 TRANSMISSION
PROPERTIES 357 19.4 BANDSTRUCTURE 361 19.5 CONCLUSION 366 REFERENCES 366
20 SUPERFOCUSING OF OPTICAL BEAMS BELOW THE DIFFRACTION LIMIT BY MEDIA
WITH NEGATIVE REFRACTION 369 A. HUSAKOU AND}. HERRMANN 20.1 INTRODUCTION
369 20.2 SUPERFOCUSING OF A NON-MOVING BEAM BY THE COMBINED ACTION OF AN
APERTURE AND A NEGATIVE-INDEX LAYER 371 20.2.1 EFFECTIVE-MEDIUM APPROACH
371 20.2.2 DIRECT NUMERICAL SOLUTION OF MAXWELL EQUATIONS FOR PHOTONIC
CRYSTALS 373 20.3 FOCUSING OF SCANNING LIGHT BEAMS BELOW THE DIFFRACTION
LIMIT USING A SATURABLE ABSORBER AND A NEGATIVE-REFRACTION MATERIAL 376
20.3.1 EFFECTIVE-MEDIUM APPROACH 377 20.3.2 DIRECT NUMERICAL SOLUTION OF
MAXWELL EQUATIONS FOR PHOTONIC CRYSTALS 379 CONTENTS I XIII 20.4
SUBDIFFRACTION FOCUSING OF SCANNING BEAMS BY A NEGATIVE-REFRACTION LAYER
COMBINED WITH A NONLINEAR KERR-TYPE LAYER 381 20.4.1 EFFECTIVE-MEDIUM
APPROACH 381 20.4.2 DIRECT NUMERICAL SOLUTION OF MAXWELL EQUATIONS FOR
PHOTONIC CRYSTALS 385 20.5 CONCLUSION 386 REFERENCES 387 21 NEGATIVE
REFRACTION IN 2D PHOTONIC CRYSTAL SUPER-LATTICE: TOWARDS DEVICES IN THE
IR AND VISIBLE RANGES 389 Y. NEVE-OZ, M. COLOSOVSKY, A. FRENKEL, AND D.
DAVIDOV 21.1 INTRODUCTION 389 21.2 DESIGN 390 21.3 SIMULATIONS, RESULTS
AND DISCUSSION 392 21.3.1 WAVE TRANSMISSION THROUGH THE SUPERLATTICE
SLAB: EVIDENCE FOR NEGATIVE PHASE VELOCITY 392 21.3.2 REFRACTION THROUGH
A SUPERLATTICE PRISM 393 21.3.3 DETERMINATION OF THE REFRACTIVE INDICES
USING THE EQUAL FREQUENCY CONTOURS 395 21.4 CONCLUSIONS AND FUTURE
DIRECTIONS 397 REFERENCES 398 22 NEGATIVE PERMEABILITY AROUND 630 NM IN
NANOFABRICATED VERTICAL MEANDER METAMATERIALS 399 HEINZ SCHWEIZER, LIWEI
FU, HEDWIG CRAEBELDINGER, HONGCANG CUO, NA LIU, STEFAN KAISER, AND HARALD
DESSEN 22.1 INTRODUCTION 399 22.2 THEORETICAL APPROACH 401 22.2.1
TRANSMISSION LINE ANALYSIS 401 22.2.1.1 THREE BASIC TL CIRCUITS 402
22.2.1.2 ROLE OF THE SERIES CAPACITANCE 403 22.2.2 NUMERICAL SIMULATIONS
AND SYNTHESES WITH TL ANALYSIS 404 22.2.2.1 METAMATERIALS WITH DIFFERENT
UNIT CELLS 404 22.2.2.2 NUMERICAL SIMULATION OF MEANDER STRUCTURES 408
22.3 EXPERIMENTAL APPROACHES 410 22.3.1 FABRICATION TECHNOLOGIES 410
22.3.1.1 PLANE METALLIC MATRICES 410 22.3.1.2 NOVEL MEANDER STRUCTURE
411 22.3.2 CHARACTERIZATION OF FABRICATED STRUCTURES 412 22.3.2.1
EXPERIMENTAL RESULTS OF MEANDER STRIPS 413 22.3.2.2 EXPERIMENTAL RESULTS
OF MEANDER PLATES 414 12.4 CONCLUSION 415 REFERENCES 415 INDEX 417 |
adam_txt |
NANOPHOTONIC MATERIALS PHOTONIC CRYSTALS, PLASMONICS, AND METAMATERIALS
EDITED BY R. B. WEHRSPOHN, H.-S. KITZEROW, AND K. BUSCH WILEY- VCH
WILEY-VCH VERLAG GMBH & CO. KGAA CONTENTS PREFECE XV LISTOFCONTRIBUTORS
XVII I LINEAR AND NON-IINEAR PROPERTIES OF PHOTONIC CRYSTALS 1 1
SOLITARY WAVE FORMATION IN ONE-DIMENSIONAL PHOTONIC CRYSTALS 3 SABINE
ESSIG, JENS NIEGEMANN, LASHA TKESHELASHVILI, AND KURT BUSCH 1.1
INTRODUCTION 3 1.2 VARIATIONAL APPROACH TO THE NLCME 5 1.3 RADIATION
LOSSES 9 1.4 RESULTS 11 1.5 CONCLUSIONS AND OUTLOOK 12 REFERENCES 13 2
MICROSCOPIC ANALYSIS OF THE OPTICA! AND ELECTRONIC PROPERTIES OF
SEMICONDUCTOR PHOTONIC-CRYSTAL STRUCTURES 15 BERNHARD PASENOW, MATTHIAS
REICHELT, TMEKE STROUCKEN, TORSTEN MEIER, AND STEPHAN W. KOCH 2.1
INTRODUCTION 15 2.2 THEORETICAL APPROACH 16 2.2.1
SPATIALLY-INHOMOGENEOUS MAXWELL EQUATIONS IN SEMICONDUCTOR
PHOTONIC-CRYSTAL STRUCTURES 17 * 2.2.1.1 TRANSVERSE PART:
SELF-CONSISTENT SOLUTION OF THE MAXWELL SEMICONDUCTOR BLOCH EQUATIONS 18
2.2.1.2 LONGITUDINAL PART: THE GENERALIZED COULOMB INTERACTION 18 2.2.2
HAMILTONIAN DESCRIBING THE MATERIAL DYNAMICS 19 2.2.3 SEMICONDUCTOR
BLOCH EQUATIONS IN REAL SPACE 21 2.2.3.1 LOW-INTENSITY LIMIT 22 2.3
NUMERICAL RESULTS 24 NANOPHOTONIC MATERIALS: PHOTONIC CRYSTALS,
PLASMONICS, AND METAMATERIALS. EDITED BY R.B. WEHRSPOHN, H.-S. KITZEROW,
AND K. BUSCH COPYRIGHT 2008 WILEY-VCH VERLAG GMBH & CO. KGAA, WEINHEIM
ISBN: 978-3-527-40858-0 VI I CONTENTS 2.3.1 SEMICONDUCTOR
PHOTONIC-CRYSTAL STRUCTURE 24 2.3.2 LINEAR EXCITONIC ABSORPTION 26 2.3.3
COHERENT WAVE PACKET DYNAMICS 29 2.3.4 WAVE PACKET DYNAMICS WITH
DEPHASING AND RELAXATION 31 2.3.5 QUASI-EQUILIBRIUM ABSORPTION AND GAIN
SPECTRA 33 2.4 SUMMARY 35 REFERENCES 36 3 FUNCTIONAL 3D PHOTONIC FILMS
FROM POLYMER BEADS 39 BIRGER LANGE, FRIEDERIKE FLEISCHHAKER, AND RUDOLF
ZENTEL 3.1 INTRODUCTION 39 3.2 OPALS AS COLORING AGENTS 43 3.2.1 OPAL
FLAKES AS EFFECT PIGMENTS IN CLEAR COATINGS 44 3.2.2 OPALINE EFFECT
PIGMENTS BY SPRAY INDUCED SELF-ASSEMBLY 44 3.3 LOADINGOF OPALS WITH
HIGHLY FLUORESCENT DYES 46 3.4 NEW PROPERTIES THROUGH REPLICATION 47
3.4.1 INCREASE OF REFRACTIVE INDEX 47 3.4.2 ROBUST REPLICA 48 3.4.3
INERT REPLICA FOR CHEMISTRY AND CATALYSIS AT HIGH TEMPERATURES 49 3.5
DEFECT INCORPORATION INTO OPALS 50 3.5.1 PATTERNING OF THE OPAL ITSELF
51 3.5.2 PATTERNING OF AN INFILTRATED MATERIAL 53 3.5.3 CHEMISTRY IN
DEFECT LAYERS 55 REFERENCES 58 4 BLOCH MODES AND CROUP VELOCITY DELAY IN
COUPLED RESONATOR CHAINS 63 BJOERN M. MOELLER, MIKHAIL V. ARTEMYEV, AND
ULRIKE WOGGON 4.1 INTRODUCTION 63 4.2 EXPERIMENT 64 4.3 COHERENT CAVITY
FIELD COUPLING IN ONE-DIMENSIONAL CROWS 65 4.4 MODE STRUCTURE IN FINITE
CROWS 67 4.5 SLOWING DOWN LIGHT IN CROWS 70 4.6 DISORDER AND DETUNING IN
CROWS 72 4.7 SUMMARY 74 REFERENCES 74 5 COUPLED NANOPILLAR WAVEGUIDES:
OPTICAL PROPERTIES AND APPLICATIONS 77 DMITRY N. CHIGRIN, SERGEI V.
ZHUKOVSKY, ANDREI V. LAVR'MENKO, AND JOHANN KROHA 5.1 INTRODUCTION 77
5.2 DISPERSION ENGINEERING 79 5.2.1 DISPERSION TUNING 79 5.2.2 COUPLED
MODE MODEL 82 5.3 TRANSMISSION EFFICIENCY 85 5.4 APERIODIC NANOPILLAR
WAVEGUIDES 88 5.5 APPLICATIONS 89 5.5.1 DIRECTIONAL COUPLER 89 5.5.2
LASER RESONATORS 90 5.6 CONCLUSION 94 REFERENCES 95 6 INVESTIGATIONS ON
THE GENERATION OF PHOTONIC CRYSTALS USING TWO-PHOTON POLYMERIZATION
(2PP) OF INORGANIC-ORGANIC HYBRID POLYMERS WITH ULTRA-SHORT LASER PULSES
97 R. HOUBERTZ, P. DECLERCK, S. PASSINGER, A. OVSIANIKOV, J. SERBIN, AND
B.N. CHICHKOV 6.1 INTRODUCTION 97 6.2 HIGH-REFRACTIVE INDEX
INORGANIC-ORGANIC HYBRID POLYMERS 98 6.3 MULTI-PHOTON FABRICATION 104
6.3.1 EXPERIMENTAL SETUP 104 6.3.2 FABRICATION OF PHC IN STANDARD
ORMOCER 105 6.3.3 2PP OF HIGH REFRACTIVE INDEX MATERIALS 107 6.3.4
PATTERNING AND PHC FABRICATION IN POSITIVE RESIST MATERIAL S1813 111 6.4
SUMMARY AND OUTLOOK 112 REFERENCES 113 7 ULTRA-LOW REFRACTIVE INDEX
MESOPOROUS SUBSTRATES FOR WAVEGUIDE STRUCTURES 115 D. KONJHODZIC, S.
SCHROETER, AND F. MARLOW 7.1 INTRODUCTION 115 7.2 MESOPOROUS FILMS 116
7.2.1 FABRICATION OF MESOPOROUS SILICA FILMS 116 7.2.1.1 GENERAL REMARKS
116 7.2.1.2 PREPARATION DETAILS 117 7.2.2 CHARACTERIZATION AND STRUCTURE
DETERMINATION OF MSFS 118 7.2.3 OPTICALPROPERTIESOFMSFS 121 7.2.4
SYNTHESIS MECHANISM 123 7.3 MSFS AS SUBSTRATES FOR WAVEGUIDE STRUCTURES
124 7.3.1 POLYMER WAVEGUIDES 124 7.3.2 TA 2 0 5 WAVEGUIDES AND 2D PHC
STRUCTURES 126 7.3.3 PZT FILMS 127 7.4 CONCLUSIONS 129 REFERENCES 130
CONTENTS VII VIII CONTENTS 8 LINEAR AND NONLINEAR EFFECTS OF LIGHT
PROPAGATION IN LOW-INDEX PHOTONIC CRYSTAL SLABS 131 R. LLIEW, C. ETRICH,
M. AUGUSTIN, E.-B. KLEY, S. NOLTE, A. TUENNERMANN, AND F. LEDERER 8.1
INTRODUCTION 131 8.2 FABRICATIONOF PHOTONIC CRYSTAL SLABS 132 8.3 LINEAR
PROPERTIES OF PHOTONIC CRYSTAL SLABS 133 8.3.1 TRANSMISSION AND HIGH
DISPERSION OF LINE-DEFECT WAVEGUIDES 134 8.3.2 HIGH-QUALITY FACTOR
MICROCAVITIES IN A LOW-INDEX PHOTONIC CRYSTAL MEMBRANE 138 8.3.3 UNUSUAL
DIFFRACTION AND REFRACTION PHENOMENA IN PHOTONIC CRYSTAL SLABS 141
8.3.3.1 SELF-COLLIMATED LIGHT AT INFRARED AND VISIBLE WAVELENGTHS 142
8.3.3.2 NEGATIVE REFRACTION OF LIGHT 143 8.4 LIGHT PROPAGATION IN
NONLINEAR PHOTONIC CRYSTALS 145 8.4.1 AN OPTICAL PARAMETRIC OSCILLATOR
IN A PHOTONIC CRYSTAL MICROCAVITY 145 8.4.2 DISCRETE SOLITONS IN COUPLED
DEFECTS IN PHOTONIC CRYSTALS 147 8.5 CONCLUSION 152 REFERENCES 152 9
LINEAR AND NON-IINEAR OPTICAL EXPERIMENTS BASED ON MACROPOROUS SILICON
PHOTONIC CRYSTALS 157 RALFB. WEHRSPOHN, STEFAN L SCHWEIZER, AND VAHID
SANDOGHDAR 9.1 INTRODUCTION 157 9.2 FABRICATIONOF 2D PHOTONIC CRYSTALS
158 9.2.1 MACROPOROUS SILICON GROWTH MODEL 158 9.2.2 EXTENSION OFTHE
PORE FORMATION MODEL TO TRENCH FORMATION 162 9.2.3 FABRICATION OF
TRENCHES AND MORE COMPLEX GEOMETRIES 162 9.2.4 CURRENT LIMITS OF SILICON
MACROPORE ETCHING 164 9.3 DEFECTS IN 2D MACROPOROUS SILICON PHOTONIC
CRYSTALS 164 9.3.1 WAVEGUIDES 165 9.3.2 BEAMING 166 9.3.3 MICROCAVITIES
168 9.4 INTERNAL EMITTER 170 9.4.1 INTERNAL EMITTER IN BULK 2D SILICON
PHOTONIC CRYSTALS 170 9.4.2 INTERNAL EMITTER IN MICROCAVITIES OF 2D
SILICON PHOTONIC CRYSTALS 172 9.4.3 MODIFIED THERMAL EMISSION 174 9.5
TUNABILITY OF SILICON PHOTONIC CRYSTALS 175 9.5.1 LIQUID CRYSTALS TUNING
175 9.5.2 FREE-CARRIER TUNING 176 9.5.3 NONLINEAR OPTICAL TUNING 177 9.6
SUMMARY 179 REFERENCES 180 CONTENTS IX 10 DISPERSIVE PROPERTIES OF
PHOTONIC CRYSTAL WAVEGUIDE RESONATORS 183 T. SUENNER, M. CELLNER, M.
SCHOLZ, A LOEFFER, M. KAMP, AND A FORCHE! 10.1 INTRODUCTION 183 10.2
DESIGN AND FABRICATION 184 10.2.1 RESONATOR DESIGN 184 10.2.2
FABRICATION 286 10.3 TRANSMISSION MEASUREMENTS 187 10.4 DISPERSION
MEASUREMENTS 189 10.5 ANALYSIS 192 10.5.1 HUBERT TRANSFORMATION 192
10.5.2 FABRY-PEROT MODEL 194 10.6 POSTFABRICATION TUNING 195 10.7
CONCLUSION 196 REFERENCES 197 II TUNEABLE PHOTONIC CRYSTALS 199 11
POLYMER BASED TUNEABLE PHOTONIC CRYSTALS 201 J.H. WUELBERN, M. SCHMIDT,
U. HUEBNER, R. BOUCHER, W. VOLKSEN, Y. LU, R. ZENTEL, AND M. EICH 11.1
INTRODUCTION 201 11.2 PREPARATION OF PHOTONIC CRYSTAL STRUCTURES IN
POLYMER WAVEGUIDE MATERIAL 202 11.2.1 MATERIALS 202 11.2.2 FABRICATION
203 11.3 REALIZATION AND CHARACTERIZATION OF ELECTRO-OPTICALLY TUNEABLE
PHOTONIC CRYSTALS 208 11.3.1 CHARACTERIZATION 208 11.3.2 EXPERIMENTAL
RESULTS 210 11.4 SYNTHESIS OF ELECTRO-OPTICALLY ACTIVE POLYMERS 213 11.5
CONCLUSIONS AND OUTLOOK 217 REFERENCES 218 12 TUNEABLE PHOTONIC CRYSTALS
OBTAINED BY LIQUID CRYSTAL INFILTRATION 221 H.-S. KITZEROW, A. LORENZ,
AND H. MATTHIAS 12.1 INTRODUCTION 221 12.2 EXPERIMENTAL RESULTS 223
12.2.1 COLLOIDAL CRYSTALS 223 12.2.2 PHOTONIC CRYSTALS MADE OF
MACROPOROUS SILICON 226 12.2.3 PHOTONIC CRYSTAL FIBRES 231 12.3
DISCUSSION 232 VIA CONCLUSIONS 233 REFERENCES 234 X I CONTENTS 13 LASING
IN DYE-DOPED CHIRAL LIQUID CRYSTALS: INFLUENCE OF DEFECT MODES 239
WOLFGANG HAASE, FEDOR PODGORNOV, YUKO MATSUHISA, AND MASANORI OZAKI 13.1
INTRODUCTION 239 13.2 EXPERIMENT 240 13.2.1 LASING IN CHOLESTERICS WITH
STRUCTURAL DEFECTS 241 13.2.1.1 PREPARATION OF CHOLESTERICS 241 13.2.1.2
CELL FABRICATION 241 13.2.1.3 PREPARATION OFCLC/TI0 2 DISPERSION 242
13.2.1.4 THE EXPERIMENTAL SETUP 242 13.2.1.5 EXPERIMENTAL RESULTS 243
13.2.2 LASING IN FERROELECTRIC LIQUID CRYSTALS 243 13.2.2.1 SAMPLE
PREPARATION 244 13.2.2.2 THE EXPERIMENTAL SETUP 245 13.2.2.3
EXPERIMENTAL RESULTS 245 13.2.3 CONCLUSION 248 REFERENCES 248 14
PHOTONIC CRYSTALS BASED ON CHIRAL LIQUID CRYSTAL 251 M. OZAKI, Y.
MATSUHISA, H. YOSHIDA, R. OZAKI, AND A. FUJII 14.1 INTRODUCTION 251 14.2
PHOTONIC BAND GAP AND BAND EDGE LASING IN CHIRAL LIQUID CRYSTAL 252
14.2.1 LASER ACTION IN CHOLESTERIC LIQUID CRYSTAL 252 14.2.2
LOW-THRESHOLD LASING BASED ON BAND-EDGE EXCITATION IN CLC 254 14.2.3
LASER ACTION IN POLYMERIZED CHOLESTERIC LIQUID CRYSTAL FILM 255 14.2.4
ELECTRICALLY TUNABLE LASER ACTION IN CHIRAL SMECTIC LIQUID CRYSTAL 256
14.3 TWIST DEFECT MODE IN CHOLESTERIC LIQUID CRYSTAL 258 14.4 CHIRAL
DEFECT MODE INDUCED BY PARTIAL DEFORMATION OF HELIX 259 14.5 TUNABLE
DEFECT MODE LASING IN A PERIODIC STRUCTURE CONTAINING CLC LAYER AS A
DEFECT 262 14.6 SUMMARY 265 REFERENCES 266 15 TUNABLE SUPERPRISM EFFECT
IN PHOTONIC CRYSTALS 269 F. GLOECKLER, S. PETERS, U. LEMMER, AND M.
GERKEN 15.1 INTRODUCTION 269 15.2 THE SUPERPRISM EFFECT 270 15.2.1
ORIGIN OF THE SUPERPRISM EFFECT 270 15.2.2 PERFORMANCE CONSIDERATIONS
FOR SUPERPRSIM DEVICES 271 15.2.3 BRAGG-STACKS AND OTHER 1D SUPERPRISMS
272 15.2.4 CURRENT STATE IN SUPERPRISM STRUCTURES 272 15.3 TUNABLE
PHOTONIC CRYSTALS 273 15.3.1 LIQUID CRYSTALS 274 15.3.2 TUNING BY
POCKELS EFFECT 275 15.3.3 ALL-OPTICAL TUNING 276 CONTENTS I XI 15.3.4
OTHER TUNING MECHANISMS 278 15.4 TUNABLE SUPERPRISM STRUCTURES 278 15.5
1D HYBRID ORGANIC-ANORGANIC STRUCTURES 279 15.5.1 SURVEY OF OPTICALLY
NONLINEAR ORGANIC MATERIALS 279 15.5.1.1 THERMO-OPTIC ORGANIC MATERIALS
280 15.5.1.2 ELECTRO-OPTIC ORGANIC MATERIALS 280 15.5.1.3 ALL-OPTICAL
ORGANIC MATERIALS 281 15.5.2 NUMERICAL SIMULATION OF A DOUBLY RESONANT
STRUCTURES FOR ALL-OPTICAL SPATIAL BEAM SWITCHING 282 15.5.2.1 BEAM
SHIFTING FOR TWO ACTIVE CAVITIES 284 15.5.2.2 BEAM SHIFTING FOR ONE
ACTIVE CAVITY 284 15.5.2.3 BEAM SHIFTING FOR ACTIVE COUPLING LAYERS 284
15.6 CONCLUSIONS AND OUTLOOK 286 REFERENCES 286 III PHOTONIC CRYSTAL
FIBRES 289 16 PREPARATION AND APPLICATION OF FUNCTIONALIZED PHOTONIC
CRYSTAL FIBRES 291 H. BARTELT, J. KIRCHHOF, J. KOBELKE, K. SCHUSTER, A.
SCHWUCHOW, K. MARL, U. ROEPKE,J. LEPPERT, H. LEHMANN, S. SMOLKA, M.
BARTH, O. BENSON, S. TACCHEO, AND C. D' ANDREA 16.1 INTRODUCTION 291
16.2 GENERAL PREPARATION TECHNIQUES FOR PCFS 292 16.3 SILICA-BASED PCFS
WITH INDEX GUIDING 292 16.3.1 SPECIFIC PROPERTIES OF PURE SILICA PCFS
293 16.3.2 PCF WITH VERY LARGE MODE FIELD PARAMETER (VLMA-PCF) 295
16.3.3 DOPED SILICA PCF WITH GERMANIUM-DOPED HOLEY CORE 297 16.3.4
HIGHLY GERMANIUM-DOPED INDEX GUIDING PCF 299 16.4 PHOTONIC BAND GAP
FIBRES 302 16.5 NON-SILICA PCF 305 16.6 SELECTED LINEAR AND NONLINEAR
APPLICATIONS 307 16.6.1 SPECTRAL SENSING 307 16.6.2 SUPERCONTINUUM
GENERATION 308 16.7 CONCLUSIONS 310 REFERENCES 310 17 FINITE ELEMENT
SIMULATION OF RADIATION LOSSES IN PHOTONIC CRYSTAL FIBERS 313 JAN
POMPLUN, LIN ZSCHIEDRICH, ROLAND KLOSE, FRANK SCHMIDT, AND SVEN BURGER
17.1 INTRODUCTION 313 17.2 FORMULATION OF PROPAGATION MODE PROBLEM 314
17.3 DISCRETIZATION OF MAXWELL'S EQUATIONS WITH THE FINITE ELEMENT
METHOD 315 XII CONTENTS _^ 17.4 COMPUTATION OF LEAKY MODES IN HOLLOW
CORE PHOTONIC CRYSTAL FIBERS 318 17.5 GOAL ORIENTED ERROR ESTIMATOR 319
17.6 CONVERGENCE OF EIGENVALUES USING DIFFERENT ERROR ESTIMATORS 321
17.7 OPTIMIZATION OF HCPCF DESIGN 324 17.8 KAGOME-STRUCTURED FIBERS 325
17.9 CONCLUSION 329 REFERENCES 330 IV PLASMONIC AND METAMATERIALS 333 18
OPTICAL PROPERTIES OF PHOTONIC/PLASMONIC STRUCTURES IN NANOCOMPOSITE
CLASS 335 H. CRAENER, A. ABDOLVAND, S. WACKEROW, O. KIRIYENKO, AND W.
HERGERT 18.1 INTRODUCTION 335 18.2 EXPERIMENTAL INVESTIGATIONS 335 18.3
CALCULATION OF EFFECTIVE PERMITTIVITY 339 18.3.1 EXTENSIONS OF THE
METHOD 344 18.4 SUMMARY 345 REFERENCES 346 19 OPTICAL PROPERTIES OF
DISORDERED METALLIC PHOTONIC CRYSTAL SLABS 349 D. NAU, A. SCHOENHARDT, A.
CHRIST, T. ZENTGRAF, CH. BAUER, J. KUEHL, AND H. DESSEN 19.1 INTRODUCTION
349 19.2 SAMPLE DESCRIPTION AND DISORDER MODELS 350 19.3 TRANSMISSION
PROPERTIES 357 19.4 BANDSTRUCTURE 361 19.5 CONCLUSION 366 REFERENCES 366
20 SUPERFOCUSING OF OPTICAL BEAMS BELOW THE DIFFRACTION LIMIT BY MEDIA
WITH NEGATIVE REFRACTION 369 A. HUSAKOU AND}. HERRMANN 20.1 INTRODUCTION
369 20.2 SUPERFOCUSING OF A NON-MOVING BEAM BY THE COMBINED ACTION OF AN
APERTURE AND A NEGATIVE-INDEX LAYER 371 20.2.1 EFFECTIVE-MEDIUM APPROACH
371 20.2.2 DIRECT NUMERICAL SOLUTION OF MAXWELL EQUATIONS FOR PHOTONIC
CRYSTALS 373 20.3 FOCUSING OF SCANNING LIGHT BEAMS BELOW THE DIFFRACTION
LIMIT USING A SATURABLE ABSORBER AND A NEGATIVE-REFRACTION MATERIAL 376
20.3.1 EFFECTIVE-MEDIUM APPROACH 377 20.3.2 DIRECT NUMERICAL SOLUTION OF
MAXWELL EQUATIONS FOR PHOTONIC CRYSTALS 379 CONTENTS I XIII 20.4
SUBDIFFRACTION FOCUSING OF SCANNING BEAMS BY A NEGATIVE-REFRACTION LAYER
COMBINED WITH A NONLINEAR KERR-TYPE LAYER 381 20.4.1 EFFECTIVE-MEDIUM
APPROACH 381 20.4.2 DIRECT NUMERICAL SOLUTION OF MAXWELL EQUATIONS FOR
PHOTONIC CRYSTALS 385 20.5 CONCLUSION 386 REFERENCES 387 21 NEGATIVE
REFRACTION IN 2D PHOTONIC CRYSTAL SUPER-LATTICE: TOWARDS DEVICES IN THE
IR AND VISIBLE RANGES 389 Y. NEVE-OZ, M. COLOSOVSKY, A. FRENKEL, AND D.
DAVIDOV 21.1 INTRODUCTION 389 21.2 DESIGN 390 21.3 SIMULATIONS, RESULTS
AND DISCUSSION 392 21.3.1 WAVE TRANSMISSION THROUGH THE SUPERLATTICE
SLAB: EVIDENCE FOR NEGATIVE PHASE VELOCITY 392 21.3.2 REFRACTION THROUGH
A SUPERLATTICE PRISM 393 21.3.3 DETERMINATION OF THE REFRACTIVE INDICES
USING THE EQUAL FREQUENCY CONTOURS 395 21.4 CONCLUSIONS AND FUTURE
DIRECTIONS 397 REFERENCES 398 22 NEGATIVE PERMEABILITY AROUND 630 NM IN
NANOFABRICATED VERTICAL MEANDER METAMATERIALS 399 HEINZ SCHWEIZER, LIWEI
FU, HEDWIG CRAEBELDINGER, HONGCANG CUO, NA LIU, STEFAN KAISER, AND HARALD
DESSEN 22.1 INTRODUCTION 399 22.2 THEORETICAL APPROACH 401 22.2.1
TRANSMISSION LINE ANALYSIS 401 22.2.1.1 THREE BASIC TL CIRCUITS 402
22.2.1.2 ROLE OF THE SERIES CAPACITANCE 403 22.2.2 NUMERICAL SIMULATIONS
AND SYNTHESES WITH TL ANALYSIS 404 22.2.2.1 METAMATERIALS WITH DIFFERENT
UNIT CELLS 404 22.2.2.2 NUMERICAL SIMULATION OF MEANDER STRUCTURES 408
22.3 EXPERIMENTAL APPROACHES 410 22.3.1 FABRICATION TECHNOLOGIES 410
22.3.1.1 PLANE METALLIC MATRICES 410 22.3.1.2 NOVEL MEANDER STRUCTURE
411 22.3.2 CHARACTERIZATION OF FABRICATED STRUCTURES 412 22.3.2.1
EXPERIMENTAL RESULTS OF MEANDER STRIPS 413 22.3.2.2 EXPERIMENTAL RESULTS
OF MEANDER PLATES 414 12.4 CONCLUSION 415 REFERENCES 415 INDEX 417 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Wehrspohn, Ralf B. 1970- |
author2_role | edt |
author2_variant | r b w rb rbw |
author_GND | (DE-588)115845763 |
author_facet | Wehrspohn, Ralf B. 1970- |
building | Verbundindex |
bvnumber | BV023287112 |
callnumber-first | T - Technology |
callnumber-label | TA1530 |
callnumber-raw | TA1530 |
callnumber-search | TA1530 |
callnumber-sort | TA 41530 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UQ 4500 |
ctrlnum | (OCoLC)213380182 (DE-599)DNB986652563 |
dewey-full | 621.36 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36 |
dewey-search | 621.36 |
dewey-sort | 3621.36 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023287112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080826</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080505s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N01,1191</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A13,0918</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">986652563</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527408580</subfield><subfield code="c">Pp. : EUR 159.00 (freier Pr.), sfr 251.00 (freier Pr.)</subfield><subfield code="9">978-3-527-40858-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527408584</subfield><subfield code="c">Pp. : EUR 159.00 (freier Pr.), sfr 251.00 (freier Pr.)</subfield><subfield code="9">3-527-40858-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527408580</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1140858 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213380182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB986652563</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1530</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 4500</subfield><subfield code="0">(DE-625)146515:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanophotonic materials</subfield><subfield code="b">photonic crystals, plasmonics, and metamaterials</subfield><subfield code="c">ed. by R. B. Wehrspohn ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 418 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cristaux photoniques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matériaux nanostructurés</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanomatériaux - Propriétés optiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanophotonique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonic crystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonique - Matériaux</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Plasmons</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanophotonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield><subfield code="x">Optical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonic crystals</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photonischer Kristall</subfield><subfield code="0">(DE-588)4587112-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Photonischer Kristall</subfield><subfield code="0">(DE-588)4587112-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wehrspohn, Ralf B.</subfield><subfield code="d">1970-</subfield><subfield code="0">(DE-588)115845763</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3036841&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://d-nb.info/986652563/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016471793&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016471793</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023287112 |
illustrated | Illustrated |
index_date | 2024-07-02T20:41:59Z |
indexdate | 2024-07-20T09:39:06Z |
institution | BVB |
isbn | 9783527408580 3527408584 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016471793 |
oclc_num | 213380182 |
open_access_boolean | |
owner | DE-703 DE-29T DE-11 |
owner_facet | DE-703 DE-29T DE-11 |
physical | XXVII, 418 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Nanophotonic materials photonic crystals, plasmonics, and metamaterials ed. by R. B. Wehrspohn ... Weinheim Wiley-VCH 2008 XXVII, 418 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Cristaux photoniques ram Matériaux nanostructurés ram Nanomatériaux - Propriétés optiques Nanophotonique Photonic crystals Photonique - Matériaux Plasmons ram Nanophotonics Nanostructured materials Optical properties Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Photonischer Kristall (DE-588)4587112-7 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Nanostrukturiertes Material (DE-588)4342626-8 s Photonischer Kristall (DE-588)4587112-7 s DE-604 Wehrspohn, Ralf B. 1970- (DE-588)115845763 edt text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3036841&prov=M&dok_var=1&dok_ext=htm Inhaltstext http://d-nb.info/986652563/04 Inhaltsverzeichnis GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016471793&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nanophotonic materials photonic crystals, plasmonics, and metamaterials Cristaux photoniques ram Matériaux nanostructurés ram Nanomatériaux - Propriétés optiques Nanophotonique Photonic crystals Photonique - Matériaux Plasmons ram Nanophotonics Nanostructured materials Optical properties Nanostrukturiertes Material (DE-588)4342626-8 gnd Photonischer Kristall (DE-588)4587112-7 gnd |
subject_GND | (DE-588)4342626-8 (DE-588)4587112-7 (DE-588)4143413-4 |
title | Nanophotonic materials photonic crystals, plasmonics, and metamaterials |
title_auth | Nanophotonic materials photonic crystals, plasmonics, and metamaterials |
title_exact_search | Nanophotonic materials photonic crystals, plasmonics, and metamaterials |
title_exact_search_txtP | Nanophotonic materials photonic crystals, plasmonics, and metamaterials |
title_full | Nanophotonic materials photonic crystals, plasmonics, and metamaterials ed. by R. B. Wehrspohn ... |
title_fullStr | Nanophotonic materials photonic crystals, plasmonics, and metamaterials ed. by R. B. Wehrspohn ... |
title_full_unstemmed | Nanophotonic materials photonic crystals, plasmonics, and metamaterials ed. by R. B. Wehrspohn ... |
title_short | Nanophotonic materials |
title_sort | nanophotonic materials photonic crystals plasmonics and metamaterials |
title_sub | photonic crystals, plasmonics, and metamaterials |
topic | Cristaux photoniques ram Matériaux nanostructurés ram Nanomatériaux - Propriétés optiques Nanophotonique Photonic crystals Photonique - Matériaux Plasmons ram Nanophotonics Nanostructured materials Optical properties Nanostrukturiertes Material (DE-588)4342626-8 gnd Photonischer Kristall (DE-588)4587112-7 gnd |
topic_facet | Cristaux photoniques Matériaux nanostructurés Nanomatériaux - Propriétés optiques Nanophotonique Photonic crystals Photonique - Matériaux Plasmons Nanophotonics Nanostructured materials Optical properties Nanostrukturiertes Material Photonischer Kristall Aufsatzsammlung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3036841&prov=M&dok_var=1&dok_ext=htm http://d-nb.info/986652563/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016471793&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wehrspohnralfb nanophotonicmaterialsphotoniccrystalsplasmonicsandmetamaterials |