HLM 6: hierarchical linear and nonlinear modeling
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Lincolnwood, Ill.
Scientific Software International
2007
|
Ausgabe: | 4. print. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 297, [9] S. Ill., graph. Darst. |
ISBN: | 9780894980541 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023245217 | ||
003 | DE-604 | ||
005 | 20101119 | ||
007 | t | ||
008 | 080408s2007 ad|| |||| 00||| eng d | ||
020 | |a 9780894980541 |9 978-0-89498-054-1 | ||
035 | |a (OCoLC)255569249 | ||
035 | |a (DE-599)BVBBV023245217 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-N32 |a DE-91 |a DE-11 |a DE-473 | ||
084 | |a CM 3000 |0 (DE-625)18945: |2 rvk | ||
084 | |a QH 253 |0 (DE-625)141563: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a SOZ 720f |2 stub | ||
245 | 1 | 0 | |a HLM 6 |b hierarchical linear and nonlinear modeling |c [Stephen W. Raudenbush ...] |
250 | |a 4. print. | ||
264 | 1 | |a Lincolnwood, Ill. |b Scientific Software International |c 2007 | |
300 | |a 297, [9] S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Lineares Modell - Empirische Sozialforschung | |
650 | 4 | |a Lineares Modell - Hierarchisches System | |
650 | 0 | 7 | |a Lineares Modell |0 (DE-588)4134827-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Software |0 (DE-588)4055382-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineares Modell |0 (DE-588)4134827-8 |D s |
689 | 0 | 1 | |a Software |0 (DE-588)4055382-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Raudenbush, Stephen W. |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016430685&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016430685 |
Datensatz im Suchindex
_version_ | 1804137545139748864 |
---|---|
adam_text | Contents
Conceptual
and Statistical Background for Two-Level Models
..............7
1.1
The general two-level model
.....................................................................................7
1.1.1
Level-1 model
....................................................................................................................................8
1.1.2
Level-2 model
....................................................................................................................................8
1.2
Parameter estimation
................................................................................................9
1.3
Empirical
Bayes
( EB )
estimates of randomly varying level-1 coefficients,
ßqj........9
1.4
Generalized least squares (GLS) estimates of the level-2 coefficients,
γφ
.............10
1.5
Maximum likelihood estimates of variance and covariance components,
σ1
at
level
1,
and
Τ
at level
2......................................................................................................10
1.6
Some other useful statistics
....................................................................................10
1.7
Hypothesis testing
...................................................................................................11
1.8
Restricted versus full maximum likelihood
...............................................................11
1.9
Generalized Estimating Equations
..........................................................................11
Working with HLM2
...................................................................................14
2.1
Constructing the
MDM
file from raw data
................................................................14
2.2
Executing analyses based on the
MDM
file
.............................................................15
2.3
Model checking based on the residual file
...............................................................15
2.4
Windows, interactive, and batch execution
.............................................................16
2.5
An example using HLM2 in Window mode
..............................................................16
2.5.1
Constructing the
MDM
file from raw data
........................................................................................16
2.5.2
Executing analyses based on the
MDM
file
.....................................................................................26
2.5.3
Annotated HLM2 output
...................................................................................................................32
2.5.4
Model checking based on the residual file
.......................................................................................36
2.6
Handling of missing data
.........................................................................................46
2.7
The Basic Model Specifications
-
HLM2 dialog box
.................................................48
2.8
Other analytic options
..............................................................................................49
2.8.1
Controlling the iterative procedure
...................................................................................................49
2.8.2
Estimation control
............................................................................................................................50
2.8.3
Constraints on the fixed effects
.......................................................................................................51
2.8.4
To put constraints on fixed effects
...................................................................................................51
2.8.5
Modeling heterogeneity of level-1 variances
...................................................................................52
2.8.6
Specifying level-1 deletion variables
................................................................................................55
2.8.7
Using design weights
.......................................................................................................................55
2.8.8
Hypothesis testing
...........................................................................................................................58
2.9
Output options
.........................................................................................................62
2.10
Models without a level-1 intercept
...........................................................................63
2.11
Coefficients having a random effect with no corresponding fixed effect
..................64
2.12
Exploratory analysis of potential level-2 predictors
..................................................64
3
Conceptual
and Statistical Background for Three-Level Models
..........67
3.1
The general three-level model
.................................................................................67
3.1.1
Level-1 model
..................................................................................................................................
ţjjj
3.1.2
Level-2 model
..................................................................................................................................
°°
3.1.3
Level-3 model
..................................................................................................................................
70
3.2
Parameter estimation
..............................................................................................71
3.3
Hypothesis testing
...................................................................................................71
4
Working with HLM3
...................................................................................73
4.1
An example using HLM3 in Windows mode
............................................................73
4.1.1
Constructing the
MDM
file from raw data
........................................................................................73
4.2
Executing analyses based on the
MDM
file
.............................................................79
4.2.1
An annotated example of HLM3 output
...........................................................................................
80
4.3
Model checking based on the residual files
.............................................................84
4.4
Specification of a conditional model
........................................................................87
4.5
Other program features
...........................................................................................92
4.5.1
Basic specifications
.........................................................................................................................92
4.5.2
Iteration control
................................................................................................................................92
4.5.3
Estimation settings
...........................................................................................................................92
4.5.4
Hypothesis testing
...........................................................................................................................93
4.5.5
Output settings
.................................................................................................................................93
5
Conceptual and Statistical Background for Hierarchical Generalized
Linear Models (HGLM)
.....................................................................................94
5.1
The two-level HLM as a special case of HGLM
.......................................................95
5.1.1
Level-1 sampling model
...................................................................................................................95
5.1.2
Level-1 link function
.........................................................................................................................96
5.1.3
Level-1 structural model
..................................................................................................................96
5.2
Two- and three-level models for binary outcomes
...................................................96
5.2.1
Level-1 sampling model
...................................................................................................................97
5.2.2
Level-1 link function
.........................................................................................................................97
5.2.3
Level-1 structural model
..................................................................................................................98
5.2.4
Level-2 and Level-3 models
.............................................................................................................98
5.3
The model for count data
........................................................................................98
5.3.1
Level-1 sampling model
...................................................................................................................98
5.3.2
Level-1 link function
.........................................................................................................................99
5.3.3
Level-1 structural model
..................................................................................................................99
5.3.4
Level-2 model
..................................................................................................................................99
5.4
The model for multinomial data
.............................................................................100
5.4.1
Level-1 sampling model
.................................................................................................................100
5.4.2
Level-1 link function
.......................................................................................................................101
5.4.3
Level-1 structural model
......................................................................... . ..... . . . .... ........................
W1
5.4.4
Level-2 model
.......................................................................................
iZ . . . . . . . ..
.........................
W1
5.5
The model for ordinal data
....................................................................................102
5.5.1
Level-1 sampling model
.................................................................................................................102
5.5.2
Level-1 structural model
................................................................................................................102
5.6
Parameter estimation
............................................................................................103
5.6.1
Estimation via PQL
................................................................................................ .............103
5.6.2
Properties of the estimators
...........................................................................................................108
5.6.3
Parameter estimation: A high-order Laplace approximation of maximum likelihood
.....................109
5.7
Unit-specific and population-average models
........................................................109
5.8
Over-dispersion and under-dispersion
..................................................................111
5.9
Restricted versus full PQL versus full ML
..............................................................112
5.10
Hypothesis testing
.................................................................................................112
6
Fitting HGLMs (Nonlinear Models)
.........................................................113
6.1
Executing nonlinear analyses based on the
MDM
file
...........................................113
6.2
Case
1:
a Bernoulli model
.....................................................................................115
6.3
Case
2:
a binomial model (number of trials, mu >1)
............................................122
6.4
Case
3:
Poisson
model with equal exposure
.........................................................125
6.5
Case
4:
Poisson
model with variable exposure
.....................................................126
6.6
Case
5:
Multinomial model
....................................................................................128
6.7
Case
6:
Ordinal model
...........................................................................................133
6.8
Additional features
.................................................................................................138
6.8.1
Over-dispersion
.............................................................................................................................138
6.8.2
Laplace approximation for binary outcome models
.......................................................................138
6.8.3
Printing variance-covariance matrices for fixed effects
.................................................................139
6.9
Fitting HGLMs with three levels
.............................................................................139
7
Conceptual and Statistical Background for Hierarchical Multivariate
Linear Models (HMLM)
..................................................................................140
7.1
Unrestricted model
................................................................................................141
7.1.1
Level-1 model
................................................................................................................................141
7.1.2
Level-2 model
................................................................................................................................142
7.1.3
Combined model
............................................................................................................................143
7.2
HLM with homogenous level-1 variance
................................................................143
7.2.1
Level-1 model
................................................................................................................................144
7.2.2
Level-2 model
................................................................................................................................144
7.2.3
Combined model
............................................................................................................................144
7.3
HLM with varying level-1 variance
.........................................................................145
7.4
HLM with a log-linear model for the level-1 variance
.............................................145
7.5
First-order auto-regressive model for the level-1 residuals
...................................145
7.6
HMLM2: A multilevel, multivariate model
..............................................................146
7.6.1
Level-1 model
................................................................................................................................146
7.6.2
Level-2 model
................................................................................................................................147
7.6.3
Level-3 model
................................................................................................................................147
7.6.4
The combined model
.....................................................................................................................147
8
Working with HMLM/HMLM2
...................................................................149
8.1
An analysis using HMLM via Windows mode
........................................................149
8.1.1
Constructing the
MDM
from raw data
............................................................................................149
8.2
Executing analyses based on the
MDM
file
...........................................................152
8.3
An annotated example of HMLM
...........................................................................153
8.4
An analysis using HMLM2 via Windows mode
......................................................165
8.5
Executing analyses based on the
MDM
file
........................................................... 165
9
Special
Features
......................................................................................173
9.1
Latent
variable
analysis
.........................................................................................173
9.1.1
A latent variable analysis using HMLM: Example
1.......................................................................173
9.1.2
A latent variable analysis using HMLM: Example
2.......................................................................176
9.2
Applying HLM to multiply-imputed data
.................................................................179
9.2.1
Data with multiply-imputed values for the outcome or one covariate
............................................179
9.2.2
Calculations performed
..................................................................................................................180
9.2.3
Working with plausible values in HLM
...........................................................................................182
9.2.4
Data with multiply-imputed values for the outcome and covariates
...............................................183
9.3
V-Known models for HLM2
.................................................................................184
9.3.1
Data input format
...........................................................................................................................185
9.3.2
Creating the
MDM
file
....................................................................................................................186
9.3.3
Estimating a V-known model
.........................................................................................................186
9.3.4
V-known analyses where
Q
= 1.....................................................................................................189
10
Conceptual and Statistical Background for Cross-classified Random
Effect Models (HCM2)
....................................................................................190
10.1
The general cross-classified random effects models
.............................................190
10.1.1
Level-1 or within-cell model
....................................................................................................191
10.1.2
Level-2 or between-cell model
................................................................................................191
10.2
Parameter estimation
............................................................................................192
10.3
Hypothesis testing
.................................................................................................192
11
Working with HCM2...
...........................................................................193
11.1
An example using HCM2 in Windows mode
.........................................................193
11.1.1
Constructing the
MDM
file from raw data
......................................................................193
11.1.2
SPSS input
................................................................................................................................193
11.1.3
Level-2 row-factor file
................................................................................................................194
11.1.4
Level-2 column-factor file
..........................................................................................................195
11.2
Executing analyses based on the
MDM
file
...........................................................198
11.3
Specification of a conditional model with the effect associated with a row-specific
predictor fixed
..................................................................................................................201
11.4
Other program features
.........................................................................................206
12
Graphing Data and Models
..................................................................208
12.1
Data
-
based graphs
-
two level analyses
............................................................208
12.1.1
Box and whisker plots
....................................................... .......208
12.1.2
scatter plots
....................................................................
i..!! !!!!!! ! ! !! !!!!!!! !! ! !
.......215
12.1.3
Line plots
-
two-level analyses
..................................................................................................220
12.2
Model-based graphs
-
two level
............................................................................224
12.2.1
Model graphs
.............................................................................................................................224
12.2.2
Level-1 equation modeling
........................................................................................................230
12.2.3
Level-1 residual box-and-whisker plots
.....................................................................................233
12.2.4
Level-1 residual vs predicted value
...........................................................................................236
12.2.5
Level-1 EB/OLS coefficient confidence intervals
........................ . ..... . ... .. . . ... ... ...........................238
12.2.6
Graphing categorical predictors
.................................................................................................239
12.3
Three-level applications
........................................................................................240
A Using HLM2 in interactive and batch mode
............................................244
A.1 Using HLM2 in interactive mode
................................................................................244
A.1
.1
Example: constructing an
MDM
file for the HS&B data using SPSS file input
..................................244
A.1
.2
Example: constructing an
MDM
file for the HS&B data using ASCII file input
..................................245
A.2 Rules for format statements
......................................................................................247
A.2.1 Example: Executing an analysis using
HSB.
MDM............................................................................
247
А.З
Using
HLM
in batch and/or interactive mode
.............................................................251
A.4 Using HLM2 in batch mode
.......................................................................................252
A.5 Printing of variance and covariance matrices for fixed effects and level-2 variances
256
A.6 Preliminary exploratory analysis with HLM2
..............................................................258
В
Using HLM3 in Interactive and Batch Mode
.............................................261
B.1 Using HLM3 in interactive mode
................................................................................261
B.I.I Example: constructing an
MDM
file for the public school data using SPSS file input
.......................261
B.1
.2
Example: constructing an
MDM
file for the HS&B data using ASCII file input
..................................263
B.1.3 Example: Executing an analysis using EG.MDM
..............................................................................264
B.2 Using HLM3 in batch mode
.......................................................................................267
B.2.1 Table of keywords and options
.........................................................................................................267
B.3 Printing of variance and covariance matrices
............................................................269
С
Using HGLM in Interactive and Batch Mode
............................................270
C.1 Example: Executing an analysis using THAIUGRP.MDM
.........................................270
D
Using HMLM in Interactive and Batch Mode
............................................276
D.1 Constructing an
MDM
file
..........................................................................................276
D.2 Executing analyses based on
MDM
files
...................................................................276
D.2.1 Table of keywords and options
..........................................................................................................278
D.2.2 Table of HMLM2 keywords and options
............................................................................................278
E
Using Special Features in Interactive and Batch Mode
..........................280
E.1 Example: Latent variable analysis using the National Youth Study data sets
............280
E.2 A latent variable analysis to run regression with missing data
...................................282
E.3 Commands to apply HLM to multiply-imputed data
...................................................283
F
Using HCM2 in Interactive and Batch Mode
.............................................285
F.1 Using HCM2 in interactive mode
...............................................................................285
F.
1.1
Example: constructing an
MDM
file for the educational attainment data as described in Chapter
11
using SPSS file input
..................................................................................................................................285
F.1.
2
Example: Executing an unconditional model analysis using ATTAIN.MDM
......................................287
F.1.3 Example: Executing a conditional model analysis using ATTAIN.MDM
............................................288
F.2 Using HCM2 in batch mode
.......................................................................................292
References
.....................................................................................................294
Subject Index
.................................................................................................298
|
adam_txt |
Contents
Conceptual
and Statistical Background for Two-Level Models
.7
1.1
The general two-level model
.7
1.1.1
Level-1 model
.8
1.1.2
Level-2 model
.8
1.2
Parameter estimation
.9
1.3
Empirical
Bayes
("EB")
estimates of randomly varying level-1 coefficients,
ßqj.9
1.4
Generalized least squares (GLS) estimates of the level-2 coefficients,
γφ
.10
1.5
Maximum likelihood estimates of variance and covariance components,
σ1
at
level
1,
and
Τ
at level
2.10
1.6
Some other useful statistics
.10
1.7
Hypothesis testing
.11
1.8
Restricted versus full maximum likelihood
.11
1.9
Generalized Estimating Equations
.11
Working with HLM2
.14
2.1
Constructing the
MDM
file from raw data
.14
2.2
Executing analyses based on the
MDM
file
.15
2.3
Model checking based on the residual file
.15
2.4
Windows, interactive, and batch execution
.16
2.5
An example using HLM2 in Window mode
.16
2.5.1
Constructing the
MDM
file from raw data
.16
2.5.2
Executing analyses based on the
MDM
file
.26
2.5.3
Annotated HLM2 output
.32
2.5.4
Model checking based on the residual file
.36
2.6
Handling of missing data
.46
2.7
The Basic Model Specifications
-
HLM2 dialog box
.48
2.8
Other analytic options
.49
2.8.1
Controlling the iterative procedure
.49
2.8.2
Estimation control
.50
2.8.3
Constraints on the fixed effects
.51
2.8.4
To put constraints on fixed effects
.51
2.8.5
Modeling heterogeneity of level-1 variances
.52
2.8.6
Specifying level-1 deletion variables
.55
2.8.7
Using design weights
.55
2.8.8
Hypothesis testing
.58
2.9
Output options
.62
2.10
Models without a level-1 intercept
.63
2.11
Coefficients having a random effect with no corresponding fixed effect
.64
2.12
Exploratory analysis of potential level-2 predictors
.64
3
Conceptual
and Statistical Background for Three-Level Models
.67
3.1
The general three-level model
.67
3.1.1
Level-1 model
.
ţjjj
3.1.2
Level-2 model
.
°°
3.1.3
Level-3 model
.
70
3.2
Parameter estimation
.71
3.3
Hypothesis testing
.71
4
Working with HLM3
.73
4.1
An example using HLM3 in Windows mode
.73
4.1.1
Constructing the
MDM
file from raw data
.73
4.2
Executing analyses based on the
MDM
file
.79
4.2.1
An annotated example of HLM3 output
.
80
4.3
Model checking based on the residual files
.84
4.4
Specification of a conditional model
.87
4.5
Other program features
.92
4.5.1
Basic specifications
.92
4.5.2
Iteration control
.92
4.5.3
Estimation settings
.92
4.5.4
Hypothesis testing
.93
4.5.5
Output settings
.93
5
Conceptual and Statistical Background for Hierarchical Generalized
Linear Models (HGLM)
.94
5.1
The two-level HLM as a special case of HGLM
.95
5.1.1
Level-1 sampling model
.95
5.1.2
Level-1 link function
.96
5.1.3
Level-1 structural model
.96
5.2
Two- and three-level models for binary outcomes
.96
5.2.1
Level-1 sampling model
.97
5.2.2
Level-1 link function
.97
5.2.3
Level-1 structural model
.98
5.2.4
Level-2 and Level-3 models
.98
5.3
The model for count data
.98
5.3.1
Level-1 sampling model
.98
5.3.2
Level-1 link function
.99
5.3.3
Level-1 structural model
.99
5.3.4
Level-2 model
.99
5.4
The model for multinomial data
.100
5.4.1
Level-1 sampling model
.100
5.4.2
Level-1 link function
.101
5.4.3
Level-1 structural model
.".'.'.".'.'.'.
W1
5.4.4
Level-2 model
.
'iZ'."'.'.'.'.'.'.'.
.
W1
5.5
The model for ordinal data
.102
5.5.1
Level-1 sampling model
.102
5.5.2
Level-1 structural model
.102
5.6
Parameter estimation
.103
5.6.1
Estimation via PQL
. .103
5.6.2
Properties of the estimators
.108
5.6.3
Parameter estimation: A high-order Laplace approximation of maximum likelihood
.109
5.7
Unit-specific and population-average models
.109
5.8
Over-dispersion and under-dispersion
.111
5.9
Restricted versus full PQL versus full ML
.112
5.10
Hypothesis testing
.112
6
Fitting HGLMs (Nonlinear Models)
.113
6.1
Executing nonlinear analyses based on the
MDM
file
.113
6.2
Case
1:
a Bernoulli model
.115
6.3
Case
2:
a binomial model (number of trials, mu >1)
.122
6.4
Case
3:
Poisson
model with equal exposure
.125
6.5
Case
4:
Poisson
model with variable exposure
.126
6.6
Case
5:
Multinomial model
.128
6.7
Case
6:
Ordinal model
.133
6.8
Additional features
.138
6.8.1
Over-dispersion
.138
6.8.2
Laplace approximation for binary outcome models
.138
6.8.3
Printing variance-covariance matrices for fixed effects
.139
6.9
Fitting HGLMs with three levels
.139
7
Conceptual and Statistical Background for Hierarchical Multivariate
Linear Models (HMLM)
.140
7.1
Unrestricted model
.141
7.1.1
Level-1 model
.141
7.1.2
Level-2 model
.142
7.1.3
Combined model
.143
7.2
HLM with homogenous level-1 variance
.143
7.2.1
Level-1 model
.144
7.2.2
Level-2 model
.144
7.2.3
Combined model
.144
7.3
HLM with varying level-1 variance
.145
7.4
HLM with a log-linear model for the level-1 variance
.145
7.5
First-order auto-regressive model for the level-1 residuals
.145
7.6
HMLM2: A multilevel, multivariate model
.146
7.6.1
Level-1 model
.146
7.6.2
Level-2 model
.147
7.6.3
Level-3 model
.147
7.6.4
The combined model
.147
8
Working with HMLM/HMLM2
.149
8.1
An analysis using HMLM via Windows mode
.149
8.1.1
Constructing the
MDM
from raw data
.149
8.2
Executing analyses based on the
MDM
file
.152
8.3
An annotated example of HMLM
.153
8.4
An analysis using HMLM2 via Windows mode
.165
8.5
Executing analyses based on the
MDM
file
. 165
9
Special
Features
.173
9.1
Latent
variable
analysis
.173
9.1.1
A latent variable analysis using HMLM: Example
1.173
9.1.2
A latent variable analysis using HMLM: Example
2.176
9.2
Applying HLM to multiply-imputed data
.179
9.2.1
Data with multiply-imputed values for the outcome or one covariate
.179
9.2.2
Calculations performed
.180
9.2.3
Working with plausible values in HLM
.182
9.2.4
Data with multiply-imputed values for the outcome and covariates
.183
9.3
"V-Known" models for HLM2
.184
9.3.1
Data input format
.185
9.3.2
Creating the
MDM
file
.186
9.3.3
Estimating a V-known model
.186
9.3.4
V-known analyses where
Q
= 1.189
10
Conceptual and Statistical Background for Cross-classified Random
Effect Models (HCM2)
.190
10.1
The general cross-classified random effects models
.190
10.1.1
Level-1 or "within-cell" model
.191
10.1.2
Level-2 or "between-cell" model
.191
10.2
Parameter estimation
.192
10.3
Hypothesis testing
.192
11
Working with HCM2.
.193
11.1
An example using HCM2 in Windows mode
.193
11.1.1
Constructing the
MDM
file from raw data
.193
11.1.2
SPSS input
.193
11.1.3
Level-2 row-factor file
.194
11.1.4
Level-2 column-factor file
.195
11.2
Executing analyses based on the
MDM
file
.198
11.3
Specification of a conditional model with the effect associated with a row-specific
predictor fixed
.201
11.4
Other program features
.206
12
Graphing Data and Models
.208
12.1
Data
-
based graphs
-
two level analyses
.208
12.1.1
Box and whisker plots
. .208
12.1.2
scatter plots
.
i.!!""!!!!!!""!"!""!!"!!!!!!!"!!""!"!"
.215
12.1.3
Line plots
-
two-level analyses
.220
12.2
Model-based graphs
-
two level
.224
12.2.1
Model graphs
.224
12.2.2
Level-1 equation modeling
.230
12.2.3
Level-1 residual box-and-whisker plots
.233
12.2.4
Level-1 residual vs predicted value
.236
12.2.5
Level-1 EB/OLS coefficient confidence intervals
.'.'.'.'.'.'.'.'.'.'.238
12.2.6
Graphing categorical predictors
.239
12.3
Three-level applications
.240
A Using HLM2 in interactive and batch mode
.244
A.1 Using HLM2 in interactive mode
.244
A.1
.1
Example: constructing an
MDM
file for the HS&B data using SPSS file input
.244
A.1
.2
Example: constructing an
MDM
file for the HS&B data using ASCII file input
.245
A.2 Rules for format statements
.247
A.2.1 Example: Executing an analysis using
HSB.
MDM.
247
А.З
Using
HLM
in batch and/or interactive mode
.251
A.4 Using HLM2 in batch mode
.252
A.5 Printing of variance and covariance matrices for fixed effects and level-2 variances
256
A.6 Preliminary exploratory analysis with HLM2
.258
В
Using HLM3 in Interactive and Batch Mode
.261
B.1 Using HLM3 in interactive mode
.261
B.I.I Example: constructing an
MDM
file for the public school data using SPSS file input
.261
B.1
.2
Example: constructing an
MDM
file for the HS&B data using ASCII file input
.263
B.1.3 Example: Executing an analysis using EG.MDM
.264
B.2 Using HLM3 in batch mode
.267
B.2.1 Table of keywords and options
.267
B.3 Printing of variance and covariance matrices
.269
С
Using HGLM in Interactive and Batch Mode
.270
C.1 Example: Executing an analysis using THAIUGRP.MDM
.270
D
Using HMLM in Interactive and Batch Mode
.276
D.1 Constructing an
MDM
file
.276
D.2 Executing analyses based on
MDM
files
.276
D.2.1 Table of keywords and options
.278
D.2.2 Table of HMLM2 keywords and options
.278
E
Using Special Features in Interactive and Batch Mode
.280
E.1 Example: Latent variable analysis using the National Youth Study data sets
.280
E.2 A latent variable analysis to run regression with missing data
.282
E.3 Commands to apply HLM to multiply-imputed data
.283
F
Using HCM2 in Interactive and Batch Mode
.285
F.1 Using HCM2 in interactive mode
.285
F.
1.1
Example: constructing an
MDM
file for the educational attainment data as described in Chapter
11
using SPSS file input
.285
F.1.
2
Example: Executing an unconditional model analysis using ATTAIN.MDM
.287
F.1.3 Example: Executing a conditional model analysis using ATTAIN.MDM
.288
F.2 Using HCM2 in batch mode
.292
References
.294
Subject Index
.298 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023245217 |
classification_rvk | CM 3000 QH 253 SK 840 |
classification_tum | SOZ 720f |
ctrlnum | (OCoLC)255569249 (DE-599)BVBBV023245217 |
discipline | Soziologie Psychologie Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Soziologie Psychologie Mathematik Wirtschaftswissenschaften |
edition | 4. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01625nam a2200409 c 4500</leader><controlfield tag="001">BV023245217</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101119 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080408s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780894980541</subfield><subfield code="9">978-0-89498-054-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255569249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023245217</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-N32</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 3000</subfield><subfield code="0">(DE-625)18945:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 253</subfield><subfield code="0">(DE-625)141563:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SOZ 720f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">HLM 6</subfield><subfield code="b">hierarchical linear and nonlinear modeling</subfield><subfield code="c">[Stephen W. Raudenbush ...]</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Lincolnwood, Ill.</subfield><subfield code="b">Scientific Software International</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">297, [9] S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lineares Modell - Empirische Sozialforschung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lineares Modell - Hierarchisches System</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Software</subfield><subfield code="0">(DE-588)4055382-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Software</subfield><subfield code="0">(DE-588)4055382-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raudenbush, Stephen W.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016430685&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016430685</subfield></datafield></record></collection> |
id | DE-604.BV023245217 |
illustrated | Illustrated |
index_date | 2024-07-02T20:25:30Z |
indexdate | 2024-07-09T21:14:00Z |
institution | BVB |
isbn | 9780894980541 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016430685 |
oclc_num | 255569249 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-N32 DE-91 DE-BY-TUM DE-11 DE-473 DE-BY-UBG |
owner_facet | DE-355 DE-BY-UBR DE-N32 DE-91 DE-BY-TUM DE-11 DE-473 DE-BY-UBG |
physical | 297, [9] S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Scientific Software International |
record_format | marc |
spelling | HLM 6 hierarchical linear and nonlinear modeling [Stephen W. Raudenbush ...] 4. print. Lincolnwood, Ill. Scientific Software International 2007 297, [9] S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lineares Modell - Empirische Sozialforschung Lineares Modell - Hierarchisches System Lineares Modell (DE-588)4134827-8 gnd rswk-swf Software (DE-588)4055382-6 gnd rswk-swf Lineares Modell (DE-588)4134827-8 s Software (DE-588)4055382-6 s DE-604 Raudenbush, Stephen W. Sonstige oth Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016430685&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | HLM 6 hierarchical linear and nonlinear modeling Lineares Modell - Empirische Sozialforschung Lineares Modell - Hierarchisches System Lineares Modell (DE-588)4134827-8 gnd Software (DE-588)4055382-6 gnd |
subject_GND | (DE-588)4134827-8 (DE-588)4055382-6 |
title | HLM 6 hierarchical linear and nonlinear modeling |
title_auth | HLM 6 hierarchical linear and nonlinear modeling |
title_exact_search | HLM 6 hierarchical linear and nonlinear modeling |
title_exact_search_txtP | HLM 6 hierarchical linear and nonlinear modeling |
title_full | HLM 6 hierarchical linear and nonlinear modeling [Stephen W. Raudenbush ...] |
title_fullStr | HLM 6 hierarchical linear and nonlinear modeling [Stephen W. Raudenbush ...] |
title_full_unstemmed | HLM 6 hierarchical linear and nonlinear modeling [Stephen W. Raudenbush ...] |
title_short | HLM 6 |
title_sort | hlm 6 hierarchical linear and nonlinear modeling |
title_sub | hierarchical linear and nonlinear modeling |
topic | Lineares Modell - Empirische Sozialforschung Lineares Modell - Hierarchisches System Lineares Modell (DE-588)4134827-8 gnd Software (DE-588)4055382-6 gnd |
topic_facet | Lineares Modell - Empirische Sozialforschung Lineares Modell - Hierarchisches System Lineares Modell Software |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016430685&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT raudenbushstephenw hlm6hierarchicallinearandnonlinearmodeling |