Conservation biology: foundations, concepts, applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXVII, 477 S. Ill., graph. Darst., Kt. |
ISBN: | 9781402068904 9789048177530 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023244565 | ||
003 | DE-604 | ||
005 | 20130527 | ||
007 | t| | ||
008 | 080408s2008 gw abd| |||| 00||| eng d | ||
015 | |a 07,N44,0846 |2 dnb | ||
016 | 7 | |a 985963832 |2 DE-101 | |
020 | |a 9781402068904 |9 978-1-4020-6890-4 | ||
020 | |a 9789048177530 |c Unveränd. Paperbackausg. 2010 |9 978-90-481-7753-0 | ||
024 | 3 | |a 9781402068904 | |
028 | 5 | 2 | |a 12070152 |
035 | |a (OCoLC)300226198 | ||
035 | |a (DE-599)DNB985963832 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-M49 |a DE-634 |a DE-19 | ||
050 | 0 | |a QH75 | |
082 | 0 | |a 333.95/16 |2 22 | |
084 | |a WI 2000 |0 (DE-625)148759: |2 rvk | ||
084 | |a UMW 105f |2 stub | ||
084 | |a UMW 115f |2 stub | ||
084 | |a 570 |2 sdnb | ||
084 | |a BIO 125f |2 stub | ||
084 | |a BIO 134f |2 stub | ||
084 | |a BIO 130f |2 stub | ||
100 | 1 | |a Van Dyke, Fred |e Verfasser |4 aut | |
245 | 1 | 0 | |a Conservation biology |b foundations, concepts, applications |c Fred van Dyke |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XXVII, 477 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Biologie de la conservation | |
650 | 4 | |a Conservation biology | |
650 | 0 | 7 | |a Biotopschutz |0 (DE-588)4135733-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Genetische Variabilität |0 (DE-588)4264352-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökologisches Gleichgewicht |0 (DE-588)4123871-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Landschaftsschutz |0 (DE-588)4034359-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biodiversität |0 (DE-588)4601495-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Demökologie |0 (DE-588)4149059-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Artenschutz |0 (DE-588)4112598-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ökologisches Gleichgewicht |0 (DE-588)4123871-0 |D s |
689 | 0 | 1 | |a Demökologie |0 (DE-588)4149059-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Artenschutz |0 (DE-588)4112598-8 |D s |
689 | 1 | 1 | |a Biodiversität |0 (DE-588)4601495-0 |D s |
689 | 1 | 2 | |a Genetische Variabilität |0 (DE-588)4264352-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Biotopschutz |0 (DE-588)4135733-4 |D s |
689 | 2 | 1 | |a Landschaftsschutz |0 (DE-588)4034359-5 |D s |
689 | 2 | |C b |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016430049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016430049 |
Datensatz im Suchindex
_version_ | 1817711153586896896 |
---|---|
adam_text |
Contents
Cover Photograph Description. v
Foreword. vii
Preface . ix
Acknowledgements. xiii
About The Author. xv
Second and First Edition Reviewers. xxix
1 The History and Distinctions of Conservation Biology. 1
1.1. Perspectives and Questions for an Inquiry into Conservation Biology. 2
1.2. The Origins of Conservation. 3
1.2.1. Conservation in Historical Context. 3
1.2.2. Cultural Foundations of Conservation. 4
1.2.3. Conservation as Expression of Privilege. 6
1.2.4. Conservation as Right Relationship with Nature - The Arcadian Vision. 6
1.2.5. Conservation as Knowledge - The Invitation to Study and Appreciate Nature. 7
1.2.6. Conservation to Save Species - Origins of the First Conservation Organizations. 8
1.2.7. Conservation as Preservation of Landscape - The Washburn Expedition Goes to Yellowstone. 9
1.3. Intellectual Foundations and History of Conservation in the United States. 11
1.3.1. Conservation as Moral Mission - John Muir and Theodore Roosevelt. 11
1.3.2. "Scientific Conservation" Through Sustained Yield - Moral Mission Gives Way to
Utilitarian Purpose. 12
1.3.2.1. The Federal Government Empowers Conservation as Science and Democratic Ideal. 12
1.3.2.2. German Influences in Conservation - Forest Monocultures and Maximum Yields. 14
1.3.2.3. The Rise of the Resource Conservation Ethic. 15
1.3.2.4. Aldo Leopold and the Formation of the "Wilderness Ideal" in Conservation. 16
1.4. The Emergence of Global Conservation - Shared Interests Lead to Cooperation. 17
1.4.1. Multilateral Treaties -The Beginnings of International Conservation Efforts. 17
1.4.1.1. Conservation Driven by Shared Commercial Interests. 17
1.4.1.2. International Protection of Migratory Species. 18
1.4.2. Forums for International Conservation - The United Nations and the
International Union for the Conservation of Nature. 19
1.5. Conservation in the Developing World: New Expressions of Resource Management,
National Parks and Nature Preserves. 20
1.6. Return to Start: What is the Place of Conservation Biology in the World
Conservation Effort?. 22
1.6.1. The Emergence of Conservation Biology from the Applied Sciences. 22
1.6.2. Conceptually Distinctive Characteristics of Conservation Biology. 24
1.7. Synthesis. 25
References. 26
xvjij Contents
2 Values and Ethics in Conservation. 29
2.1. What Does Science Have to Do with Value?. 30
2.1.1. Avoiding the Absurd - Being Self-Aware of Values in Conservation Decisions. 30
2.1.2. Recognizing Management Actions as Value Judgments. 30
2.1.3. Values and Ethics - Definitions and Initial Assessments. 31
2.2. The Problem of Categories: How Do We Classify Different Kinds
of Conservation Values?. 33
2.2.1. An Overview of Value Categories. 33
2.2.2. Instrumental Values. 33
2.2.2.1. General Considerations. 33
2.2.2.2. Determining Attitudes with Sociological Surveys. 34
2.2.2.3. Tools of Economic Valuation: Cost-Benefit Analysis
and Contingency Valuation. 35
2.2.2.4. Contingent Valuation Analysis. 36
2.2.2.5. Criticisms of Contingent Valuation Analysis. 37
2.3. The Problem of Moral Value: Assigning Intrinsic Values in Conservation. 39
2.3.1. Where Does Intrinsic Value Reside?. 39
2.3.2. Ecocentrism as a Basis for the Intrinsic Value. 40
2.3.3. Intrinsic Value in the Judeo-Christian Tradition. 42
2.3.4. Other Western Religious Traditions - Islam. 44
2.3.5. Eastern Religious Traditions and Conservation - Hinduism and Buddhism. 44
2.3.5.1. Hinduism. 44
2.3.5.2. Buddhism. 45
2.3.6. Practical Implications - Faith-Based Organizations in Conservation. 46
2.3.6.1. "Goal Rational" Versus "Value Rational" Conservation. 46
2.3.6.2. Jewish and Christian FBOs. 46
2.3.6.3. FBOs in Islam. 47
23.6A. Conservation Activism in Hinduism. 47
2.3.6.5. Conservation FBOs in Buddhism. 48
2.3.6.6. Future Roles and Contributions of FBOs in Global Conservation. 48
2.4. The Problem of Practice: Do Conservation Values Require Conservation Virtues?. 49
2.4.1. The Problem of Plastic Trees. 49
2.4.2. From Values to Virtues: Virtue-Based Ethics in Conservation. 50
2.4.3. What are Appropriate Conservation Virtues?. 50
2.5. Orphaned Orangutans: Ethical Applications in Conservation. 51
2.6. Synthesis. 53
References. 53
3 The Legal Foundations of Conservation Biology. 57
3.1. Conservation Law and Policy. 58
3.1.1. Context and Definition. 58
3.1.2. Historical Origins of Conservation Law. 59
3.2. Environmental and Conservation Law in Individual Nations: Modern Examples
from the United States, South Africa, and Australia. 59
3.2.1. General Considerations. 59
3.2.2. Common Characteristics of Effective National Conservation Law. 60
3.2.3. The US National Environmental Policy Act (NEPA). 61
3.2.3.1. NEPAs History and Content. 61
3.2.3.2. NEPA and US Federal Lands. 62
3.2.3.3. Preparation of an Environmental Impact Statement. 62
3.2.3.4. Shortcomings of the National Environmental Policy Act. 63
3.2.4. The US Endangered Species Act. 64
3.2.4.1. Historical Origins and Content. 64
3.2.4.2. The Endangered Species Act and Landowner Conflicts:
The Case of the Red-Cockaded Woodpecker. 66
Contents xix
3.2.4.3. San Bruno Mountain and the Evolution of Habitat Conservation Planning. 67
3.2.4.4. Criticisms of the Endangered Species Act. 68
3.2.5. Water as an Inalienable Reserve - South Africa and Australia Establish Radical
Categories for Conservation Law. 69
3.3. International Conservation Law: Concept and Development. 71
3.3.1. General Considerations. 71
3.3.2. A Forum for Cooperation and Legal Foundation - The United Nations
and Its Environmental Programs. 71
3.3.2.1. Background and Context. 71
3.3.2.2. Stockholm: The Beginnings of Modern International Conservation Law. 71
3.3.2.3. Protection of Endangered Species: The Convention on International
Trade in Endangered Species of Wild Fauna and Flora (CITES). 72
3.3.2.4. Rio 1992 - Combining Conservation and Economics
in International Agreements. 74
3.4. The Process: Creating and Enforcing International Conservation Law. 75
3.5. The Problem of Interdependence: How Does One Nation Promote Global
Conservation without Negative Effects on Other Nations?. 77
3.5.1. The Nature of International Legal Interdependence. 77
3.5.2. Case History I: Tuna and Dolphins. 78
3.5.3. Case History II: Shrimp and Sea Turtles. 79
3.5.4. Outcomes and Future Prospects. 80
3.6. Synthesis. 80
References. 81
4 Biodiversity: Concept, Measurement, and Challenge. 83
4.1. Biodiversity and Conservation Biology. 84
4.2. The Problem of Concept and Quantity: How Do We Know What Biodiversity is and
How Do We Measure it?. 84
4.2.1. A Conceptual Definition of Biodiversity. 84
4.2.2. Biodiversity and the Definition of Species. 86
4.2.3. Contemporary Issues of the Species Concept. 86
4.2.4. Implications of the Species Concept in Conservation. 87
4.2.5. Measuring Biodiversity. 89
4.2.5.1. What Biodiversity Measurements Tell Us. 89
4.2.5.2. Alpha Diversity. 89
4.2.5.3. Beta Diversity. 90
4.2.5.4. Gamma Diversity. 92
4.2.6. Application and Integration of Diversity Measures to Address Issues
in Conservation: A Case Study from Eastern Amazonia. 93
4.2.7. Problems of Diversity Indices and Alternative Measures. 93
4.3. The Problem of Process and Pattern: What Explains Variation in Local Biodiversity?. 95
4.3.1. Niche Assembly Theories of Biodiversity. 95
4.3.2. The Unified Neutral Theory of Biodiversity. 96
4.4. The Problem of Dispersion: Where is Biodiversity Located?. 99
4.4.1. Global Patterns of Biodiversity. 99
4.4.2. Biodiversity Indices: Can We Find "Hotspots" with Incomplete Information?. 100
4.5. The Problem of Quantity: How Much Biodiversity is There?. 101
4.5.1. General Considerations. 101
4.5.2. Biodiversity and Rarity. 101
4.5.2.1. The Problem of Rarity. 101
4.5.2.2. Habitat Generalists Versus Habitat Specialists. 102
4.5.2.3. Large Populations Versus Small Populations. 102
4.5.2.4. Widespread Distribution Versus Restricted Distribution. 103
4.5.3. The Problem of Endemism. 103
4.5.3.1. Endemism in the Extreme - A Case History. 103
Contents
4.5.3.2. Endemism, Biodiversity, and Rarity. 104
4.5.3.3. Endemism and Island Species. 106
4.6. The Problem of Application: How Do We Manage Biodiversity?. 107
4.6.1. The Problem with "Hotspots". 107
4.6.2. Identifying Areas of Conservation Value Using Remotely Sensed Data. 107
4.6.3. Tracking Biodiversity Using Indicator Species. 107
4.6.3.1. Biodiversity Indicators: Using "Surrogate" Species as Biodiversity Indices. 107
4.6.3.2. Taxon-Based Biodiversity Indicators. 108
4.6.3.3. Structure- and Function-Based Biodiversity Indicators. 109
4.6.3.4. Bison as an Example of a Function-Based Keystone Species. 110
4.6.3.5. Ecological Redundancy and Function-Based Biodiversity Indicators. 110
4.7. The Problem of Conservation: How Do We Identify and Prioritize Areas to Preserve Biodiversity?. Ill
4.7.1. Current Global Prioritization Strategies. Ill
4.7.2. Management Approaches to Biodiversity at Landscape Levels. 112
4.7.2.1. Gathering Appropriate Background Data. 112
4.7.2.2. Maintaining Ecological and Evolutionary Processes Promoting Biodiversity. 113
4.7.2.3. Regional Biodiversity Management - Denning Functional Conservation Areas. 113
4.7.3. Building Biodiversity Conservation into Existing Management Plans -
The New South Wales Environmental Services Scheme. 114
4.8. Synthesis. 117
References. 117
Biodiversity Conservation and Climate Change. 121
5.1. Climate and Climate Change. 121
5.1.1. Why Does Climate Change Threaten Biodiversity?. 121
5.1.2. What Is "Climate" and What Is "Climate Change"?. 123
5.1.3. Should Contemporary Global Warming Be Called "Climate Change?". 124
5.1.4. The Implications of Rapidly Rising CO2. 125
5.1.5. Why We Call It "Climate" Change - Non-temperature Variations
in Climate in a Warming World. 127
5.2. The Global Fingerprint of Climate Change on Biodiversity. 128
5.2.1. Extinction Patterns in Edith's Checkerspot Butterfly. 128
5.2.2. Finding the Global Fingerprint of Climate Change. 128
5.2.3. Can Climate Change Cause Extinction of Local Populations?. 129
5.2.3.1. Climate Change and Pikas. 129
5.2.3.2. Climate Change and Desert Bighorn Sheep. 130
5.3. Climate Change in Ecosystems - Species Loss and System Degradation. 131
5.3.1. Climate Change at Ecosystem Levels: Biome Boundaries and Elevational Shifts. 131
5.3.2. Life Zone Changes in Tropical Forests. 132
5.3.3. Elevational Shifts in Tropical Cloud Forests: The Case of the Golden Toad. 132
5.4. Climate-Mediated Mechanisms of Ecosystem Change. 133
5.4.1. Climate Influences on a Keystone Species: The Case of the Whitebark Pine. 133
5.4.2. Climate Influences on Ecosystem Processes: Invasive Species in a Warmer World. 136
5.4.3. Climate Influences on Ecosystem Structure. 137
5.4.3.1. The Future of Coral in Warmer Oceans. 137
5.4.3.2. Loss of Polar Sea Ice: Implications for Polar Biodiversity. 138
5.5. Conservation Planning and Climate Change: Creating Climate-Integrated
Conservation Strategies. 140
5.5.1. The Bioclimate Envelope: Modeling Climate Effects on Individual Species. 140
5.5.2. Climate Change-Integrated Strategies for Conservation. 142
5.5.3. Modeling Efforts to Predict Future Responses to Ongoing Climate Change. 145
5.5.4. Errors of Application: Use and Misuse of Endangerment Criteria
to Model Climate Change Effects on Biodiversity. 146
5.6. Policy Initiatives for Climate Change and Conservation. 148
5.7. Synthesis. 150
References. 150
Contents xxi
6 Genetic Diversity - Understanding Conservation at Genetic Levels. 153
6.1. Genetics and Conservation: An Essential Integration. 153
6.2. Conservation Genetics and Conservation Biology. 154
6.3. Measuring Genetic Diversity in Populations. 157
6.3.1. Foundational Measures of Genetic Diversity. 157
6.3.2. The Loss of Genetic Diversity over Time: Bottlenecks and Genetic Drift. 157
6.3.3. Genetic Drift and Effective Population Size. 160
6.3.4. Bottlenecks, Small Populations and Rare Alleles. 161
6.4. The Problem of Inbreeding. 162
6.4.1. What Do We Mean by "Inbreeding" and How Would We Measure It?. 162
6.4.2. The Problem of Inbreeding Depression. 163
6.4.3. Measures of Inbreeding. 164
6.5. Inbreeding and Outbreeding in Population Subunits: Estimation of Gene Flow
and Metapopulation Genetics. 165
6.5.1. Historical Development of Gene Flow Theory. 165
6.5.2. Current Models of Gene Flow: Predictions and Implications. 166
6.5.3. Models of Recolonization: Propagule Pools and Migrant Pools. 168
6.6. Can Inbreeding Cause Extinction?. 170
6.6.1. Laboratory Experiments and Models. 170
6.6.2. Field Studies of Inbreeding. 171
6.6.3. Inbreeding was a Cause of Extinction in Butterfly Populations. 172
6.6.4. Inbreeding Effects - Environmental and Demographic Variability. 173
6.7. Hybridization and Introgression. 174
6.7.1. Hybridization and Introgression in Animals: The Case of the Red Wolf. 174
6.7.2. Importing Genetic Diversity: Genetic Restoration of Inbred Populations. 175
6.7.3. Hybridization in Plants - Conservation Threat or Conservation Asset?. 177
6.7.4. Introgression from Genetically Modified Organisms. 179
6.8. Outbreeding Depression. 180
6.9. Synthesis. 181
References. 181
7 Genetic Management - Managing Genetic Diversity for Conservation Goals. 185
7.1. Conservation Genetics: From Theory to Application. 186
7.2. Genetic Techniques: Solving the Problem of Assessing Genetic Status and Change. 186
7.2.1. General Considerations. 186
7.2.2. Allozyme Electrophoresis: Genetic Variation at Molecular Levels. 186
7.2.3. The Polymerase Chain Reaction: A Non-invasive Method for Genotyping
Endangered Species. 188
7.2.4. Random Amplified Polymorphic DNA (RAPD) Analysis. 189
7.2.5. DNA Fingerprinting: The Use of Satellite Markers. 189
7.2.5.1. Minisatellites and Microsatellites - What Are Satellite Markers?. 189
7.2.5.2. Measuring Genetic Diversity with Minisatellites and Microsatellites. 190
7.2.6. Mitochondrial DNA. 191
7.2.7. Restriction Fragment Length Polymorphism (RFLP): A Technique
for Assessment of Genetic Variation Among Individuals. 193
7.3. Captive Breeding: Managing Genetics of Captive Populations. 194
7.3.1. Using Genetic Techniques to Recover Genetic Diversity and Population Size
in Captive Populations: The Historical Background. 194
7.3.2. Solving the Fundamental Problem: Minimizing Adaptation to Captivity. 194
7.3.3. Captive Breeding Today. 195
7.3.4. Conservation Implications of Captive Breeding - The Example of the Okapi. 196
7.3.4.1. The Significance of the Captive Okapi Population. 196
7.3.4.2. Pedigree Analysis and Kinship. 196
7.3.4.3. Population Mean Kinship. 198
7.3.4.4. Relationship of Inbreeding to Kinship. 198
7.3.4.5. How Can a Captive Population Manager Retain Gene Diversity?. 199
xxii Contents
7.3.5. Captive Breeding Strategies. 200
7.3.5.1. Random Mating and Avoidance of Inbreeding Strategies. 200
7.3.5.2. Mean Kinship Breeding Strategies. 201
7.3.6. Making Sound Judgments in Captive Breeding Strategies: An Overview. 202
7.4. The Problem of Application: How Do We Use Genetic Information
and Techniques in Conservation?. 202
7.4.1. General Considerations. 202
7.4.2. Genetics Can Clarify Relatedness, Taxonomy, and Phylogeny. 202
7.4.3. Genetics Can Define Management Units of Fragmented or Widespread Populations. 204
7.4.4. Genetic Techniques Can Determine Rates of Gene Flow Among Populations. 205
7.4.5. Genetic Techniques Can Estimate the Time Since Past Population Bottlenecks. 205
7.4.6. Genetic Techniques Can Determine Patterns of Reproductive Ecology. 206
7.4.7. Genetic Forensics: Genetic Techniques Can Determine if Conservation Laws
and Treaties are Being Obeyed. 206
7.4.8. An Exemplary Case History: Exposing Exploitation of Protected Stocks
and Species Through Genetic Forensics. 207
7.5. Building Genetic Insights into Conservation Management. 208
7.5.1. Advanced Technologies, Limited Applications: The Current State
of Genetic Considerations in Field Conservation. 208
7.5.2. Genetic Conservation Reserves: Genetics as a Basis for Reserve Design. 208
7.6. Synthesis. 209
References. 210
8 The Conservation of Populations: Concept, Theory, and Analysis. 213
8.1. Defining Populations. 213
8.2. Basic Population Processes and Small Populations. 214
8.2.1. Population Demography. 214
8.2.2. Stochastic Perturbations. 216
8.2.2.1. Deterministic Versus Stochastic Factors. 216
8.2.2.2. Genetic and Environmental Stochasticity. 216
8.2.2.3. Demographic Stochasticity. 217
8.2.2.4. Natural Catastrophes. 218
8.3. Populations and Metapopulations: Complexities of Population Subdivision
and Fragmentation. 218
8.3.1. Origins of Metapopulation Theory. 218
8.3.2. The Definition and Development of Metapopulation Concepts. 219
8.3.3. A Metapopulation Case History: The Florida Scrub Jay. 222
8.3.4. Managing Metapopulation Interactions: Implications of a Theoretical Model. 222
8.4. Population Viability Analysis. 224
8.4.1. Conceptual Foundations. 224
8.4.2. Uses of PVA Models. 226
8.4.3. A Stage-Based Deterministic Model - The Western Prairie Fringed Orchid. 227
8.4.3.1. General Considerations. 227
8.4.3.2. Stage-Based Deterministic Models. 229
8.4.3.3. Constructing the Model and Matrices. 229
8.4.4. The Concept and Use of Elasticity in PVA Analysis. 231
8.4.5. Stochastic Models. 231
8.4.6. The Arizona Cliffrose: PVA Analysis of an Endangered Species. 232
8.5. Making Management Decisions for Small Populations. 235
8.5.1. PVA and the Analysis of Risk. 235
8.5.2. The Problem of PVA Application: How Do We Use and Interpret
Population Viability Analyses?. 237
8.5.3. Can PVAs Predict the Future? Test Cases and General Trends. 237
8.5.4. A Final Review: What Are We to Think of PVA?. 239
8.6. Synthesis. 239
Contents xxiii
Appendix: Calculation of Columns in a Cohort Life Table. 240
References. 240
9 Population Management and Restoration. 243
9.1. Minimum Viable Populations and Recovery Strategies for Threatened Species. 243
9.1.1. General Considerations. 243
9.1.2. The Use of PVA to Identify Threats and Recovery Strategies in In Situ
Populations: The Case of the Little Bustard. 244
9.1.3. The Case History of Viper's Grass: When Large Populations Are Not Enough. 245
9.1.4. The Lord Howe Island Woodhen: A Case Study in Managing Multiple
Threats to a Small and Declining Population. 248
9.1.5. Trend Analysis and Factor Resolution: Systematic Approaches
for Identifying Causes of Population Decline
and Strategies for Restoration. 250
9.1.6. The Gray Wolf: A Case History of Natural Population Restoration. 253
9.2. Invasive Species: Threats to Native Biodiversity. 255
9.2.1. General Considerations. 255
9.2.2. Characteristics of Successful Invading Species. 258
9.2.3. Invasive Species Alter Native Habitats. 259
9.3. Managing Invasive Species: Prediction, Response, and Restoration. 263
9.3.1. The Problem of Prediction: Can We Construct Models of Invasive Patterns
to Understand the Invasive Process?. 263
9.3.2. The Problem of Practical Response: How Do We Prevent or Control Invasions?. 265
9.3.2.1. General Considerations. 265
9.3.2.2. Step One: Preventing Entry of Invasive Species. 267
9.3.2.3. Step Two: Controlling Initial Infestations of Invasive Species. 269
9.3.2.4. Step Three: Controlling Negative Effects of Invasive Species
on Native Populations. 270
9.3.3. The Problem of Restoration: Can Native Populations Eradicated by
Invaders Be Restored? The Case of the White-Clawed Crayfish. 270
9.4. Practical Steps in Making Management Decisions for Populations:
A Conceptual Framework. 273
9.5. Synthesis. 275
References. 275
10 The Conservation of Habitat and Landscape. 279
10.1. The Definition, Concept, and Importance of Habitat. 280
10.1.1. What is Habitat?. 280
10.1.2. How Do We Measure Habitat Use?. 280
10.1.2.1. An Example in Moose: Habitat Choices of a Habitat Generalist. 280
10.1.2.2. Measuring Habitat Selection and Preference. 282
10.2. Heterogeneity, Landscape Gradients and Patch Dynamics. 282
10.2.1. Habitat Heterogeneity, Gradients, and Patchiness. 282
10.2.2. Habitats and Landscapes: Understanding Scales of Space and Time. 283
10.2.3. How Do We Predict Habitat Change?. 284
10.2.3.1. Predicting Habitat Transitions Using a Markov Model. 284
10.2.3.2. Habitat Transition in Conservation - Managing the Successional Process. 285
10.3. Problems of Habitat Loss. Isolation, and Fragmentation. 286
10.3.1. Neutral Landscape Models and the Isolation of Effects. 286
10.3.2. Percolation Theory: Denning the Critical Threshold of Fragmentation. 287
10.3.3. Can Percolation Theory Explain the Real World? Models and Field Studies. 289
10.3.3.1. Habitat-Population Models Support the Predictions of Percolation Theory. 289
10.3.3.2. The Spotted Owl: Population Predictions and Conservation Planning. 290
10.3.4. Field and Experimental Studies of Habitat Fragmentation. 292
10.3.5. Habitat Loss and Fragmentation: Experimental Isolation of Separate Effects. 293
Contents
10.4. Life on the Edge - Edge Effects Lead to Habitat Degradation. 295
10.4.1. Understanding the Effects of Edge: First Principles. 295
10.4.2. Edge Influence: Understanding Processes and Effects. 296
10.4.3. Environmental Characteristics of Edges. 297
10.5. Managing Habitat Connectivity: The Role of Corridors in Habitat Conservation. 299
10.5.1. The Theoretical Basis of Habitat Corridors. 299
10.5.2. Experimental Studies of Corridors. 299
10.5.3. Potential Disadvantages of Corridors. 301
10.6. Planning for Reserve Design. 302
10.6.1. Algorithms of Reserve Design. 302
10.6.2. GAP Analysis and Reserve Design. 303
10.6.3. Reserve Design and Habitat Suitability. 303
10.6.4. Determining Appropriate Reserve Size. 304
10.7. Habitat Management on Non-Reserve Lands: Multiple Use and Conservation. 306
10.7.1. Mitigating Human Effects on Non-reserve Lands: The Case of the Line Creek Elk. 306
10.7.2. Managing Non-reserve Lands for Habitat Conservation: The Multiple-Use Module. 307
10.8. Synthesis. 309
References. 309
11 The Conservation of Aquatic Systems. 313
11.1. Conservation Challenges of Aquatic Habitats. 313
11.1.1. Overcoming the Terrestrial Bias. 313
11.1.2. Conservation Challenges of Freshwater Habitats. 314
11.2. Management of Freshwater Habitats for Conservation. 315
11.2.1. Managing Chemical and Physical Inputs to Aquatic Systems. 315
11.2.2. Managing Freshwater Systems Through Riparian Zones. 317
11.2.3. Organizing Information About Freshwater Ecosystems for Conservation - The Problem
of Classification and Prioritization. 319
11.2.3.1. Coarse-Filter Approaches for Regional Representation - The Nature
Conservancy's Nested Classification System of Aquatic Habitats. 319
11.2.3.2. Setting Priorities for Conservation in Freshwater Aquatic Habitats -
Incorporating Threat and Urgency in Conservation Planning. 321
11.2.3.3. A Fine-Filter Approach to Conservation - Species Conservation Value in the
Iberian Peninsula. 322
11.3. Wetlands - Unique Challenges in Habitat Conservation. 324
11.3.1. What Are Wetlands?. 324
11.3.2. Managing Wetlands for Conservation - Management and Legislation. 325
11.4. Marine Habitats and Biodiversity. 326
11.4.1. A History of Overexploitation. 326
11.4.2. Causes of Marine Habitat Degradation. 328
11.4.3. Threats to Coral Reef Ecosystems. 333
11.4.4. Rehabilitation Techniques for Coral Reefs. 335
11.5. Conservation of Marine Habitat and Biodiversity - Managing the Marine Reserve. 336
11.5.1. Management Context, Goals and Strategies in Marine Reserves. 336
11.5.2. Tourist-Recreation Marine Reserves: The Bonaire Marine Park. 338
11.5.3. Protection at Ecosystem Levels: Australia's Great Barrier Reef Marine Park. 338
11.5.4. The "Co-Management" Model - Shared Authority Between Local Citizens
and Government Agencies. 339
11.5.5. Marine Protected Areas and Commercial Fisheries. 341
11.5.6. Mariculture - The Case History of the Giant Clam. 343
11.5.7. Multiple and Conflicting Jurisdictions Over Marine Resources. 345
11.6. Synthesis. 346
References . 346
Contents xxv
12 Ecosystem Management. 349
12.1. The Concept of Ecosystem Management. 349
12.1.1. What is Ecosystem Management?. 349
12.1.2. The Historical Roots of Ecosystem Management. 350
12.1.3. Development of the Ecosystem Management Paradigm. 351
12.2. How Do We Choose What to do? Changing the Decision-Making Process
in Ecosystem Management. 354
12.2.1. The Role of Adaptive Management. 354
12.2.2. Evaluating Ecosystem Management as a Performance-Based System. 355
12.2.2.1. Theoretical Constructs for Performance-Based Evaluation. 355
12.2.2.2. The Black-Legged Kittiwake and the Swamp Wallaby. 357
12.2.3. Stakeholder Participation in Ecosystem Management. 359
12.3. The Scientific Basis of Ecosystem Management. 359
12.3.1. The Problem of Location - Where is the Ecosystem?. 359
12.3.2. The Problem of Information - What Data Should Be Collected
and Interpreted for Ecosystem Management?. 361
12.3.2.1. General Considerations. 361
12.3.2.2. Regularly Collected Data. 361
12.3.2.3. Ecosystem Management and Geographic Information Systems - How
Technology Enables Management Purpose and Strategy. 362
12.3.2.4. Archived Data and Historical " Experiments". 364
12.3.2.5. Data from Long-Term Natural Repositories. 365
12.4. Implementing Management Decisions - What are the Tools of Ecosystem Management?. 366
12.4.1. Ecosystem Modeling. 366
12.4.2. Fire. 367
12.4.3. Water Flow. 368
12.4.4. Herbivory and Herbivores. 369
12.4.5. Predation and Predators. 371
12.4.6. Managing Ecosystem Components, Structure, and Function. 372
12.5. What does Ecosystem Management Accomplish? The Fruits of Ecosystem
Management Initiatives. 373
12.5.1. Top-Down Approaches - Ecosystem Management Through Government
Agency Initiative. 373
12.5.2. Initiative from the Bottom-Up - Emerging Coalitions Driven by Environmental Concern. 374
12.6. Why Ecosystem Management Matters - The Case of the Spotted Owl. 376
12.7. Synthesis. 378
References. 379
13 Conservation Economics. 383
13.1. Identifying and Protecting the Values of Biodiversity. 384
13.1.1. The Value of Ecosystem Goods and Services. 384
13.1.2. Stock-Flow Resources and Fund-Service Resources. 385
13.1.3. Non-excludable and Non-rival Goods. 387
13.2. Market-Based Solutions to Conservation Conflicts. 388
13.2.1. The Role of Property Rights in Conservation. 388
13.2.2. Biodiversity Conservation Through Market Incentive and Local Control. 389
13.2.3. Government-Market Coordination - Conservation and Paddlefish Caviar. 390
13.2.4. Integration of Conservation Assets in Private Property Value. 392
13.2.4.1. Zoning Laws and Conservation Easements. 392
13.2.4.2. Hedonic Valuation Models for Private Property. 393
13.2.5. Can Property Rights Enhance Conservation in Wildlife Refuges?
The Case Histories of Rainey and Baker Wildlife Sanctuaries. 394
13.2.6. User Fees on Public and Private Lands - Pricing the Value of Conservation. 395
13.2.7. The Travel Cost Method - Estimating the Value of a Costa Rican National Park. 396
xxvi Contents
13.3. Ecological Economics . 398
13.3.1. General Considerations. 398
13.3.2. Characteristics of Ecological Economics. 399
13.3.3. Methods for Valuing Environmental Goods and Services. 401
13.3.3.1. General Strategies. 401
13.3.3.2. Government Regulation. 402
13.3.3.3. Taxation and Subsidies. 403
13.3.3.4. Environmental Property Rights. 404
13.3.3.5. Insurance Against Environmental Damage. 404
13.3.3.6. Empowering Stakeholder Interests. 404
13.4. Protecting and Valuing Biodiversity in the Economy: Current Conditions. 405
13.4.1. The Convention on Biological Diversity. 405
13.4.2. Integrated Conservation and Development Projects as Government Strategies
to Encourage Just Protection of National and Indigenous Biodiversity. 406
13.4.2.1. General Considerations. 406
13.4.2.2. Serengeti National Park and Wildlife Harvests for Local Communities. 407
13.4.2.3. Ecotourism as an Integration of Conservation and Development. 408
13.4.3. The Broader Debate: Integrated Development or Direct Conservation Payments?. 409
13.5. Synthesis. 411
References. 412
14 On Becoming a Conservation Biologist: The Things Textbooks Never Tell You. 415
14.1. People as Agents of Conservation. 416
14.2. Conservation Biology as Vocation. 416
14.2.1. Articulating Your Personal Mission in Conservation. 416
14.2.2. Pursuing Your Mission Through Education. 416
14.2.3. Making the Transition from Student to Colleague. 418
14.2.3.1. The Hidden Hurdle of Higher Education: Attaining the Status of a Colleague. 418
14.2.3.2. The Role of Vocational Experience. 419
14.2.3.3. Putting Principles into Practice - Two Examples of Student-to-Colleague
Transitions. 420
14.2.3.4. Common Threads in Different Cases - Successful Transitions from
Conservation Students to Conservation Professionals. 422
14.3. Reaching a Wider Audience. 422
14.3.1. Building a Professional Network of Contacts and References. 422
14.3.2. Conservation as a Social Process: Involvement in Professional Societies. 425
14.3.3. Integrating Education and Experience into Social Conservation Outreach. 425
14.4. Graduate Education in Conservation Biology. 426
14.4.1. Independent Evaluation for Graduate School - The Graduate Record Exam. 426
14.4.2. Choosing a Program. 427
14.4.3. Choosing a Project, Graduate Professor, and Mentor. 428
14.4.4. Hidden Hurdles: The Problem of Traditional Approaches. 428
14.4.5. Taking Interdisciplinary Study Seriously - Program Level Innovation
in the University of Florida's Tropical Conservation
and Development Program. 430
14.4.6. Shifting the Scale: Innovative Approaches to Graduate Education in the Classroom. 431
14.4.6.1. Legal Ecology 101: Integrating Conservation Management and Law. 431
14.4.6.2. Relational Skills in Conservation: Handling Humans,
Learning Leadership. 432
14.4.6.3. Creating Your Own Path to Innovative Professional Development. 434
14.5. Choosing a Vocational Setting. 434
14.5.1. Should I Take This Job?. 434
14.5.2. How Can I Excel?. 436
14.5.3. Nurturing Professional Relationships. 436
Contents xxvii
14.6. Becoming an Effective Advocate for Conservation. 436
14.6.1. Professional Expressions of Advocacy. 436
14.6.2. An Alternative View of Advocacy. 437
14.6.3. Examining Outcomes: Implications of Alternative Views of Advocacy. 438
14.6.4. Avoiding Conflicts of Interest in Advocacy. 439
14.7. Synthesis. 440
References. 440
Glossary.443
Index.459 |
adam_txt |
Contents
Cover Photograph Description. v
Foreword. vii
Preface . ix
Acknowledgements. xiii
About The Author. xv
Second and First Edition Reviewers. xxix
1 The History and Distinctions of Conservation Biology. 1
1.1. Perspectives and Questions for an Inquiry into Conservation Biology. 2
1.2. The Origins of Conservation. 3
1.2.1. Conservation in Historical Context. 3
1.2.2. Cultural Foundations of Conservation. 4
1.2.3. Conservation as Expression of Privilege. 6
1.2.4. Conservation as Right Relationship with Nature - The Arcadian Vision. 6
1.2.5. Conservation as Knowledge - The Invitation to Study and Appreciate Nature. 7
1.2.6. Conservation to Save Species - Origins of the First Conservation Organizations. 8
1.2.7. Conservation as Preservation of Landscape - The Washburn Expedition Goes to Yellowstone. 9
1.3. Intellectual Foundations and History of Conservation in the United States. 11
1.3.1. Conservation as Moral Mission - John Muir and Theodore Roosevelt. 11
1.3.2. "Scientific Conservation" Through Sustained Yield - Moral Mission Gives Way to
Utilitarian Purpose. 12
1.3.2.1. The Federal Government Empowers Conservation as Science and Democratic Ideal. 12
1.3.2.2. German Influences in Conservation - Forest Monocultures and Maximum Yields. 14
1.3.2.3. The Rise of the Resource Conservation Ethic. 15
1.3.2.4. Aldo Leopold and the Formation of the "Wilderness Ideal" in Conservation. 16
1.4. The Emergence of Global Conservation - Shared Interests Lead to Cooperation. 17
1.4.1. Multilateral Treaties -The Beginnings of International Conservation Efforts. 17
1.4.1.1. Conservation Driven by Shared Commercial Interests. 17
1.4.1.2. International Protection of Migratory Species. 18
1.4.2. Forums for International Conservation - The United Nations and the
International Union for the Conservation of Nature. 19
1.5. Conservation in the Developing World: New Expressions of Resource Management,
National Parks and Nature Preserves. 20
1.6. Return to Start: What is the Place of Conservation Biology in the World
Conservation Effort?. 22
1.6.1. The Emergence of Conservation Biology from the Applied Sciences. 22
1.6.2. Conceptually Distinctive Characteristics of Conservation Biology. 24
1.7. Synthesis. 25
References. 26
xvjij Contents
2 Values and Ethics in Conservation. 29
2.1. What Does Science Have to Do with Value?. 30
2.1.1. Avoiding the Absurd - Being Self-Aware of Values in Conservation Decisions. 30
2.1.2. Recognizing Management Actions as Value Judgments. 30
2.1.3. Values and Ethics - Definitions and Initial Assessments. 31
2.2. The Problem of Categories: How Do We Classify Different Kinds
of Conservation Values?. 33
2.2.1. An Overview of Value Categories. 33
2.2.2. Instrumental Values. 33
2.2.2.1. General Considerations. 33
2.2.2.2. Determining Attitudes with Sociological Surveys. 34
2.2.2.3. Tools of Economic Valuation: Cost-Benefit Analysis
and Contingency Valuation. 35
2.2.2.4. Contingent Valuation Analysis. 36
2.2.2.5. Criticisms of Contingent Valuation Analysis. 37
2.3. The Problem of Moral Value: Assigning Intrinsic Values in Conservation. 39
2.3.1. Where Does Intrinsic Value Reside?. 39
2.3.2. Ecocentrism as a Basis for the Intrinsic Value. 40
2.3.3. Intrinsic Value in the Judeo-Christian Tradition. 42
2.3.4. Other Western Religious Traditions - Islam. 44
2.3.5. Eastern Religious Traditions and Conservation - Hinduism and Buddhism. 44
2.3.5.1. Hinduism. 44
2.3.5.2. Buddhism. 45
2.3.6. Practical Implications - Faith-Based Organizations in Conservation. 46
2.3.6.1. "Goal Rational" Versus "Value Rational" Conservation. 46
2.3.6.2. Jewish and Christian FBOs. 46
2.3.6.3. FBOs in Islam. 47
23.6A. Conservation Activism in Hinduism. 47
2.3.6.5. Conservation FBOs in Buddhism. 48
2.3.6.6. Future Roles and Contributions of FBOs in Global Conservation. 48
2.4. The Problem of Practice: Do Conservation Values Require Conservation Virtues?. 49
2.4.1. The Problem of Plastic Trees. 49
2.4.2. From Values to Virtues: Virtue-Based Ethics in Conservation. 50
2.4.3. What are Appropriate Conservation Virtues?. 50
2.5. Orphaned Orangutans: Ethical Applications in Conservation. 51
2.6. Synthesis. 53
References. 53
3 The Legal Foundations of Conservation Biology. 57
3.1. Conservation Law and Policy. 58
3.1.1. Context and Definition. 58
3.1.2. Historical Origins of Conservation Law. 59
3.2. Environmental and Conservation Law in Individual Nations: Modern Examples
from the United States, South Africa, and Australia. 59
3.2.1. General Considerations. 59
3.2.2. Common Characteristics of Effective National Conservation Law. 60
3.2.3. The US National Environmental Policy Act (NEPA). 61
3.2.3.1. NEPAs History and Content. 61
3.2.3.2. NEPA and US Federal Lands. 62
3.2.3.3. Preparation of an Environmental Impact Statement. 62
3.2.3.4. Shortcomings of the National Environmental Policy Act. 63
3.2.4. The US Endangered Species Act. 64
3.2.4.1. Historical Origins and Content. 64
3.2.4.2. The Endangered Species Act and Landowner Conflicts:
The Case of the Red-Cockaded Woodpecker. 66
Contents xix
3.2.4.3. San Bruno Mountain and the Evolution of Habitat Conservation Planning. 67
3.2.4.4. Criticisms of the Endangered Species Act. 68
3.2.5. Water as an Inalienable Reserve - South Africa and Australia Establish Radical
Categories for Conservation Law. 69
3.3. International Conservation Law: Concept and Development. 71
3.3.1. General Considerations. 71
3.3.2. A Forum for Cooperation and Legal Foundation - The United Nations
and Its Environmental Programs. 71
3.3.2.1. Background and Context. 71
3.3.2.2. Stockholm: The Beginnings of Modern International Conservation Law. 71
3.3.2.3. Protection of Endangered Species: The Convention on International
Trade in Endangered Species of Wild Fauna and Flora (CITES). 72
3.3.2.4. Rio 1992 - Combining Conservation and Economics
in International Agreements. 74
3.4. The Process: Creating and Enforcing International Conservation Law. 75
3.5. The Problem of Interdependence: How Does One Nation Promote Global
Conservation without Negative Effects on Other Nations?. 77
3.5.1. The Nature of International Legal Interdependence. 77
3.5.2. Case History I: Tuna and Dolphins. 78
3.5.3. Case History II: Shrimp and Sea Turtles. 79
3.5.4. Outcomes and Future Prospects. 80
3.6. Synthesis. 80
References. 81
4 Biodiversity: Concept, Measurement, and Challenge. 83
4.1. Biodiversity and Conservation Biology. 84
4.2. The Problem of Concept and Quantity: How Do We Know What Biodiversity is and
How Do We Measure it?. 84
4.2.1. A Conceptual Definition of Biodiversity. 84
4.2.2. Biodiversity and the Definition of Species. 86
4.2.3. Contemporary Issues of the Species Concept. 86
4.2.4. Implications of the Species Concept in Conservation. 87
4.2.5. Measuring Biodiversity. 89
4.2.5.1. What Biodiversity Measurements Tell Us. 89
4.2.5.2. Alpha Diversity. 89
4.2.5.3. Beta Diversity. 90
4.2.5.4. Gamma Diversity. 92
4.2.6. Application and Integration of Diversity Measures to Address Issues
in Conservation: A Case Study from Eastern Amazonia. 93
4.2.7. Problems of Diversity Indices and Alternative Measures. 93
4.3. The Problem of Process and Pattern: What Explains Variation in Local Biodiversity?. 95
4.3.1. Niche Assembly Theories of Biodiversity. 95
4.3.2. The Unified Neutral Theory of Biodiversity. 96
4.4. The Problem of Dispersion: Where is Biodiversity Located?. 99
4.4.1. Global Patterns of Biodiversity. 99
4.4.2. Biodiversity Indices: Can We Find "Hotspots" with Incomplete Information?. 100
4.5. The Problem of Quantity: How Much Biodiversity is There?. 101
4.5.1. General Considerations. 101
4.5.2. Biodiversity and Rarity. 101
4.5.2.1. The Problem of Rarity. 101
4.5.2.2. Habitat Generalists Versus Habitat Specialists. 102
4.5.2.3. Large Populations Versus Small Populations. 102
4.5.2.4. Widespread Distribution Versus Restricted Distribution. 103
4.5.3. The Problem of Endemism. 103
4.5.3.1. Endemism in the Extreme - A Case History. 103
Contents
4.5.3.2. Endemism, Biodiversity, and Rarity. 104
4.5.3.3. Endemism and Island Species. 106
4.6. The Problem of Application: How Do We Manage Biodiversity?. 107
4.6.1. The Problem with "Hotspots". 107
4.6.2. Identifying Areas of Conservation Value Using Remotely Sensed Data. 107
4.6.3. Tracking Biodiversity Using Indicator Species. 107
4.6.3.1. Biodiversity Indicators: Using "Surrogate" Species as Biodiversity Indices. 107
4.6.3.2. Taxon-Based Biodiversity Indicators. 108
4.6.3.3. Structure- and Function-Based Biodiversity Indicators. 109
4.6.3.4. Bison as an Example of a Function-Based Keystone Species. 110
4.6.3.5. Ecological Redundancy and Function-Based Biodiversity Indicators. 110
4.7. The Problem of Conservation: How Do We Identify and Prioritize Areas to Preserve Biodiversity?. Ill
4.7.1. Current Global Prioritization Strategies. Ill
4.7.2. Management Approaches to Biodiversity at Landscape Levels. 112
4.7.2.1. Gathering Appropriate Background Data. 112
4.7.2.2. Maintaining Ecological and Evolutionary Processes Promoting Biodiversity. 113
4.7.2.3. Regional Biodiversity Management - Denning Functional Conservation Areas. 113
4.7.3. Building Biodiversity Conservation into Existing Management Plans -
The New South Wales Environmental Services Scheme. 114
4.8. Synthesis. 117
References. 117
Biodiversity Conservation and Climate Change. 121
5.1. Climate and Climate Change. 121
5.1.1. Why Does Climate Change Threaten Biodiversity?. 121
5.1.2. What Is "Climate" and What Is "Climate Change"?. 123
5.1.3. Should Contemporary Global Warming Be Called "Climate Change?". 124
5.1.4. The Implications of Rapidly Rising CO2. 125
5.1.5. Why We Call It "Climate" Change - Non-temperature Variations
in Climate in a Warming World. 127
5.2. The Global Fingerprint of Climate Change on Biodiversity. 128
5.2.1. Extinction Patterns in Edith's Checkerspot Butterfly. 128
5.2.2. Finding the Global Fingerprint of Climate Change. 128
5.2.3. Can Climate Change Cause Extinction of Local Populations?. 129
5.2.3.1. Climate Change and Pikas. 129
5.2.3.2. Climate Change and Desert Bighorn Sheep. 130
5.3. Climate Change in Ecosystems - Species Loss and System Degradation. 131
5.3.1. Climate Change at Ecosystem Levels: Biome Boundaries and Elevational Shifts. 131
5.3.2. Life Zone Changes in Tropical Forests. 132
5.3.3. Elevational Shifts in Tropical Cloud Forests: The Case of the Golden Toad. 132
5.4. Climate-Mediated Mechanisms of Ecosystem Change. 133
5.4.1. Climate Influences on a Keystone Species: The Case of the Whitebark Pine. 133
5.4.2. Climate Influences on Ecosystem Processes: Invasive Species in a Warmer World. 136
5.4.3. Climate Influences on Ecosystem Structure. 137
5.4.3.1. The Future of Coral in Warmer Oceans. 137
5.4.3.2. Loss of Polar Sea Ice: Implications for Polar Biodiversity. 138
5.5. Conservation Planning and Climate Change: Creating Climate-Integrated
Conservation Strategies. 140
5.5.1. The Bioclimate Envelope: Modeling Climate Effects on Individual Species. 140
5.5.2. Climate Change-Integrated Strategies for Conservation. 142
5.5.3. Modeling Efforts to Predict Future Responses to Ongoing Climate Change. 145
5.5.4. Errors of Application: Use and Misuse of Endangerment Criteria
to Model Climate Change Effects on Biodiversity. 146
5.6. Policy Initiatives for Climate Change and Conservation. 148
5.7. Synthesis. 150
References. 150
Contents xxi
6 Genetic Diversity - Understanding Conservation at Genetic Levels. 153
6.1. Genetics and Conservation: An Essential Integration. 153
6.2. Conservation Genetics and Conservation Biology. 154
6.3. Measuring Genetic Diversity in Populations. 157
6.3.1. Foundational Measures of Genetic Diversity. 157
6.3.2. The Loss of Genetic Diversity over Time: Bottlenecks and Genetic Drift. 157
6.3.3. Genetic Drift and Effective Population Size. 160
6.3.4. Bottlenecks, Small Populations and Rare Alleles. 161
6.4. The Problem of Inbreeding. 162
6.4.1. What Do We Mean by "Inbreeding" and How Would We Measure It?. 162
6.4.2. The Problem of Inbreeding Depression. 163
6.4.3. Measures of Inbreeding. 164
6.5. Inbreeding and Outbreeding in Population Subunits: Estimation of Gene Flow
and Metapopulation Genetics. 165
6.5.1. Historical Development of Gene Flow Theory. 165
6.5.2. Current Models of Gene Flow: Predictions and Implications. 166
6.5.3. Models of Recolonization: Propagule Pools and Migrant Pools. 168
6.6. Can Inbreeding Cause Extinction?. 170
6.6.1. Laboratory Experiments and Models. 170
6.6.2. Field Studies of Inbreeding. 171
6.6.3. Inbreeding was a Cause of Extinction in Butterfly Populations. 172
6.6.4. Inbreeding Effects - Environmental and Demographic Variability. 173
6.7. Hybridization and Introgression. 174
6.7.1. Hybridization and Introgression in Animals: The Case of the Red Wolf. 174
6.7.2. Importing Genetic Diversity: Genetic Restoration of Inbred Populations. 175
6.7.3. Hybridization in Plants - Conservation Threat or Conservation Asset?. 177
6.7.4. Introgression from Genetically Modified Organisms. 179
6.8. Outbreeding Depression. 180
6.9. Synthesis. 181
References. 181
7 Genetic Management - Managing Genetic Diversity for Conservation Goals. 185
7.1. Conservation Genetics: From Theory to Application. 186
7.2. Genetic Techniques: Solving the Problem of Assessing Genetic Status and Change. 186
7.2.1. General Considerations. 186
7.2.2. Allozyme Electrophoresis: Genetic Variation at Molecular Levels. 186
7.2.3. The Polymerase Chain Reaction: A Non-invasive Method for Genotyping
Endangered Species. 188
7.2.4. Random Amplified Polymorphic DNA (RAPD) Analysis. 189
7.2.5. DNA Fingerprinting: The Use of Satellite Markers. 189
7.2.5.1. Minisatellites and Microsatellites - What Are Satellite Markers?. 189
7.2.5.2. Measuring Genetic Diversity with Minisatellites and Microsatellites. 190
7.2.6. Mitochondrial DNA. 191
7.2.7. Restriction Fragment Length Polymorphism (RFLP): A Technique
for Assessment of Genetic Variation Among Individuals. 193
7.3. Captive Breeding: Managing Genetics of Captive Populations. 194
7.3.1. Using Genetic Techniques to Recover Genetic Diversity and Population Size
in Captive Populations: The Historical Background. 194
7.3.2. Solving the Fundamental Problem: Minimizing Adaptation to Captivity. 194
7.3.3. Captive Breeding Today. 195
7.3.4. Conservation Implications of Captive Breeding - The Example of the Okapi. 196
7.3.4.1. The Significance of the Captive Okapi Population. 196
7.3.4.2. Pedigree Analysis and Kinship. 196
7.3.4.3. Population Mean Kinship. 198
7.3.4.4. Relationship of Inbreeding to Kinship. 198
7.3.4.5. How Can a Captive Population Manager Retain Gene Diversity?. 199
xxii Contents
7.3.5. Captive Breeding Strategies. 200
7.3.5.1. Random Mating and Avoidance of Inbreeding Strategies. 200
7.3.5.2. Mean Kinship Breeding Strategies. 201
7.3.6. Making Sound Judgments in Captive Breeding Strategies: An Overview. 202
7.4. The Problem of Application: How Do We Use Genetic Information
and Techniques in Conservation?. 202
7.4.1. General Considerations. 202
7.4.2. Genetics Can Clarify Relatedness, Taxonomy, and Phylogeny. 202
7.4.3. Genetics Can Define Management Units of Fragmented or Widespread Populations. 204
7.4.4. Genetic Techniques Can Determine Rates of Gene Flow Among Populations. 205
7.4.5. Genetic Techniques Can Estimate the Time Since Past Population Bottlenecks. 205
7.4.6. Genetic Techniques Can Determine Patterns of Reproductive Ecology. 206
7.4.7. Genetic Forensics: Genetic Techniques Can Determine if Conservation Laws
and Treaties are Being Obeyed. 206
7.4.8. An Exemplary Case History: Exposing Exploitation of Protected Stocks
and Species Through Genetic Forensics. 207
7.5. Building Genetic Insights into Conservation Management. 208
7.5.1. Advanced Technologies, Limited Applications: The Current State
of Genetic Considerations in Field Conservation. 208
7.5.2. Genetic Conservation Reserves: Genetics as a Basis for Reserve Design. 208
7.6. Synthesis. 209
References. 210
8 The Conservation of Populations: Concept, Theory, and Analysis. 213
8.1. Defining Populations. 213
8.2. Basic Population Processes and Small Populations. 214
8.2.1. Population Demography. 214
8.2.2. Stochastic Perturbations. 216
8.2.2.1. Deterministic Versus Stochastic Factors. 216
8.2.2.2. Genetic and Environmental Stochasticity. 216
8.2.2.3. Demographic Stochasticity. 217
8.2.2.4. Natural Catastrophes. 218
8.3. Populations and Metapopulations: Complexities of Population Subdivision
and Fragmentation. 218
8.3.1. Origins of Metapopulation Theory. 218
8.3.2. The Definition and Development of Metapopulation Concepts. 219
8.3.3. A Metapopulation Case History: The Florida Scrub Jay. 222
8.3.4. Managing Metapopulation Interactions: Implications of a Theoretical Model. 222
8.4. Population Viability Analysis. 224
8.4.1. Conceptual Foundations. 224
8.4.2. Uses of PVA Models. 226
8.4.3. A Stage-Based Deterministic Model - The Western Prairie Fringed Orchid. 227
8.4.3.1. General Considerations. 227
8.4.3.2. Stage-Based Deterministic Models. 229
8.4.3.3. Constructing the Model and Matrices. 229
8.4.4. The Concept and Use of Elasticity in PVA Analysis. 231
8.4.5. Stochastic Models. 231
8.4.6. The Arizona Cliffrose: PVA Analysis of an Endangered Species. 232
8.5. Making Management Decisions for Small Populations. 235
8.5.1. PVA and the Analysis of Risk. 235
8.5.2. The Problem of PVA Application: How Do We Use and Interpret
Population Viability Analyses?. 237
8.5.3. Can PVAs Predict the Future? Test Cases and General Trends. 237
8.5.4. A Final Review: What Are We to Think of PVA?. 239
8.6. Synthesis. 239
Contents xxiii
Appendix: Calculation of Columns in a Cohort Life Table. 240
References. 240
9 Population Management and Restoration. 243
9.1. Minimum Viable Populations and Recovery Strategies for Threatened Species. 243
9.1.1. General Considerations. 243
9.1.2. The Use of PVA to Identify Threats and Recovery Strategies in In Situ
Populations: The Case of the Little Bustard. 244
9.1.3. The Case History of Viper's Grass: When Large Populations Are Not Enough. 245
9.1.4. The Lord Howe Island Woodhen: A Case Study in Managing Multiple
Threats to a Small and Declining Population. 248
9.1.5. Trend Analysis and Factor Resolution: Systematic Approaches
for Identifying Causes of Population Decline
and Strategies for Restoration. 250
9.1.6. The Gray Wolf: A Case History of Natural Population Restoration. 253
9.2. Invasive Species: Threats to Native Biodiversity. 255
9.2.1. General Considerations. 255
9.2.2. Characteristics of Successful Invading Species. 258
9.2.3. Invasive Species Alter Native Habitats. 259
9.3. Managing Invasive Species: Prediction, Response, and Restoration. 263
9.3.1. The Problem of Prediction: Can We Construct Models of Invasive Patterns
to Understand the Invasive Process?. 263
9.3.2. The Problem of Practical Response: How Do We Prevent or Control Invasions?. 265
9.3.2.1. General Considerations. 265
9.3.2.2. Step One: Preventing Entry of Invasive Species. 267
9.3.2.3. Step Two: Controlling Initial Infestations of Invasive Species. 269
9.3.2.4. Step Three: Controlling Negative Effects of Invasive Species
on Native Populations. 270
9.3.3. The Problem of Restoration: Can Native Populations Eradicated by
Invaders Be Restored? The Case of the White-Clawed Crayfish. 270
9.4. Practical Steps in Making Management Decisions for Populations:
A Conceptual Framework. 273
9.5. Synthesis. 275
References. 275
10 The Conservation of Habitat and Landscape. 279
10.1. The Definition, Concept, and Importance of Habitat. 280
10.1.1. What is Habitat?. 280
10.1.2. How Do We Measure Habitat Use?. 280
10.1.2.1. An Example in Moose: Habitat Choices of a Habitat Generalist. 280
10.1.2.2. Measuring Habitat Selection and Preference. 282
10.2. Heterogeneity, Landscape Gradients and Patch Dynamics. 282
10.2.1. Habitat Heterogeneity, Gradients, and Patchiness. 282
10.2.2. Habitats and Landscapes: Understanding Scales of Space and Time. 283
10.2.3. How Do We Predict Habitat Change?. 284
10.2.3.1. Predicting Habitat Transitions Using a Markov Model. 284
10.2.3.2. Habitat Transition in Conservation - Managing the Successional Process. 285
10.3. Problems of Habitat Loss. Isolation, and Fragmentation. 286
10.3.1. Neutral Landscape Models and the Isolation of Effects. 286
10.3.2. Percolation Theory: Denning the Critical Threshold of Fragmentation. 287
10.3.3. Can Percolation Theory Explain the Real World? Models and Field Studies. 289
10.3.3.1. Habitat-Population Models Support the Predictions of Percolation Theory. 289
10.3.3.2. The Spotted Owl: Population Predictions and Conservation Planning. 290
10.3.4. Field and Experimental Studies of Habitat Fragmentation. 292
10.3.5. Habitat Loss and Fragmentation: Experimental Isolation of Separate Effects. 293
Contents
10.4. Life on the Edge - Edge Effects Lead to Habitat Degradation. 295
10.4.1. Understanding the Effects of Edge: First Principles. 295
10.4.2. Edge Influence: Understanding Processes and Effects. 296
10.4.3. Environmental Characteristics of Edges. 297
10.5. Managing Habitat Connectivity: The Role of Corridors in Habitat Conservation. 299
10.5.1. The Theoretical Basis of Habitat Corridors. 299
10.5.2. Experimental Studies of Corridors. 299
10.5.3. Potential Disadvantages of Corridors. 301
10.6. Planning for Reserve Design. 302
10.6.1. Algorithms of Reserve Design. 302
10.6.2. GAP Analysis and Reserve Design. 303
10.6.3. Reserve Design and Habitat Suitability. 303
10.6.4. Determining Appropriate Reserve Size. 304
10.7. Habitat Management on Non-Reserve Lands: Multiple Use and Conservation. 306
10.7.1. Mitigating Human Effects on Non-reserve Lands: The Case of the Line Creek Elk. 306
10.7.2. Managing Non-reserve Lands for Habitat Conservation: The Multiple-Use Module. 307
10.8. Synthesis. 309
References. 309
11 The Conservation of Aquatic Systems. 313
11.1. Conservation Challenges of Aquatic Habitats. 313
11.1.1. Overcoming the Terrestrial Bias. 313
11.1.2. Conservation Challenges of Freshwater Habitats. 314
11.2. Management of Freshwater Habitats for Conservation. 315
11.2.1. Managing Chemical and Physical Inputs to Aquatic Systems. 315
11.2.2. Managing Freshwater Systems Through Riparian Zones. 317
11.2.3. Organizing Information About Freshwater Ecosystems for Conservation - The Problem
of Classification and Prioritization. 319
11.2.3.1. Coarse-Filter Approaches for Regional Representation - The Nature
Conservancy's Nested Classification System of Aquatic Habitats. 319
11.2.3.2. Setting Priorities for Conservation in Freshwater Aquatic Habitats -
Incorporating Threat and Urgency in Conservation Planning. 321
11.2.3.3. A Fine-Filter Approach to Conservation - Species Conservation Value in the
Iberian Peninsula. 322
11.3. Wetlands - Unique Challenges in Habitat Conservation. 324
11.3.1. What Are Wetlands?. 324
11.3.2. Managing Wetlands for Conservation - Management and Legislation. 325
11.4. Marine Habitats and Biodiversity. 326
11.4.1. A History of Overexploitation. 326
11.4.2. Causes of Marine Habitat Degradation. 328
11.4.3. Threats to Coral Reef Ecosystems. 333
11.4.4. Rehabilitation Techniques for Coral Reefs. 335
11.5. Conservation of Marine Habitat and Biodiversity - Managing the Marine Reserve. 336
11.5.1. Management Context, Goals and Strategies in Marine Reserves. 336
11.5.2. Tourist-Recreation Marine Reserves: The Bonaire Marine Park. 338
11.5.3. Protection at Ecosystem Levels: Australia's Great Barrier Reef Marine Park. 338
11.5.4. The "Co-Management" Model - Shared Authority Between Local Citizens
and Government Agencies. 339
11.5.5. Marine Protected Areas and Commercial Fisheries. 341
11.5.6. Mariculture - The Case History of the Giant Clam. 343
11.5.7. Multiple and Conflicting Jurisdictions Over Marine Resources. 345
11.6. Synthesis. 346
References . 346
Contents xxv
12 Ecosystem Management. 349
12.1. The Concept of Ecosystem Management. 349
12.1.1. What is Ecosystem Management?. 349
12.1.2. The Historical Roots of Ecosystem Management. 350
12.1.3. Development of the Ecosystem Management Paradigm. 351
12.2. How Do We Choose What to do? Changing the Decision-Making Process
in Ecosystem Management. 354
12.2.1. The Role of Adaptive Management. 354
12.2.2. Evaluating Ecosystem Management as a Performance-Based System. 355
12.2.2.1. Theoretical Constructs for Performance-Based Evaluation. 355
12.2.2.2. The Black-Legged Kittiwake and the Swamp Wallaby. 357
12.2.3. Stakeholder Participation in Ecosystem Management. 359
12.3. The Scientific Basis of Ecosystem Management. 359
12.3.1. The Problem of Location - Where is the Ecosystem?. 359
12.3.2. The Problem of Information - What Data Should Be Collected
and Interpreted for Ecosystem Management?. 361
12.3.2.1. General Considerations. 361
12.3.2.2. Regularly Collected Data. 361
12.3.2.3. Ecosystem Management and Geographic Information Systems - How
Technology Enables Management Purpose and Strategy. 362
12.3.2.4. Archived Data and Historical " Experiments". 364
12.3.2.5. Data from Long-Term Natural Repositories. 365
12.4. Implementing Management Decisions - What are the Tools of Ecosystem Management?. 366
12.4.1. Ecosystem Modeling. 366
12.4.2. Fire. 367
12.4.3. Water Flow. 368
12.4.4. Herbivory and Herbivores. 369
12.4.5. Predation and Predators. 371
12.4.6. Managing Ecosystem Components, Structure, and Function. 372
12.5. What does Ecosystem Management Accomplish? The Fruits of Ecosystem
Management Initiatives. 373
12.5.1. Top-Down Approaches - Ecosystem Management Through Government
Agency Initiative. 373
12.5.2. Initiative from the Bottom-Up - Emerging Coalitions Driven by Environmental Concern. 374
12.6. Why Ecosystem Management Matters - The Case of the Spotted Owl. 376
12.7. Synthesis. 378
References. 379
13 Conservation Economics. 383
13.1. Identifying and Protecting the Values of Biodiversity. 384
13.1.1. The Value of Ecosystem Goods and Services. 384
13.1.2. Stock-Flow Resources and Fund-Service Resources. 385
13.1.3. Non-excludable and Non-rival Goods. 387
13.2. Market-Based Solutions to Conservation Conflicts. 388
13.2.1. The Role of Property Rights in Conservation. 388
13.2.2. Biodiversity Conservation Through Market Incentive and Local Control. 389
13.2.3. Government-Market Coordination - Conservation and Paddlefish Caviar. 390
13.2.4. Integration of Conservation Assets in Private Property Value. 392
13.2.4.1. Zoning Laws and Conservation Easements. 392
13.2.4.2. Hedonic Valuation Models for Private Property. 393
13.2.5. Can Property Rights Enhance Conservation in Wildlife Refuges?
The Case Histories of Rainey and Baker Wildlife Sanctuaries. 394
13.2.6. User Fees on Public and Private Lands - Pricing the Value of Conservation. 395
13.2.7. The Travel Cost Method - Estimating the Value of a Costa Rican National Park. 396
xxvi Contents
13.3. Ecological Economics . 398
13.3.1. General Considerations. 398
13.3.2. Characteristics of Ecological Economics. 399
13.3.3. Methods for Valuing Environmental Goods and Services. 401
13.3.3.1. General Strategies. 401
13.3.3.2. Government Regulation. 402
13.3.3.3. Taxation and Subsidies. 403
13.3.3.4. Environmental Property Rights. 404
13.3.3.5. Insurance Against Environmental Damage. 404
13.3.3.6. Empowering Stakeholder Interests. 404
13.4. Protecting and Valuing Biodiversity in the Economy: Current Conditions. 405
13.4.1. The Convention on Biological Diversity. 405
13.4.2. Integrated Conservation and Development Projects as Government Strategies
to Encourage Just Protection of National and Indigenous Biodiversity. 406
13.4.2.1. General Considerations. 406
13.4.2.2. Serengeti National Park and Wildlife Harvests for Local Communities. 407
13.4.2.3. Ecotourism as an Integration of Conservation and Development. 408
13.4.3. The Broader Debate: Integrated Development or Direct Conservation Payments?. 409
13.5. Synthesis. 411
References. 412
14 On Becoming a Conservation Biologist: The Things Textbooks Never Tell You. 415
14.1. People as Agents of Conservation. 416
14.2. Conservation Biology as Vocation. 416
14.2.1. Articulating Your Personal Mission in Conservation. 416
14.2.2. Pursuing Your Mission Through Education. 416
14.2.3. Making the Transition from Student to Colleague. 418
14.2.3.1. The Hidden Hurdle of Higher Education: Attaining the Status of a Colleague. 418
14.2.3.2. The Role of Vocational Experience. 419
14.2.3.3. Putting Principles into Practice - Two Examples of Student-to-Colleague
Transitions. 420
14.2.3.4. Common Threads in Different Cases - Successful Transitions from
Conservation Students to Conservation Professionals. 422
14.3. Reaching a Wider Audience. 422
14.3.1. Building a Professional Network of Contacts and References. 422
14.3.2. Conservation as a Social Process: Involvement in Professional Societies. 425
14.3.3. Integrating Education and Experience into Social Conservation Outreach. 425
14.4. Graduate Education in Conservation Biology. 426
14.4.1. Independent Evaluation for Graduate School - The Graduate Record Exam. 426
14.4.2. Choosing a Program. 427
14.4.3. Choosing a Project, Graduate Professor, and Mentor. 428
14.4.4. Hidden Hurdles: The Problem of Traditional Approaches. 428
14.4.5. Taking Interdisciplinary Study Seriously - Program Level Innovation
in the University of Florida's Tropical Conservation
and Development Program. 430
14.4.6. Shifting the Scale: Innovative Approaches to Graduate Education in the Classroom. 431
14.4.6.1. Legal Ecology 101: Integrating Conservation Management and Law. 431
14.4.6.2. Relational Skills in Conservation: Handling Humans,
Learning Leadership. 432
14.4.6.3. Creating Your Own Path to Innovative Professional Development. 434
14.5. Choosing a Vocational Setting. 434
14.5.1. Should I Take This Job?. 434
14.5.2. How Can I Excel?. 436
14.5.3. Nurturing Professional Relationships. 436
Contents xxvii
14.6. Becoming an Effective Advocate for Conservation. 436
14.6.1. Professional Expressions of Advocacy. 436
14.6.2. An Alternative View of Advocacy. 437
14.6.3. Examining Outcomes: Implications of Alternative Views of Advocacy. 438
14.6.4. Avoiding Conflicts of Interest in Advocacy. 439
14.7. Synthesis. 440
References. 440
Glossary.443
Index.459 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Van Dyke, Fred |
author_facet | Van Dyke, Fred |
author_role | aut |
author_sort | Van Dyke, Fred |
author_variant | d f v df dfv |
building | Verbundindex |
bvnumber | BV023244565 |
callnumber-first | Q - Science |
callnumber-label | QH75 |
callnumber-raw | QH75 |
callnumber-search | QH75 |
callnumber-sort | QH 275 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WI 2000 |
classification_tum | UMW 105f UMW 115f BIO 125f BIO 134f BIO 130f |
ctrlnum | (OCoLC)300226198 (DE-599)DNB985963832 |
dewey-full | 333.95/16 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.95/16 |
dewey-search | 333.95/16 |
dewey-sort | 3333.95 216 |
dewey-tens | 330 - Economics |
discipline | Biologie Wirtschaftswissenschaften Umwelt |
discipline_str_mv | Biologie Wirtschaftswissenschaften Umwelt |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023244565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130527</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080408s2008 gw abd| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N44,0846</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985963832</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402068904</subfield><subfield code="9">978-1-4020-6890-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048177530</subfield><subfield code="c">Unveränd. Paperbackausg. 2010</subfield><subfield code="9">978-90-481-7753-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781402068904</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12070152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)300226198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985963832</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH75</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.95/16</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 2000</subfield><subfield code="0">(DE-625)148759:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 105f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 115f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 125f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 134f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 130f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Dyke, Fred</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conservation biology</subfield><subfield code="b">foundations, concepts, applications</subfield><subfield code="c">Fred van Dyke</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 477 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biologie de la conservation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation biology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotopschutz</subfield><subfield code="0">(DE-588)4135733-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genetische Variabilität</subfield><subfield code="0">(DE-588)4264352-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökologisches Gleichgewicht</subfield><subfield code="0">(DE-588)4123871-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Landschaftsschutz</subfield><subfield code="0">(DE-588)4034359-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biodiversität</subfield><subfield code="0">(DE-588)4601495-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Demökologie</subfield><subfield code="0">(DE-588)4149059-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Artenschutz</subfield><subfield code="0">(DE-588)4112598-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökologisches Gleichgewicht</subfield><subfield code="0">(DE-588)4123871-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Demökologie</subfield><subfield code="0">(DE-588)4149059-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Artenschutz</subfield><subfield code="0">(DE-588)4112598-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Biodiversität</subfield><subfield code="0">(DE-588)4601495-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Genetische Variabilität</subfield><subfield code="0">(DE-588)4264352-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Biotopschutz</subfield><subfield code="0">(DE-588)4135733-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Landschaftsschutz</subfield><subfield code="0">(DE-588)4034359-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016430049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016430049</subfield></datafield></record></collection> |
id | DE-604.BV023244565 |
illustrated | Illustrated |
index_date | 2024-07-02T20:25:11Z |
indexdate | 2024-12-06T17:00:40Z |
institution | BVB |
isbn | 9781402068904 9789048177530 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016430049 |
oclc_num | 300226198 |
open_access_boolean | |
owner | DE-20 DE-M49 DE-BY-TUM DE-634 DE-19 DE-BY-UBM |
owner_facet | DE-20 DE-M49 DE-BY-TUM DE-634 DE-19 DE-BY-UBM |
physical | XXVII, 477 S. Ill., graph. Darst., Kt. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Van Dyke, Fred Verfasser aut Conservation biology foundations, concepts, applications Fred van Dyke 2. ed. Berlin [u.a.] Springer 2008 XXVII, 477 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Biologie de la conservation Conservation biology Biotopschutz (DE-588)4135733-4 gnd rswk-swf Genetische Variabilität (DE-588)4264352-1 gnd rswk-swf Ökologisches Gleichgewicht (DE-588)4123871-0 gnd rswk-swf Landschaftsschutz (DE-588)4034359-5 gnd rswk-swf Biodiversität (DE-588)4601495-0 gnd rswk-swf Demökologie (DE-588)4149059-9 gnd rswk-swf Artenschutz (DE-588)4112598-8 gnd rswk-swf Ökologisches Gleichgewicht (DE-588)4123871-0 s Demökologie (DE-588)4149059-9 s DE-604 Artenschutz (DE-588)4112598-8 s Biodiversität (DE-588)4601495-0 s Genetische Variabilität (DE-588)4264352-1 s Biotopschutz (DE-588)4135733-4 s Landschaftsschutz (DE-588)4034359-5 s b DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016430049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Van Dyke, Fred Conservation biology foundations, concepts, applications Biologie de la conservation Conservation biology Biotopschutz (DE-588)4135733-4 gnd Genetische Variabilität (DE-588)4264352-1 gnd Ökologisches Gleichgewicht (DE-588)4123871-0 gnd Landschaftsschutz (DE-588)4034359-5 gnd Biodiversität (DE-588)4601495-0 gnd Demökologie (DE-588)4149059-9 gnd Artenschutz (DE-588)4112598-8 gnd |
subject_GND | (DE-588)4135733-4 (DE-588)4264352-1 (DE-588)4123871-0 (DE-588)4034359-5 (DE-588)4601495-0 (DE-588)4149059-9 (DE-588)4112598-8 |
title | Conservation biology foundations, concepts, applications |
title_auth | Conservation biology foundations, concepts, applications |
title_exact_search | Conservation biology foundations, concepts, applications |
title_exact_search_txtP | Conservation biology foundations, concepts, applications |
title_full | Conservation biology foundations, concepts, applications Fred van Dyke |
title_fullStr | Conservation biology foundations, concepts, applications Fred van Dyke |
title_full_unstemmed | Conservation biology foundations, concepts, applications Fred van Dyke |
title_short | Conservation biology |
title_sort | conservation biology foundations concepts applications |
title_sub | foundations, concepts, applications |
topic | Biologie de la conservation Conservation biology Biotopschutz (DE-588)4135733-4 gnd Genetische Variabilität (DE-588)4264352-1 gnd Ökologisches Gleichgewicht (DE-588)4123871-0 gnd Landschaftsschutz (DE-588)4034359-5 gnd Biodiversität (DE-588)4601495-0 gnd Demökologie (DE-588)4149059-9 gnd Artenschutz (DE-588)4112598-8 gnd |
topic_facet | Biologie de la conservation Conservation biology Biotopschutz Genetische Variabilität Ökologisches Gleichgewicht Landschaftsschutz Biodiversität Demökologie Artenschutz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016430049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT vandykefred conservationbiologyfoundationsconceptsapplications |